金属玻璃在压力下多形态的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属玻璃,作为非晶态玻璃家族的一个“新”成员(几十年历史),一方面,由于它优异的机械、磁学、电化学等性质而具有诱人的应用价值和前景;另一方面,它独特的无方向性金属键“无序”密堆结构,为包括玻璃结构、玻璃形成和熔体过冷液行为在内的一系列非平衡凝聚态领域内未解决的重大基础问题的研究提供了独特的模型体系和研究机遇。因此,近几十年来金属玻璃一直是材料科学研究的热点前沿。关于物质相变的研究直接关联到物质结构以及物质应用中的性能调制。“非晶多形态转变(相变)”在许多传统非晶态物质中的发现和深入研究,促进了人们对非晶态物质的认识。通常认为这种非晶多形态转变现象与其相应液体结构的起伏有关,对应着方向性键合的开放网络结构特性(低配位,一般小于6)。所以,人们认为在具有无方向性金属键密堆结构的金属玻璃中不太可能会存在非晶多形态现象。本论文的研究工作是以铈基稀土金属玻璃为模型体系,综合利用多种高压技术,发现了铈基金属玻璃中压力诱导的非晶多形态转变现象及其机理;研究了与金属玻璃的非晶多形态转变相关的各种物理性质的变化;探索了利用非晶多形态金属玻璃作为前驱体的新材料合成方法、机理以及新材料的结构形态。本论文得到的主要结果如下:
     (1)采用原位高压同步辐射X射线衍射技术研究了Ce32La32Al16Ni5Cu15大块金属玻璃的压缩行为,首次在大块金属玻璃中发现了从一个非晶态到另一个非晶态的非晶多形态转变现象。利用原位高压同步辐射X射线衍射技术,在液氦作为传压介质的极佳等静压条件下,研究了含有高浓度铈元素(Ce)的简单二元Ce75Al25金属玻璃的压缩行为,在Ce75Al25金属玻璃中进一步确认了一个从低密度非晶态到高密度非晶态的体积塌缩型非晶多形态转变现象。同时,采用原位高压Ce-L3边同步辐射X射线吸收谱技术,第一次直接从实验上揭示了含Ce金属玻璃中4f电子非局域化转变诱导其非晶多形态转变的机理。这种电子性质的非晶多形态转变与传统玻璃物质在压力下发生的由于配位数增加而导致的结构重排调整的非晶多形态转变现象完全不同,展示了一种独特的新型非晶多形态转变机理,拓展了无序体系中非晶多形态现象的研究。此外,Ce75Al25金属玻璃的结构因子中的预峰在压力下表现了奇特的难压缩性特征。这个现象可能促进我们对于与预峰相关的玻璃结构的认识。
     (2)通过原位高压高温同步辐射x射线衍射、常压及原位高压低温电、磁测量技术,研究了低密度非晶态和高密度非晶态Ce75Al25金属玻璃的热稳定性和电、磁性质及两种玻璃态之间性质的差异,通过与不含4f电子的La75Al25金属玻璃样品进行对比,再次确认了伴随非晶多形态转变而发生的物理性质突变的4f电子机制。据我们所知,本论文第一次在金属玻璃中观察到了压力调制的电阻温度系数从负到正的转变,以及成分和磁场调制的磁阻从正到负的转变。这些发现可能促进金属玻璃非晶多形态现象的应用,同时也可能为描述凝聚态物质中4f电子行为的理论研究提供特殊而有趣的模型体系。另外,在我国新建成的上海同步辐射微聚焦硬x射线光束站,我们第一次成功地开展了室温下的原位高压x射线衍射实验,发现了在Ce75Al23Si2金属玻璃中的高压诱导非晶多形态现象;揭示了微量元素掺杂对Ce75Al25金属玻璃的非晶多形态转变及其物理性质的影响。
     (3)利用高压同步辐射x射线衍射技术,我们进一步研究了高密度非晶态的Ce75Al25金属玻璃的高压行为,发现把它加压到25 GPa左右时,突然晶化形成了一种新型的fcc-Ce3Al取代型固溶体合金。根据休谟-饶塞里定律,Ce和Al元素在常温常压下,原子半径约差28%、电负性约差0.45,它们之间不可能形成固溶体合金。综合利用原位高压同步辐射x射线衍射、原位高压同步辐射x射线吸收谱以及第一性原理计算技术,我们发现是4f电子从局域态到巡游态的转变导致了Ce和Al的原子半径和电负性差异在高压下变得越来越小,使得体系满足了休谟-饶塞里定律从而形成新型的fcc-Ce3Al固溶体合金。当压力完全卸载后,尽管实验结果显示fcc-Ce3Al固溶体合金中的4f电子基本恢复到了局域态,但是其原子结构却在常压下可以保持稳定(至少在常温下的1年时间内),表明我们合成了一种全新的在常温常压下存在的“非休谟-饶塞里”固溶体合金材料。
     (4)利用高压原位同步辐射x射线衍射技术,我们在室温下发现了压力诱导的Ce75Al25金属玻璃多形态晶化现象。而且晶化转变的过程非常快,晶化相是和金属玻璃条带样品有固定晶体学取向关系的“单晶”结构。通过开展多种实验,基本证实了单晶的固定取向关系与金属玻璃样品内部的某种结构“取向”有关,而通过高分辨电镜和高分辨同步辐射X射线衍射应力分析,都没有发现样品中具有任何可以辨别的取向性(各向异性)的结构信息。结合第一性原理计算,我们提出了金属玻璃在快速冷却的制备过程中,可能保留(携带)了一定的长程取向性结构信息(可能是团簇的某种取向性堆积),而在室温下压力诱导的晶化可能是通过原子集体地局部调整而实现,能够不破坏金属玻璃样品结构中保留的取向信息,通过这种特殊的“单晶”晶化方式,重现了金属玻璃里可能携带的原子结构的各向异性信息。这种奇特相变的机理目前还不是很清楚,需要开展进一步的研究。但是这个实验在金属玻璃中发现和展示了一种全新的压力诱导非晶-单晶多形态晶化相变。这种新现象可能为单晶材料生长技术提供新的途径和思路。
Metallic glass (MG), as a relative new member of glass family, offers novel mechanical, magnetic and electrochemical properties and has perspective potential applications in industry. Its unique nondirectional and densely packed structure provides an idea model system for studies of fundamental problems in condense matter physics, e.g. glass structure, glass forming, supercooled liquid behavior etc. It has been at the cutting edge of material researches for decades. The phase transitions in materials closely correlate with their structures and applications of switchable properties. The polyamorphic transitions in traditional amorphous materials have improved and extended our knowledge of amorphous matter. Generally, polyamorphic transitions occur in open-network glasses (coordination number<6) linking with the structure fluctuation in their relevant liquids. Thus, in principle it was thought that no polyamorphic transition would occur in MG because of its non-directional densely packed structure. In this thesis, by applying the state-of-the-art in-situ high-pressure synchrotron x-ray technologies to Ce-based MG as a model system, we discovered the polyamorphism in the Ce-based MG, as well as its underlying mechanism, and the emergent properties accompanying with the polyamorphic transitions. The results from this work also promise a new material synthesis method under high pressure in polyamorphous MGs. The main results are summarized as follows.
     (1) With in-situ high-pressure synchrotron x-ray diffraction (XRD) techniques, we investigated the compression behavior of Ce32La32Al16Ni5Cu15 bulk metallic glass (BMG), an amorphous-to-amorphous polyamorphic transition was discovered in BMG for the first time. Using in-situ high-pressure synchrotron XRD and x-ray absorption spectroscopy (XAS) techniques; we experimentally confirmed a low density amorphous (LDA) to high density amorphous (HDA) polyamorphic transition in a binary Ce75Al25 MG with high Ce concentration under hydrostatic pressure condition. Densification in this novel type of polyamorphic transition is dictated by the Ce 4f electronic transition from localized to itinerant state, which causes volume collapse. This transition is fundamentally different from the normal structural polyamorphism, in which coordination number changes and topological rearrangement of atoms occurs. These results in MGs extend our understanding about polyamorphism and may promote the searching for polyamorphism in other densely packed MGs, which could have pressure-tuned electron transitions. In addition, it was found that the pre-peak in the structure factor of Ce75Al25 MG showed less compressible behavior under pressure, which may improve our understanding of pre-peak in MGs.
     (2) Combining in-situ high-pressure and high-temperature energy dispersive XRD with in-situ high-pressure, low-temperature, four-probe resistance and magnetic measurements, we investigated the thermodynamic stability, electronic transport and magnetic properties accompanying the polyamorphic transition between LDA and HDA in Ce75Al25 MG. Compared with the La75Al25 MG sample, the change of properties was determined to associate with the 4f electron delocalization in Ce75Al25 MG. To the best of our knowledge, this is the first time in MGs that a pressure-tuned temperature coefficient of resistance (TCR), composition and magnetic field-tuned magnetoresistance were observed to change from negative to positive values. These obtained results will trigger more studies to discover polyamorphous MGs with interesting properties and potential applications. Moreover, they could be an interesting model system for the investigation of 4f electron behaviors. Additionally, we conducted the first successful in-situ high-pressure XRD experiment at the 15U, SSRF, which revealed another MG system having polyamorphic transition under pressure and minor alloying, e.g., Si, could modify the transition pressure and properties of LDA and HDA MGs.
     (3) Using in-situ high-pressure synchrotron XRD, we further investigated the high-pressure behavior of HDA Ce75Al25 MG. We discovered a crystallization of a new face-centered cubic (fcc) solid solution alloy from HDA Ce75Al25 MG at about 25 GPa. Normally, the Ce and Al with big radii difference (28%) and electronegativity difference (0.45) could not form substitutional solid solution alloys according to the Hume-Rothery rules. Synchrotron XRD, Ce L3-edge XAS, and ab-initio calculations revealed that the pressure-induced volume collapse and 4f electron delocalization of Ce reduced the differences in atomic size and electronegativity between Ce and Al and brought them within the Hume-Rothery limit for substitutional alloying. The novel alloy remained after complete release of pressure which was also accompanied by the transformation of Ce back to its ambient 4f electron localized state and reversal of the volume collapse, resulting in a novel non-Hume-Rothery alloy at ambient conditions.
     (4) Utilizing in-situ high-pressure synchrotron XRD, we discovered a novel pressure-induced "single crystal-like" crystallization in Ce75Al25 MG at room temperature. The transition was very fast and the crystalline fcc phase showed a fixed orientation with the starting Ce75Al25 MG ribbon sample, which was confirmed to be attributed to the intrinsic structure of the MG ribbon sample by many diagnostic XRD experiments. High resolution electronic microscopy and high resolution XRD results showed no inhomogeneity or stress existing in the starting Ce75Al25 MG ribbon sample. With the help of ab-initio calculations, we proposed that some kind of long range orientation structure was inherited during the melt-spinning synthesis process of the Ce75Al25 MG ribbon sample (possible some kind of cluster packing orientation). The pressure-induced "single crystal-like" crystallization in Ce75Al25 MG may not need diffusion process, rather collective adjustments, thus the hidden long range orientation in MG ribbon sample was awakened by such a transition to a single crystal. The origin of this novel phenomenon is not clear yet and needs further studies. However, these results obtained showing a novel type of pressure-induced single crystal-like polymorphic crystallization in MG, may promise a new method for synthesizing single crystal materials with controlled orientation from non-equilibrium systems.
引文
1. C.A. Angell, Amorphous water. Annual Review of Physical Chemistry,2004.55:p.559-583.
    2. P.W. Anderson, Through the Glass Lightly. Science,1995.267(5204):p.1609-1618.
    3. M. Michael and R.C. Reid, Thermodynamics and Its Applications. Englewood Cliffs, NJ: Prentice-Hall.1974,361.
    4. A.F. Wells, Structural Inorganic Chemistry. Oxford:Clarendon Press.1984,1382.
    5. P.H. Poole, T. Grande, F. Sciortino, H.E. Stanley, and C.A. Angell, Amorphous Polymorphism. Computational Materials Science,1995:p.373-382.
    6. P.H. Poole, T. Grande, C.A. Angell, and P.F. McMillan, Polymorphic phase transitions in liquids and glasses. Science,1997.275(5298):p.322-323.
    7. M.C. Wilding, M. Wilson, and P.F. McMillan, Structural studies and polymorphism in amorphous solids and liquids at high pressure. Chemical Society Reviews,2006.35(10):p. 964-986.
    8. O. Mishima and H.E. Stanley, The relationship between liquid, supercooled and glassy water. Nature,1998.396(6709):p.329-335.
    9. P.G. Debenedetti and H.E. Stanley, Supercooled and glassy water. Physics Today,2003.56(6): p.40-46.
    10. M. Chaplin. Water structure and science.20 August,2009 [cited 2010 April]; Available from: http://www1.lsbu.ac.uk/water/phase.html.
    11. E.F. Burton and W.F. Oliver, X-ray diffraction patterns of ice. Nature,1935.135:p.505-506.
    12. L.G. Dowell and A.P. Rinfret, Low-Temperature Forms of Ice as Studied by X-Ray Diffraction. Nature,1960.188(4757):p.1144-1148.
    13. J.A. Ghormley and Hochanad.Cj, Amorphous Ice-Density and Reflectivity. Science,1971. 171(3966):p.62-64.
    14. C.G. Venkatesh, S.A. Rice, and A.H. Narten, Amorphous Solid Water:An X-ray Diffraction Study. Science,1974.186(4167):p.927-928.
    15. J. Wenzel, C.U. Linderstromlang, and S.A. Rice, Amorphous Solid Water-Neutron-Diffraction Study. Science,1975.187(4175):p.428-430.
    16. K.P. Stevenson, G.A. Kimmel, Z. Dohnalek, R.S. Smith, and B.D. Kay, Controlling the morphology of amorphous solid water. Science,1999.283(5407):p.1505-1507.
    17. M.J. Stirniman, C. Huang, R.S. Smith, S.A. Joyce, and B.D. Kay, The adsorption and desorption of water on single crystal MgO(100):The role of surface defects. Journal of Chemical Physics,1996.105(3):p.1295-1298.
    18. G.A. Kimmel, K.P. Stevenson, Z. Dohnalek, R.S. Smith, and B.D. Kay, Control of amorphous solid water morphology using molecular beams. Ⅰ. Experimental results. Journal of Chemical Physics,2001.114(12):p.5284-5294.
    19. D.J. Safarik, R.J. Meyer, and C.B. Mullins, Thickness dependent crystallization kinetics of sub-micron amorphous solid water films. Journal of Chemical Physics,2003.118(10):p. 4660-4671.
    20. A.H. Narten, Diffraction Pattern and Structure of Amorphous Solid Water at 10 and 77 Degreek. Journal of Chemical Physics,1976.64(3):p.1106-1121.
    21. H. Moor, J. Kistler, and M. Muller, Freezing in a Propane Jet. Experientia,1976.32(6):p. 805-805.
    22. M. Muller, N. Meister, and H. Moor, Freezing in a Propane Jet and Its Application in Freeze-Fracturing. Mikroskopie,1980.36(5-6):p.129-140.
    23. E. Mayer and P. Bruggeller, Vitrification of Pure Liquid Water by High-Pressure Jet Freezing. Nature,1982.298(5876):p.715-718.
    24. P. Bruggeller and E. Mayer, Complete Vitrification in Pure Liquid Water and Dilute Aqueous-Solutions. Nature,1980.288(5791):p.569-571.
    25. J.A. McMillan and S.C. Los, Vitreous Ice-Irreversible Transformations During Warm-Up. Nature,1965.206(4986):p.806-807.
    26. G.P. Johari, A. Hallbrucker, and E. Mayer, The Glass Liquid Transition of Hyperquenched Water. Nature,1987.330(6148):p.552-553.
    27. A. Hallbrucker, E. Mayer, and G.P. Johari, Glass-Liquid Transition and the Enthalpy of Devitrification of Annealed Vapor-Deposited Amorphous Solid Water-a Comparison with Hyperquenched Glassy Water. Journal of Physical Chemistry,1989.93(12):p.4986-4990.
    28. M.C. Bellissentfunel, L. Bosio, A. Hallbrucker, E. Mayer, and R. Srididorbez, X-Ray and Neutron-Scattering Studies of the Structure of Hyperquenched Glassy Water. Journal of Chemical Physics,1992.97(2):p.1282-1286.
    29. C.A. Tulk, D.D. Klug, R. Branderhorst, P. Sharpe, and J.A. Ripmeester, Hydrogen bonding in glassy liquid water from Raman spectroscopic studies. Journal of Chemical Physics,1998. 109(19):p.8478-8484.
    30. J. Lepault, R. Freeman, and J. Dubochet, Electron-Beam Induced Vitrified Ice. Journal of Microscopy-Oxford,1983.132(DEC):p. RP3-RP4.
    31. H.G. Heide and E. Zeitler, The Physical Behavior of Solid Water at Low-Temperatures and the Embedding of Electron Microscopical Specimens. Ultramicroscopy,1985.16(2):p.151-160.
    32. J. Dubochet and J. Lepault, Cryo-Electron Microscopy of Vitrified Water. Journal De Physique, 1984.45(NC-7):p.85-94.
    33. A. Kouchi and T. Kuroda, Amorphization of Cubic Ice by Ultraviolet-Irradiation. Nature, 1990.344(6262):p.134-135.
    34. G. Strazzulla, G.A. Baratta, G. Leto, and G. Foti, Ion-Beam Induced Amorphization of Crystalline Water Ice. Europhysics Letters,1992.18(6):p.517-522.
    35. O. Mishima, L.D. Calvert, and E. Whalley, Melting Ice-I at 77-K and 10-Kbar-a New Method of Making Amorphous Solids. Nature,1984.310(5976):p.393-395.
    36. O. Mishima and Y. Suzuki, Vitrification of emulsified liquid water under pressure. Journal of Chemical Physics,2001.115(9):p.4199-4202.
    37. Y.P. Handa and D.D. Klug, Heat-Capacity and Glass-Transition Behavior of Amorphous Ice. Journal of Physical Chemistry,1988.92(12):p.3323-3325.
    38. O. Mishima, L.D. Calvert, and E. Whalley, An Apparently 1st-Order Transition between 2 Amorphous Phases of Ice Induced by Pressure. Nature,1985.314(6006):p.76-78.
    39. O. Mishima, K. Takemura, and K. Aoki, Visual Observations of the Amorphous-Amorphous Transition in H2o under Pressure. Science,1991.254(5030):p.406-408.
    40. O. Mishima, Reversible 1st-Order Transition between 2 H2o Amorphs at Similar-to-0.2 Gpa and Similar-to-135-K. Journal of Chemical Physics,1994.100(8):p.5910-5912.
    41. P.G. Debenedetti, Supercooled and glassy water. Journal of Physics-Condensed Matter,2003. 15(45):p. R1669-R1726.
    42. C.A. Tulk, C.J. Benmore, J. Urquidi, D.D. Klug, J. Neuefeind, B. Tomberli, and P.A. Egelstaff, Structural studies of several distinct metastable forms of amorphous ice. Science,2002. 297(5585):p.1320-1323.
    43. J.L. Finney, D.T. Bowron, A.K. Soper, T. Loerting, E. Mayer, and A. Hallbrucker, Structure of a new dense amorphous ice. Physical Review Letters,2002.89(20):p.4.
    44. G.P. Johari and O. Andersson, Mechanisms for pressure- and time-dependent amorphization of ice underpressure. Physical Review B,2004.70(18):p.184108.
    45. G.P. Johari, Tests for thermodynamic state of water's high-density amorph. Journal of Chemical Physics,2004.121(17):p.8428-8429.
    46. O. Andersson and G.P. Johari, Time-dependent amorphization of ice at 0.8-0.9 GPa. Journal of Chemical Physics,2004.121(8):p.3936-3938.
    47. G.P. Johari and O. Andersson, Water's polyamorphic transitions and amorphization of ice under pressure. Journal of Chemical Physics,2004.120(13):p.6207-6213.
    48. B. Guillot and Y. Guissani, Polyamorphism in low temperature water:A simulation study. Journal of Chemical Physics,2003.119(22):p.11740-11752.
    49. M.M. Koza, B. Geil, K. Winkel, C. Koler, F. Czeschka, M. Scheuermann, H. Schober, and T. Hansen, Nature of Amorphous Polymorphism of Water. Physical Review Letters,2005.94(12): p.125506.
    50. C.A. Angell, Landscapes with megabasins:Polyamorphism in liquids and biopolymers and the role of nucleation in folding and folding diseases. Physica D-Nonlinear Phenomena,1997. 107(2-4):p.122-142.
    51. L. Bosio, G.P. Johari, and J. Teixeira, X-ray study of high-density amorphous water. Physical Review Letters,1986.56(5):p.460.
    52. J.S. Tse and M.L. Klein, Pressure-Induced Amorphization of Ice I-H. Journal of Chemical Physics,1990.92(6):p.3992-3994.
    53. J.S. Tse and M.L. Klein, Pressure-induced phase transformations in ice. Physical Review Letters,1987.58(16):p.1672.
    54. J.S. Tse, D.D. Klug, C.A. Tulk, I. Swainson, E.C. Svensson, C.K. Loong, V. Shpakov, V.R. Belosludov, R.V. Belosludov, and Y. Kawazoe, The mechanisms for pressure-induced amorphization of ice I-h. Nature,1999.400(6745):p.647-649.
    55. M. Chaplin. Amorphous Ice and Glassy Water.5 April,2010 [cited 2010 April]; Available from:http://www1.lsbu.ac.uk/water/amorph.html.
    56. V.V. Brazhkin, S.V. Popova, and R.N. Voloshin, High-pressure transformations in simple melts. High Pressure Research,1997.15(5):p.267-305.
    57. R.J. Speedy, Stability-Limit Conjecture-an Interpretation of the Properties of Water. Journal of Physical Chemistry,1982.86(6):p.982-991.
    58. R.J. Speedy and C.A. Angell, Isothermal Compressibility of Supercooled Water and Evidence for a Thermodynamic Singularity at -45degreesc. Journal of Chemical Physics,1976.65(3):p. 851-858.
    59. H.E. Stanley and J. Teixeira, Interpretation of the Unusual Behavior of H2O and D2O at Low-Temperatures-Tests of a Percolation Model. Journal of Chemical Physics,1980.73(7):p. 3404-3422.
    60. S. Sastry, P.G Debenedetti, F. Sciortino, and H.E. Stanley, Singularity-free interpretation of the thermodynamics of supercooled water. Physical Review E,1996.53(6):p.6144-6154.
    61. A. Geiger and H.E. Stanley, Low-Density Patches in the Hydrogen-Bond Network of Liquid Water-Evidence from Molecular-Dynamics Computer-Simulations. Physical Review Letters, 1982.49(24):p.1749-1752.
    62. P.H. Poole, F. Sciortino, U. Essmann, and H.E. Stanley, Phase-Behavior of Metastable Water. Nature,1992.360(6402):p.324-328.
    63. S.S. Borick, P.G. Debenedetti, and S. Sastry, A Lattice Model of Network-Forming Fluids with Orientation-Dependent Bonding-Equilibrium, Stability, and Implications for the Phase-Behavior of Supercooled Water. Journal of Physical Chemistry,1995.99(11):p. 3781-3792.
    64. C.T. Moynihan, Two species nonideal solution model for amorphous amorphous phase transitions, in Structure and Dynamics of Glasses and Glass Formers, C.A. Angell, et al., Editors. Warrendale:Materials Research Society.1997, p.411-425.
    65. P.H. Poole, F. Sciortino, T. Grande, H.E. Stanley, and C.A. Angell, Effect of Hydrogen-Bonds on the Thermodynamic Behavior of Liquid Water. Physical Review Letters,1994.73(12):p. 1632-1635.
    66. C.F. Tejero and M. Baus, Liquid polymorphism of simple fluids within a van der Waals theory. Physical Review E,1998.57(4):p.4821-4823.
    67. E.G. Ponyatovskii, V.V. Sinand, and T.A. Pozdnyakova,2nd Critical-Point and Low-Temperature Anomalies in the Physical-Properties of Water. Jetp Letters,1994.60(5):p. 360-364.
    68. I. Brovchenko, A. Geiger, and A. Oleinikova, Multiple liquid-liquid transitions in supercooled water. Journal of Chemical Physics,2003.118(21):p.9473-9476.
    69. O. Mishima and H.E. Stanley, Decompression-induced melting of ice IV and the liquid-liquid transition in water. Nature,1998.392(6672):p.164-168.
    70. A.K. Soper and M.A. Ricci, Structures of high-density and low-density water. Physical Review Letters,2000.84(13):p.2881-2884.
    71. J. Urquidi, C.J. Benmore, P.A. Egelstaff, M. Guthrie, S.E. McLain, C.A. Tulk, D.D. Klug, and J.F.C. Turner, A structural comparison of supercooled water and intermediate density amorphous ices. Molecular Physics,2004.102(19-20):p.2007-2014.
    72. Stilling.Fh and A. Rahman, Improved Simulation of Liquid Water by Molecular-Dynamics. Journal of Chemical Physics,1974.60(4):p.1545-1557.
    73. P.H. Poole, U. Essmann, F. Sciortino, and H.E. Stanley, Phase-Diagram for Amorphous Solid Water. Physical Review E,1993.48(6):p.4605-4610.
    74. S. Harrington, P.H. Poole, F. Sciortino, and H.E. Stanley, Equation of state of supercooled water simulated using the extended simple point charge intermolecular potential. Journal of Chemical Physics,1997.107(18):p.7443-7450.
    75. S. Harrington, R. Zhang, P.H. Poole, F. Sciortino, and H.E. Stanley, Liquid-liquid phase transition:Evidence from simulations. Physical Review Letters,1997.78(12):p.2409-2412.
    76. P.H. Poole, F. Sciortino, U. Essmann, and H.E. Stanley, Spinodal of Liquid Water. Physical Review E,1993.48(5):p.3799-3817.
    77. F. Sciortino, P.H. Poole, U. Essmann, and H.E. Stanley, Line of compressibility maxima in the phase diagram of supercooled water. Physical Review E,1997.55(1):p.727-737.
    78. H. Tanaka, Phase behaviors of supercooled water:Reconciling a critical point of amorphous ices with spinodal instability. Journal of Chemical Physics,1996.105(12):p.5099-5111.
    79. P.C. Hemmer and G. Stell, Fluids with Several Phase Transitions. Physical Review Letters, 1970.24(23):p.1284-1287.
    80. M.R. Sadr-Lahijany, A. Scala, S.V. Buldyrev, and H.E. Stanley, Liquid-state anomalies and the stell-hemmer core-softened potential. Physical Review Letters,1998.81(22):p. 4895-4898.
    81. M. Canpolat, F.W. Starr, A. Scala, M.R. Sadr-Lahijany, O. Mishima, S. Havlin, and H.E. Stanley, Local structural heterogeneities in liquid water under pressure. Chemical Physics Letters,1998.294(1-3):p.9-12.
    82. S. Sastry, F. Sciortino, and H.E. Stanley, Limits of Stability of the Liquid-Phase in a Lattice Model with Water-Like Properties. Journal of Chemical Physics,1993.98(12):p.9863-9872.
    83. C.J. Roberts, A.Z. Panagiotopoulos, and P.G. Debenedetti, Liquid-liquid immiscibility in pure fluids:Polyamorphism in simulations of a network-forming fluid. Physical Review Letters, 1996.77(21):p.4386-4389.
    84. C.J. Roberts and P.G. Debenedetti, Polyamorphism and density anomalies in network-forming fluids:Zeroth- and first-order approximations. Journal of Chemical Physics,1996.105(2):p. 658-672.
    85. D. Kivelson and H. Reiss, Metastable systems in thermodynamics:Consequences, role of constraints. Journal of Physical Chemistry B,1999.103(39):p.8337-8343.
    86. S.B. Kiselev and J.F. Ely, Parametric crossover model and physical limit of stability in supercooled water. Journal of Chemical Physics,2002.116(13):p.5657-5665.
    87. S.B. Kiselev and J.F. Ely, Curvature effect on the physical boundary of metastable states in liquids. Physica a-Statistical Mechanics and Its Applications,2001.299(3-4):p.357-370.
    88. S.B. Kiselev, Kinetic boundary of metastable states in superheated and stretched liquids. Physica a-Statistical Mechanics and Its Applications,1999.269(2-4):p.252-268.
    89. C.A. Tulk, R. Hart, D.D. Klug, C.J. Benmore, and J. Neuefeind, Adding a length scale to the polyamorphic ice debate. Physical Review Letters,2006.97(11):p.115503.
    90. C.A. Angell, R.D. Bressel, M. Hemmati, E.J. Sare, and J.C. Tucker, Water and its anomalies in perspective:tetrahedral liquids with and without liquid-liquid phase transitions. Physical Chemistry Chemical Physics,2000.2(8):p.1559-1566.
    91. G.N. Greaves and S. Sen, Inorganic glasses, glass-forming liquids and amorphizing solids. Advances in Physics,2007.56(1):p.1-166.
    92. R.J. Hemley, H.K. Mao, P.M. Bell, and B.O. Mysen, Raman-Spectroscopy of Sio2 Glass at High-Pressure. Physical Review Letters,1986.57(6):p.747-750.
    93. K.H. Smith, E. Shero, A. Chizmeshya, and G.H. Wolf, The Equation of State of Polyamorphic Germania Glass-a 2-Domain Description of the Viscoelastic Response. Journal of Chemical Physics,1995.102(17):p.6851-6857.
    94. S. Susman, K.J. Volin, D.L. Price, M. Grimsditch, J.P. Rino, R.K. Kalia, P. Vashishta, G. Gwanmesia, Y. Wang, and R.C. Liebermann, Intermediate-Range Order in Permanently Densified Vitreous Sio2-a Neutron-Diffraction and Molecular-Dynamics Study. Physical Review B,1991.43(1):p.1194-1197.
    95. E. Soignard, S.A. Amin, Q. Mei, C.J. Benmore, and J.L. Yarger, High-pressure behavior of As2O3:Amorphous-amorphous and crystalline-amorphous transitions. Physical Review B, 2008.77(14):p.144113.
    96. S.K. Lee, P.J. Eng, H.K. Mao, Y. Meng, M. Newville, M.Y. Hu, and J.F. Shu, Probing of bonding changes in B2O3 glasses at high pressure with inelastic X-ray scattering. Nature Materials,2005.4(11):p.851-854.
    97. Q. Mei, C.J. Benmore, R.T. Hart, E. Bychkov, P.S. Salmon, C.D. Martin, F.M. Michel, S.M. Antao, P.J. Chupas, P.L. Lee, S.D. Shastri, J.B. Parise, K. Leinenweber, S. Amin, and J.L. Yarger, Topological changes in glassy GeSe2 at pressures up to 9.3 GPa determined by high-energy x-ray and neutron diffraction measurements. Physical Review B,2006.74(1):p. 014203.
    98. M. Grimsditch, Polymorphism in Amorphous Sio2. Physical Review Letters,1984.52(26):p. 2379-2381.
    99. M. Grimsditch, Annealing and Relaxation in the High-Pressure Phase of Amorphous SiO2. Physical Review B,1986.34(6):p.4372-4373.
    100. J.S. Tse, D.D. Klug, and Y. Le Page, High-pressure densification of amorphous silica. Physical Review B,1992.46(10):p.5933.
    101. C. Meade, R.J. Hemley, and H.K. Mao, High-Pressure X-Ray-Diffraction of SiO2 Glass. Physical Review Letters,1992.69(9):p.1387-1390.
    102. J. Wackerle, Shock-Wave Compression of Quartz. Journal of Applied Physics,1962.33(3):p. 922-938.
    103. D.R. Schmitt and T. J. Ahrens, Shock Temperatures in Silica Glass-Implications for Modes of Shock-Induced Deformation, Phase-Transformation, and Melting with Pressure. Journal of Geophysical Research-Solid Earth and Planets,1989.94(B5):p.5851-5871.
    104. R.J. Hemley, A.P. Jephcoat, H.K. Mao, L.C. Ming, and M.H. Manghnani, Pressure-Induced Amorphization of Crystalline Silica. Nature,1988.334(6177):p.52-54.
    105. Q. Williams, R.J. Hemley, M.B. Kruger, and R. Jeanloz, High-Pressure Infrared-Spectra of Alpha-Quartz, Coesite, Stishovite and Silica Glass. Journal of Geophysical Research-Solid Earth,1993.98(B12):p.22157-22170.
    106. Q. Williams and R. Jeanloz, Spectroscopic Evidence for Pressure-Induced Coordination Changes in Silicate-Glasses and Melts. Science,1988.239(4842):p.902-905.
    107. P.H. Poole, M. Hemmati, and C.A. Angell, Comparison of Thermodynamic Properties of Simulated Liquid Silica and Water. Physical Review Letters,1997.79(12):p.2281.
    108. I. Saika-Voivod, F. Sciortino, and P.H. Poole, Computer simulations of liquid silica:Equation of state and liquid-liquid phase transition. Physical Review E,2000.63(1):p.011202.
    109. I. Saika-Voivod, P.H. Poole, and F. Sciortino, Fragile-to-strong transition and polyamorphism in the energy landscape of liquid silica. Nature,2001.412(6846):p.514-517.
    110. I. Saika-Voivod, F. Sciortino, and P.H. Poole, Fragile-to-strong crossover and polyamorphism in liquid silica:changes in liquid structure. Philosophical Magazine,2004.84(13-16):p. 1437-1445.
    111. P.F. McMillan, M. Wilson, M.C. Wilding, D. Daisenberger, M. Mezouar, and G.N. Greaves, Polyamorphism and liquid-liquid phase transitions:challenges for experiment and theory. Journal of Physics F:Metal Physics,2007.19:p.415101.
    112. P.F. McMillan, M. Wilson, and M.C. Wilding, Polyamorphism in aluminate liquids. Journal of Physics-Condensed Matter,2003.15(36):p.6105-6121.
    113. S. Aasland and P.F. McMillan, Density-Driven Liquid-Liquid Phase-Separation in the System Al2o3-Y2o3. Nature,1994.369(6482):p.633-636.
    114. M.C. Wilding and C.J. Benmore, Structure of glasses and melts, in Neutron Scattering in Earth Sciences. Chantilly:Mineralogical Soc America.2006, p.275-311.
    115. M.C. Wilding and P.F. McMillan, Polyamorphic transitions in yttria-alumina liquids. Journal of Non-Crystalline Solids,2001.293:p.357-365.
    116. M.C. Wilding, P.F. McMillan, and A. Navrotsky, Calorimetric study of glasses and liquids in the polyamorphic system Y2O3-Al2O3. Physics and Chemistry of Glasses,2002.43(6):p. 306-312.
    117. M.C. Wilding, P.F. McMillan, and A. Navrotsky, Thermodynamic and structural aspects of the polyamorphic transition in yttrium and other rare-earth aluminate liquids. Physica a-Statistical Mechanics and Its Applications,2002.314(1-4):p.379-390.
    118. C.A. Angell, Formation of Glasses from Liquids and Biopolymers. Science,1995.267(5206): p.1924-1935.
    119. P. McMillan, Phase transitions-Jumping between liquid states. Nature,2000.403(6766):p. 151-152.
    120. V.V. Brazhkin, S.V. Popova, and R.N. Voloshin, Pressure-temperature phase diagram of molten elements:selenium, sulfur and iodine. Physica B-Condensed Matter,1999.265(1-4):p. 64-71.
    121. V.V. Brazhkin, R.N. Voloshin, S.V. Popova, and A.G. Umnov, Pressure Temperature Phase-Diagram of Solid and Liquid Te under Pressures up to 10 Gpa. Journal of Physics-Condensed Matter,1992.4(6):p.1419-1425.
    122. V.V. Brazhkin, R.N. Voloshin, S.V. Popova, and A.G. Umnov, Nonmetal Metal Transition in Sulfur Melt under High-Pressure. Physics Letters A,1991.154(7-8):p.413-415.
    123. C.A. Angell, S. Borick, and M. Grabow, Glass transitions and first order liquid-metal-to-semiconductor transitions in 4-5-6 covalent systems. Journal of Non-Crystalline Solids,1996.207:p.463-471.
    124. E.P. Donovan, F. Spaepen, D. Turnbull, J.M. Poate, and D.C. Jacobson, Calorimetric Studies of Crystallization and Relaxation of Amorphous Si and Ge Prepared by Ion-Implantation. Journal of Applied Physics,1985.57(6):p.1795-1804.
    125. W.D. Luedtke and U. Landman, Preparation and melting of amorphous silicon by molecular-dynamics simulations. Physical Review B,1988.37(9):p.4656.
    126. S. Sastry and C. Austen Angell, Liquid-liquid phase transition in supercooled silicon. Nat Mater,2003.2(11):p.739-743.
    127. M. Durandurdu and D.A. Drabold, High-pressure phases of amorphous and crystalline silicon. Physical Review B,2003.67(21):p.212101.
    128. E.G. Ponyatovsky and O.I. Barkalov, Pressure-Induced Amorphous Phases. Materials Science Reports,1992.8(4):p.147-191.
    129. J. Ruiz-Garcia, E.M. Anderson, and S.C. Greer, Shear viscosity of liquid sulfur near the polymerization temperature. The Journal of Physical Chemistry,1989.93(19):p.6980-6983.
    130. M.E. Cates, Theory of the Viscosity of Polymeric Liquid Sulfur. Europhysics Letters 1987.4(4): p.497-502.
    131. A. Donaldson and A.D. Caplin, Refractive index of molten sulphur. Philosophical Magazine Part B,1985.52(2):p.185-197.
    132. M. Stolz, R. Winter, W.S. Howells, R.L. McGreevy, and P.A. Egelstaff, The Structural-Properties of Liquid and Quenching Sulfur-Ii. Journal of Physics-Condensed Matter, 1994.6(20):p.3619-3628.
    133. Y. Katayama, T. Mizutani, W. Utsumi, O. Shimomura, M. Yamakata, and K. Funakoshi, A first-order liquid-liquid phase transition in phosphorus. Nature,2000.403(6766):p.170-173.
    134. Y. Katayama, Y. Inamura, T. Mizutani, M. Yamakata, W. Utsumi, and O. Shimomura, Macroscopic separation of dense fluid phase and liquid phase of phosphorus. Science,2004. 306(5697):p.848-851.
    135. D. Hohl and R.O. Jones, Polymerization in liquid phosphorus:Simulation of a phase transition. Physical Review B,1994.50(23):p.17047.
    136. T. Morishita, Liquid-Liquid Phase Transitions of Phosphorus via Constant-Pressure First-Principles Molecular Dynamics Simulations. Physical Review Letters,2001.87(10):p. 105701.
    137. Y. Senda, F. Shimojo, and K. Hoshino, The metal-nonmetal transition of liquid phosphorus by ab initio molecular-dynamics simulations. Journal of Physics-Condensed Matter,2002.14(14): p.3715-3723.
    138. G. Monaco, S. Falconi, W.A. Crichton, and M. Mezouar, Nature of the first-order phase transition in fluid phosphorus at high temperature and pressure. Physical Review Letters, 2003.90(25):p.255701.
    139. A. Ferraz and N.H. March, Liquid-Phase Metal Non Metal Transition in Carbon. Physics and Chemistry of Liquids,1979.8(4):p.289-297.
    140. J.N. Glosli and F.H. Ree, Liquid-Liquid Phase Transformation in Carbon. Physical Review Letters,1999.82(23):p.4659-4662.
    141. D.W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Physical Review B,1990.42(15):p.9458-9471.
    142. C.J. Wu, J.N. Glosli, G. Galli, and F.H. Ree, Liquid-Liquid Phase Transition in Elemental Carbon:A First-Principles Investigation. Physical Review Letters,2002.89(13):p.135701.
    143. M.O. Thompson, G.J. Galvin, J.W. Mayer, P.S. Peercy, J.M. Poate, D.C. Jacobson, A.G. Cullis, and N.G. Chew, Melting Temperature and Explosive Crystallization of Amorphous-Silicon During Pulsed Laser Irradiation. Physical Review Letters,1984.52(26):p.2360-2363.
    144. P. Baeri, S.U. Campisano, M.G. Grimaldi, and E. Rimini, Experimental Investigation of the Amorphous-Silicon Melting Temperature by Fast Heating Processes. Journal of Applied Physics,1982.53(12):p.8730-8733.
    145. E.P. Donovan, F. Spaepen, D. Turnbull, J.M. Poate, and D.C. Jacobson, Heat of Crystallization and Melting-Point of Amorphous-Silicon. Applied Physics Letters,1983.42(8):p.698-700.
    146. P.F. McMillan, M. Wilson, D. Daisenberger, and D. Machon,A density-driven phase transition between semiconducting and metallic polyamorphs of silicon. Nature Materials,2005.4(9):p. 680-684.
    147. P. Beaucage and N. Mousseau, Liquid-liquid phase transition in Stillinger-Weher silicon. Journal of Physics-Condensed Matter,2005.17(15):p.2269-2279.
    148. Shimomur.O, S. Minomura, N. Sakai, K. Asaumi, K. Tamura, Fukushim.J, and H. Endo, Pressure-Induced Semiconductor-Metal Transitions in Amorphous Si and Ge. Philosophical Magazine,1974.29(3):p.547-558.
    149. K. Tanaka, Amorphous-Ge under Pressure. Physical Review B,1991.43(5):p.4302-4307.
    150. S.K. Deb, M. Wilding, M. Somayazulu, and P.F. McMillan, Pressure-induced amorphization and an amorphous-amorphous transition in densified porous silicon. Nature,2001.414(6863): p.528-530.
    151. D. Daisenberger, M. Wilson, P.F. McMillan, R. Quesada Cabrera, M.C. Wilding, and D. Machon, High-pressure x-ray scattering and computer simulation studies of density-induced polyamorphism in silicon. Physical Review B,2007.75(22):p.224118.
    152. T. Morishita, High Density Amorphous Form and Polyamorphic Transformations of Silicon. Physical Review Letters,2004.93(5):p.055503.
    153. M.H. Bhat, V. Molinero, E. Soignard, V.C. Solomon, S. Sastry, J.L. Yarger, and C.A. Angell, Vitrification of a monatomic metallic liquid. Nature,2007.448:p.787-791.
    154. W.A. Crichton, M. Mezouar, T. Grande, S. Stolen, and A. Grzechnik, Breakdown of intermediate-range order in liquid GeSe2 at high pressure. Nature,2001.414(6864):p. 622-625.
    155. E. Rapoport, Model for Melting-Curve Maxima at High Pressure. Journal of Chemical Physics, 1967.46(8):p.2891-2896.
    156. A. Ha, I. Cohen, X.L. Zhao, M. Lee, and D. Kivelson, Supercooled liquids and polyamorphism. Journal of Physical Chemistry,1996.100(1):p.1-4.
    157. R.W. Douglas and S. Frank, A history of glassmaking. Henley-on-Thames:G T Foulis & Co Ltd.1972,5.
    158. A. Inoue, High-Strength Bulk Amorphous-Alloys with Low Critical Cooling Rates. Materials Transactions Jim,1995.36(7):p.866-875.
    159. A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia,2000.48(1):p.279-306.
    160. W.L. Johnson, Thermodynamic and Kinetic Aspects of the Crystal to Glass Transformation in Metallic Materials. Progress in Materials Science,1986.30(2):p.81-134.
    161. W.L. Johnson, Bulk glass-forming metallic alloys:Science and technology. Mrs Bulletin,1999. 24(10):p.42-56.
    162. J.F. Loffler, Bulk metallic glasses. Intermetallics,2003.11(6):p.529-540.
    163. W.H. Wang, C. Dong, and C.H. Shek, Bulk metallic glasses. Materials Science & Engineering R-Reports,2004.44(2-3):p.45-89.
    164. A.L. Greer, Metallic Glasses. Science,1995.267(5206):p.1947-1953.
    165. J.J. Gilman, Metallic Glasses. Science,1980.208(4446):p.856-861.
    166. W. Klement, R.H. Willens, and P. Duwez, Non-Crystalline Structure in Solidified Gold-Silicon Alloys. Nature,1960.187(4740):p.869-870.
    167. A. Peker and W.L. Johnson, A Highly Processable Metallic-Glass-Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Applied Physics Letters,1993.63(17):p.2342-2344.
    168. W.L. Johnson, Fundamental aspects of bulk metallic glass formation in multicomponent alloys, in Metastable, Mechanically Alloyed and Nanocrystalline Materials, Pts 1 and 2, R. Schulz, Editor.1996, p.35-49.
    169. A. Inoue, N. Nishiyama, and H. Kimura, Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter. Materials Transactions Jim,1997. 38(2):p.179-183.
    170. A.L. Greer and E. Ma, Bulk metallic glasses:At the cutting edge of metals research. Mrs Bulletin,2007.32(8):p.611-615.
    171. A. Inoue and N. Nishiyama, New bulk metallic glasses for applications as magnetic-sensing, chemical, and structural materials. Mrs Bulletin,2007.32(8):p.651-658.
    172. D.B. Miracle, T. Egami, K.M. Flores, and K.F. Kelton, Structural aspects of metallic glasses. Mrs Bulletin,2007.32(8):p.629-634.
    173. W.H. Wang, Bulk Metallic Glasses with Functional Physical Properties. Advanced Materials, 2009.21(45):p.4524-4544.
    174. A. Inoue, T. Zhang, A. Takeuchi, and W. Zhang, Hard magnetic bulk amorphous Nd-Fe-Al alloys of 12 mm in diameter made by suction casting. Materials Transactions Jim,1996.37(4): p.636-640.
    175. F.Q. Guo, S.J. Poon, and G.J. Shiflet, Metallic glass ingots based on yttrium. Applied Physics Letters,2003.83(13):p.2575-2577.
    176. H. Tan, Y. Zhang, D. Ma, Y.P. Feng, and Y. Li, Optimum glass formation at off-eutectic composition and its relation to skewed eutectic coupled zone in the La based La-Al-(Cu,Ni) pseudo ternary system. Acta Materialia,2003.51(15):p.4551-4561.
    177. B. Zhang, M.X. Pan, D.Q. Zhao, and W.H. Wang, "Soft" bulk metallic glasses based on cerium. Applied Physics Letters,2004.85(1):p.61-63.
    178. Q.S. Zeng, J.F. Liu, G.Q. Zhang, L.N. Wang, and J.Z. Jiang, Synthesis of LaCe-based bulk metallic glasses with low glass transition temperature. intermetallics,2007.15:p.753-756.
    179. Q.K. Jiang, G.Q. Zhang, L. Yang, X.D. Wang, K. Saksl, H. Franz, R. Wunderlich, H. Fecht, and J.Z. Jiang, La-based bulk metallic glasses with critical diameter up to 30 mm. Acta Materialia,2007.55(13):p.4409-4418.
    180. H. W. Kui, A.L. Greer, and D. Turnbull, Formation of Bulk Metallic-Glass by Fluxing. Applied Physics Letters,1984.45(6):p.615-616.
    181. J. Schroers and W.L. Johnson, Highly processable bulk metallic glass-forming alloys in the Pt-Co-Ni-Cu-P system. Applied Physics Letters,2004.84(18):p.3666-3668.
    182. A. Inoue and T. Zhang, Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method. Materials Transactions Jim,1996.37(2):p.185-187.
    183. Q.K. Jiang, X.P. Nie, Y.G. Li, Y. Jin, Z.Y. Chang, X.M. Huang, and J.Z. Jiang, Ni-free Zr-based bulk metallic glasses with critical diameter above 20 mm. Journal of Alloys and Compounds,2007.443(1-2):p.191-194.
    184. F.Q. Guoa, H.J. Wang, S.J. Poon, and G.J. Shiflet, Ductile titanium-based glassy alloy ingots. Applied Physics Letters,2005.86(9):p.091907.
    185. H. Ma, L.L. Shi, J. Xu, Y. Li, and E. Ma, Discovering inch-diameter metallic glasses in three-dimensional composition space. Applied Physics Letters,2005.87(18):p.181915.
    186. E.S. Park and D.H. Kim, Formation ofMg-Cu-Ni-Ag-Zn-Y-Gd bulk glassy alloy by casting into cone-shaped copper mold in air atmosphere. Journal of Materials Research,2005.20(6): p.1465-1469.
    187. E.S. Park and D.H. Kim, Formation of Ca-Mg-Zn bulk glassy alloy by casting into cone-shaped copper mold. Journal of Materials Research,2004.19(3):p.685-688.
    188. V. Ponnambalam, S.J. Poon, and G.J. Shiflet, Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. Journal of Materials Research,2004.19(5):p. 1320-1323.
    189. J. Shen, Q.J. Chen, J.F. Sun, H.B. Fan, and G. Wang, Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy. Applied Physics Letters,2005.86(15):p.151907.
    190. H. Men, S.J. Pang, and T. Zhang, Effect of Er doping on glass-forming ability of Co50Cr15Mo14C15B6 alloy. Journal of Materials Research,2006.21(4):p.958-961.
    191. D. Xu, G. Duan, and W.L. Johnson, Unusual Glass-Forming Ability of Bulk Amorphous Alloys Based on Ordinary Metal Copper. Physical Review Letters,2004.92(24):p.245504.
    192. P. Jia, H. Guo, Y. Li, J. Xu, and E. Ma, A new Cu-Hf-Al ternary bulk metallic glass with high glass forming ability and ductility. Scripta Materialia,2006.54(12):p.2165-2168.
    193. M.F. Ashby and A.L. Greer, Metallic glasses as structural materials. Scripta Materialia,2006. 54(3):p.321-326.
    194. A. Inoue, B. Shen, H. Koshiba, H. Kato, and A.R. Yavari, Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties. Nat Mater,2003.2(10):p.661-663.
    195. H.J. Leamy, H.S. Chen, and T.T. Wang, Plastic-Flow and Fracture of Metallic Glass. Metallurgical Transactions,1972.3(3):p.699-708.
    196. A. Inoue, Y. Kawamura, and Y. Saotome, High strain rate superplasticity of supercooled liquid for amorphous alloys, in Towards Innovation in Superplasticity I, T. Sakuma, T. Aizawa, and K. Higashi, Editors.1997, p.147-153.
    197. Y. Saotome and H. Iwazaki, Superplastic backward microextrusion of microparts for micro-electro-mechanical systems. Journal of Materials Processing Technology,2001. 119(1-3):p.307-311.
    198. Y. Kawamura, T. Shibata, A. Inoue, and T. Masumoto, Workability of the supercooled liquid in the Zr65Al10Ni10Cu15 bulk metallic glass. Acta Materialia,1997.46(1):p.253-263.
    199. R. Martinez, G. Kumar, and J. Schroers, Hot rolling of bulk metallic glass in its supercooled liquid region. Scripta Materialia,2008.59(2):p.187-190.
    200. J. Schroers, On the formability of bulk metallic glass in its supercooled liquid state. Acta Materialia,2008.56(3):p.471-478.
    201. J. Schroers, T. Nguyen, and A. Desai. Superplastic forming of bulk metallic glass- A technology for MEMS and microstructure fabrication. in 19th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2006).2006. Istanbul, TURKEY.
    202. J. Schroers, T. Nguyen, S. O'Keeffe, and A. Desai. Thermoplastic forming of bulk metallic glass-Applications for MEMS and microstructure fabrication. in 12th International Conference on Rapidly Quenched and Metastable Materials.2005. Jeju Isl, SOUTH KOREA.
    203. J. Schroers, Q. Pham, and A. Desai, Thermoplastic forming of bulk metallic glass-A technology for MEMS and microstructure fabrication. Journal of Microelectromechanical Systems,2007.16(2):p.240-247.
    204. J. Schroers, Q. Pham, A. Peker, N. Paton, and R.V. Curtis, Blow molding of bulk metallic glass. Scripta Materialia,2007.57(4):p.341-344.
    205. M.D. Demetriou, C. Veazey, J. Schroers, J.C. Hanan, and W.L. Johnson, Thermo-plastic expansion of amorphous metallic foam. Journal of Alloys and Compounds 2005:p.92-96.
    206. G. Kumar, H.X. Tang, and J. Schroers, Nanomoulding with amorphous metals. Nature,2009. 457(7231):p.868-872.
    207. G. Kumar and J. Schroers, Write and erase mechanisms for bulk metallic glass. Applied Physics Letters,2008.92(3):p.031901.
    208. T. Burgess and M. Ferry, Nanoindentation of metallic glasses. Materials Today,2009.12(1-2): p.24-32.
    209. J.M. Borrego, A. Conde, S. Roth, and J. Eckert, Glass-forming ability and soft magnetic properties of FeCoSiAlGaPCB amorphous alloys. Journal of Applied Physics,2002.92(4):p. 2073-2078.
    210. H. W. Chang, Y.C. Huang, C.W. Chang, C.C. Hsieh, and W.C. Chang, Soft magnetic properties and glass formability of Y-Fe-B-M bulk metals (M=Al, Hf Nb, Ta, and Ti). Journal of Alloys and Compounds,2009.472(1-2):p.166-170.
    211. A. Inoue, B.L. Shen, H. Koshiba, H. Kato, and A.R. Yavari, Ultra-high strength above 5000 MPa and soft magnetic properties of Co-Fe-Ta-B bulk glassy alloys. Acta Materialia,2004. 52(6):p.1631-1637.
    212. T. Itoi, T. Takamizawa, Y. Kawamura, and A. Inoue, Fabrication of Co40Fe22Nb8B30 bulk metallic glasses by consolidation of gas-atomized powders and their soft-magnetic properties. Scripta Materialia,2001.45(10):p.1131-1137.
    213. B.L. Shen, A. Inoue, and C.T. Chang, Superhigh strength and good soft-magnetic properties of (Fe, Co)-B-Si-Nb bulk glassy alloys with high glass-forming ability. Applied Physics Letters, 2004.85(21):p.4911-4913.
    214. T.D. Shen, U. Harms, and R.B. Schwarz. Bulk Fe-Based metallic glass with extremely soft ferromagnetic properties. in International Symposium on Metastable, Mechanically Alloyed and Nanocrystalline Materials.2001. Ann Arbor, Michigan.
    215. T.D. Shen and R.B. Schwarz, Bulk ferromagnetic glasses in the Fe-Ni-P-B system. Acta Materialia,2001.49(5):p.837-847.
    216. W.H. Wang, M.X. Pan, D.Q. Zhao, Y. Hu, and H. Y. Bai, Enhancement of the soft magnetic properties of FeCoZrMoWB bulk metallic glass by microalloying. Journal of Physics-Condensed Matter,2004.16(21):p.3719-3723.
    217. G.S. Cargill, Structural Investigation ofNoncrystalline Nickel-Phosphorus Alloys. Journal of Applied Physics,1970.41(1):p.12-29.
    218. P.H. Gaskell, New Structural Model for Transition Metal-Metalloid Glasses. Nature,1978. 276(5687):p.484-485.
    219. J.D. Bernal, Geometrical Approach to the Structure of Liquids. Nature,1959.183(4655):p. 141-147.
    220. D.E. Polk, Structure of Glassy Metallic Alloys. Acta Metallurgica,1972.20(4):p.485-491.
    221. C.H. Bennett, Serially Deposited Amorphous Aggregates of Hard Spheres. Journal of Applied Physics,1972.43(6):p.2727-2735.
    222. G.S. Cargill, Structural Investigation of Noncrystalline Nickel-Phosphorus Alloys. Journal of Applied Physics,1970.41(1):p.12.
    223. J.A. Barker, M.R. Hoare, and J.L. Finney, Relaxation of Bernal Model. Nature,1975. 257(5522):p.120-122.
    224. J.D. Bernal, Geometry of the Structure of Monatomic Liquids. Nature,1960.185(4706):p. 68-70.
    225. D.B. Miracle, W.S. Sanders, and O.N. Senkov, The influence of efficient atomic packing on the constitution of metallic glasses. Philosophical Magazine,2003.83(20):p.2409-2428.
    226. D.B. Miracle, A structural model for metallic glasses. Nature Materials,2004.3(10):p. 697-702.
    227. D.B. Miracle, The efficient cluster packing model-An atomic structural model for metallic glasses. Acta Materialia,2006.54(16):p.4317-4336.
    228. H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, and E. Ma, Atomic packing and short-to-medium-range order in metallic glasses. Nature,2006.439(7075):p.419-425.
    229. D. Ma, A.D. Stoica, and X.L. Wang, Power-law scaling and fractal nature of medium-range order in metallic glasses. Nature Materials,2009.8(1):p.30-34.
    230. C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, and S.W. Martin, Relaxation in glassforming liquids and amorphous solids. Journal of Applied Physics,2000.88(6):p. 3113-3157.
    231. K.M. Flores, D. Suh, R.H. Dauskardt, P. Asoka-Kumar, P.A. Sterne, and R.H. Howell, Characterization of free volume in a bulk metallic glass using positron annihilation spectroscopy. Journal of Materials Research,2002.17(5):p.1153-1161.
    232. P. Murah and U. Ramamurty, Embrittlement of a bulk metallic glass due to sub-T-g annealing. Acta Materialia,2005.53(5):p.1467-1478.
    233. C. Nagel, K. Ratzke, E. Schmidtke, and F. Faupel, Positron-annihilation studies of free-volume changes in the bulk metallic glass Zr65Al7.5Ni10Cul7.5 during structural relaxation and at the glass transition. Physical Review B,1999.60(13):p.9212-9215.
    234. A. Slipenyuk and J. Eckert, Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass. Scripta Materialia,2004. 50(1):p.39-44.
    235. F. Spaepen, Homogeneous flow of metallic glasses:A free volume perspective. Scripta Materialia,2006.54(3):p.363-367.
    236. A.R. Yavari, A. Le Moulec, A. Inoue, N. Nishiyama, N. Lupu, E. Matsubara, W.J. Botta, G. Vaughan, M. Di Michiel, and A. Kvick, Excess free volume in metallic glasses measured by X-ray diffraction. Acta Materialia,2005.53(6):p.1611-1619.
    237. A. Inoue, T. Zhang, and T. Masumoto, Zr-Al-Ni Amorphous-Alloys with High Glass-Transition Temperature and Significant Supercooled Liquid Region. Materials Transactions Jim,1990. 31(3):p.177-183.
    238. Z.P. Lu, Y. Li, and S.C. Ng, Reduced glass transition temperature and glass forming ability of bulk glass forming alloys. Journal of Non-Crystalline Solids,2000.270(1-3):p.103-114.
    239. Z.P. Lu, H. Tan, Y. Li, and S.C. Ng, The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses. Scripta Materialia,2000.42(7): p.667-673.
    240. D. Turnbull, Under What Conditions Can a Glass Be Formed. Contemporary Physics,1969. 10(5):p.473-488.
    241. Z.P. Lu and C.T. Liu, A new glass-forming ability criterion for bulk metallic glasses. Acta Materialia,2002.50(13):p.3501-3512.
    242. A.C. Lund and C.A. Schuh, Yield surface of a simulated metallic glass. Acta Materialia,2003. 51(18):p.5399-5411.
    243. M.H. Cohen and D. Turnbull, Composition Requirements for Glass Formation in Metallic and Ionic Systems. Nature,1961.189(475):p.131-132.
    244. R.J. Highmore and A.L. Greer, Eutectics and the Formation of Amorphous-Alloys. Nature, 1989.339(6223):p.363-365.
    245. A.L. Greer, Materials Science-Confusion by Design. Nature,1993.366(6453):p.303-304.
    246. T. Egami and Y. Waseda, Atomic size effect on the formability of metallic glasses. Journal of Non-Crystalline Solids,1984.64(1-2):p.113-134.
    247. G.L. Chen, X.D. Hui, G. He, and Z. Bian, Multicomponent chemical short range order undercooling and the formation of bulk metallic glasses. Materials Transactions,2001.42(6): p.1095-1102.
    248. Y.M. Wang, J.B. Qiang, C.H. Wong, C.H. Shek, and C. Dong, Composition rule of bulk metallic glasses and quasicrystals using electron concentration criterion. Journal of Materials Research,2003.18(3):p.642-648.
    249. Y.M. Wang, C.H. Shek, J.B. Qiang, C.H. Wong, Q. Wang, X.F. Zhang, and C. Dong, The e/a criterion for the largest glass-forming abilities of the Zr-Al-Ni(Co) alloys. Materials Transactions,2004.45(4):p.1180-1183.
    250. D. Ma, H. Tan, D. Wang, Y. Li, and E. Ma, Strategy for pinpointing the best glass-forming alloys. Applied Physics Letters,2005.86(19):p.191906.
    251. F.R. Elder, A.M. Gurewitsch, R. V. Langmuir, and H.C. Pollock, Radiation from Electrons in a Synchrotron. Physical Review,1947.71(11):p.829-830.
    252. A. Jayaraman, Diamond Anvil Cell and High-Pressure Physical Investigations. Reviews of Modern Physics,1983.55(1):p.65-108.
    253. J.-a. Xu, Ho-kwang, Mao, High pressure anvil and optical window. United States(6543295), 2003.
    254. R.C. Lye, J.C. Phillips, D. Kaplan, S. Doniach, and K.O. Hodgson, White Lines in L-Edge X-Ray Absorption-Spectra and Their Implications for Anomalous Diffraction Studies of Biological-Materials. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences,1980.77(10):p.5884-5888.
    255. A. Kotani and S. Shin, Resonant inelastic x-ray scattering spectra for electrons in solids. Reviews of Modern Physics,2001.73(1):p.203.
    256. M.G. Scott, Crystallization, in Amorphous Metallic Alloys, F.E. Luborsky, Editor. Boston: Butterworths.1983, p.144-166.
    257. H. Chen, Y. He, G.J. Shiflet, and S.J. Poon, Deformation-Induced Nanocrystal Formation in Shear Bands of Amorphous-Alloys. Nature,1994.367(6463):p.541-543.
    258. P.S. Steif, F. Spaepen, and J. W. Hutchinson, Strain Localization in Amorphous Metals. Acta Metallurgica,1982.30(2):p.447-455.
    259. H.S. Chen, Stored Energy in a Cold-Rolled Metallic Glass. Applied Physics Letters,1976. 29(6):p.328-330.
    260. A. A. Csontos and GJ. Shiflet, Formation and chemistry of nanocrystalline phases formed during deformation in aluminum-rich metallic glasses. Nanostructured Materials,1997.9(1-8): p.281-289.
    261. W.H. Jiang and M. Atzmon, The effect of compression and tension on shear-band structure and nanocrystallization in amorphous Al90Fe5Gd5:a high-resolution transmission electron microscopy study. Acta Materialia,2003.51(14):p.4095-4105.
    262. M.C. Gao, R.E. Hackenberg, and G.J. Shiflet, Deformation-induced nanocrystal precipitation in Al-base metallic glasses. Materials Transactions,2001.42(8):p.1741-1747.
    263. Y. He, G.J. Shiflet, and S.J. Poon, Ball Milling-Induced Nanocrystal Formation in Aluminum-Based Metallic Glasses. Acta Metallurgica Et Materialia,1995.43(1):p.83-91.
    264. J. Xu and M. Atzmon, Temperature dependence of deformation-assisted crystallization in amorphous Fe78B13Si9. Applied Physics Letters,1998.73(13):p.1805-1807.
    265. B. Yao, S.E. Liu, L. Liu, L. Si, W.H. Su, and Y. Li, Mechanism of mechanical crystallization of amorphous Fe-Mo-Si-B alloy. Journal of Applied Physics,2001.90(3):p.1650-1654.
    266. W.J. Wright, R.B. Schwarz, and W.D. Nix, Localized heating during serrated plastic flow in bulk metallic glasses. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2001.319:p.229-232.
    267. Y.F. Deng, L.L. He, Q.S. Zhang, H.F. Zhang, and H.Q. Ye, Deformation-induced structural changes in bulk metallic glass at room temperature. Advanced Engineering Materials,2003. 5(10):p.738-741.
    268. S.W. Lee, M.Y. Huh, S.W. Chae, and J.C. Lee, Mechanism of the deformation-induced nanocrystallization in a Cu-based bulk amorphous alloy under uniaxial compression. Scripta Materialia,2006.54(8):p.1439-1444.
    269. N. Boucharat, R. Hebert, H. Rosner, R. Valiev, and G. Wilde, Nanocrystallization of amorphous Al88Y7Fe5 alloy induced by plastic deformation. Scripta Materialia,2005.53(7): p.823-828.
    270. J.S. Park, H.K. Lim, J.H. Kim, H.J. Chang, W.T. Kim, D.H. Kim, and E. Fleury, In situ crystallization and enhanced mechanical properties of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy by cold rolling. Journal of Non-Crystalline Solids,2005.351(24-26):p.2142-2146.
    271. N. Boucharat, R.J. Hebert, H. Rosner, and G. Wilde, Deformation-induced nanocrystallization in Al-rich metallic glasses, in High Pressure Technology ofNanomaterials, W. Lojkowski and J.R. Blizzard, Editors.2006, p.123-132.
    272. Z. Kovacs, P. Henits, A.P. Zhilyaev, and A. Revesz, Deformation induced primary crystallization in a thermally non-primary crystallizing amorphous Al85Ce8Ni5Co2 alloy. Scripta Materialia,2006.54(10):p.1733-1737.
    273. J.-J. Kim, Y. Choi, S. Suresh, and A.S. Argon, Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science,2002.295:p.654-657.
    274. W.H. Jiang, F.E. Pinkerton, and M. Atzmon, Effect of strain rate on the formation of nanocrystallites in an Al-based amorphous alloy during nanoindentation. Journal of Applied Physics,2003.93(11):p.9287-9290.
    275. C.A. Pampillo, Flow and Fracture in Amorphous Alloys. Journal of Materials Science,1975. 10(7):p.1194-1227.
    276. J.J. Lewandowski and A.L. Greer, Temperature rise at shear bands in metallic glasses. Nature Materials,2006.5(1):p.15-18.
    277. D.W. He, Q. Zhao, W.H. Wang, R.Z. Che, J. Liu, X.J. Luo, and W.K. Wang, Pressure-induced crystallization in a bulk amorphous Zr-based alloy. Journal of Non-Crystalline Solids,2002. 297(1):p.84-90.
    278. L. Sun, W.K. Wang, D.W. He, W.H. Wang, Q. Wu, X.Y. Zhang, Z.X. Bao, and Q. Zhao, Reversible phase transition between amorphous and crystalline in Zr41.2Ti13.8Cu12.5Ni10Be22.5 under high pressure at room temperature. Appllied Physics Letters,2000.76(20):p. 2874-2876.
    279. J.Z. Jiang, L. Gerward, and J.S. Olsen, Comment on "Reversible phase transition between amorphous and crystalline in Zr41.2TH3.8Cu12.5Ni10Be22.5 under high pressure at room temperature" [Appl. Phys. Lett.76,2874 (2000)]. Applied Physics Letters,2002.80(16):p. 3015-3016.
    280. I. Halevy, E. Ustundag, S. Salhov, A.F. Yue, A. Broide, and J.Z. Hu, High pressure study of a Zr-based bulk metallic glass and its composite. Zeitschrift Fur Kristallographie,2004.219(3): p.166-171.
    281. P.G. Debenedetti and F.H. Stillinger, Supercooled liquids and the glass transition. Nature, 2001.410(6825):p.259-267.
    282. P.F. McMillan, Chemistry at high pressure. Chemical Society Reviews,2006.35(10):p. 855-857.
    283. P.F. McMillan and M.C. Wilding, High pressure effects on liquid viscosity and glass transition behaviour, polyamorphic phase transitions and structural properties of glasses and liquids. Journal of Non-Crystalline Solids,2009.355(10-12):p.722-732.
    284. O. Mishima and Y. Suzuki, Propagation of the polyamorphic transition of ice and the liquid-liquid critical point. Nature,2002.419(6907):p.599-603.
    285. M. Guthrie, C.A. Tulk, C.J. Benmore, J. Xu, J.L. Yarger, D.D. Klug, J.S. Tse, H.K. Mao, and R.J. Hemley, Formation and structure of a dense octahedral glass. Physical Review Letters, 2004.93(11):p.115502.
    286. J.-P. Itie, A. Polian, G. Calas, J. Petiau, A. Fontaine, and H. Tolentino, Pressure-induced coordination changes in crystalline and vitreous GeO2. Physical Review Letters,1989.63(4): p.398-401.
    287. S.K. Lee, P.J. Eng, H.K. Mao, Y. Meng, and J. Shu, Structure of alkali borate glasses at high pressure:B and LiK-edge inelastic x-ray scattering study. Physical Review Letters,2007. 98(10):p.105502.
    288. D.C. Koskenmaki and J. K.A. Gschneidner, Handbook on the Physics and Chemistry of Rare Earths, ed. J. K.A. Gschneidner and L. Eyring. Vol.1. Amsterdam:North-Holland.1978, 1-337.
    289. A.K. McMahan, K. Held, and R.T. Scalettar, Thermodynamic and spectral properties of compressed Ce calculated using a combined local-density approximation and dynamical mean-field theory. Physical Review B,2003.67(7):p.075108.
    290. G.R. Stewart, Heavy-Fermion Systems. Reviews of Modern Physics,1984.56(4):p.755-787.
    291. C.L. Lin, A. Wallash, J.E. Crow, T. Mihalisin, and P. Schlottmann, Heavy-Fermion Behavior and the Single-Ion Kondo Model. Physical Review Letters,1987.58(12):p.1232-1235.
    292. M. Lavagna, C. Lacroix, and M. Cyrot, The Gamma-Alpha Transition in Cerium Compounds. Journal of Physics F:Metal Physics,1983.13(5):p.1007-1015.
    293. Piermari.Gj, S. Block, and J.D. Barnett, Hydrostatic Limits in Liquids and Solids to 100 Kbar. Journal of Applied Physics,1973.44(12):p.5377-5382.
    294. H.K. Mao, P.M. Bell, J.W. Shaner, and D.J. Steinberg, Specific Volume Measurements of Cu, Mo, Pd, and Ag and Calibration of Ruby R1 Fluorescence Pressure Gauge from 0.06 to 1 Mbar. Journal of Appllied Physics,1978.49(6):p.3276-3283.
    295. P. Loubeyre, R. LeToullec, D. Hausermann, M. Hanfland, R.J. Hemley, H.K. Mao, and L.W. Finger, X-ray diffraction and equation of state of hydrogen at megabar pressures. Nature, 1996.383:p.702-704.
    296. J.-P. Rueff, C.F. Hague, J.-M. Mariot, L. Journel, R. Delaunay, J.-P. Kappler, G. Schmerber, A. Derory, N. Jaouen, and G. Krill,f-state occupancy at the y-a phase transition of Ce-Th and Ce-Sc alloys. Physical Review Letters,2004.93:p.067402.
    297. J.P. Rueff, J.P. Itie, M. Taguchi, C.F. Hague, J.M. Mariot, R. Delaunay, J.P. Kappler, and N. Jaouen, Probing the gamma-alpha transition in bulk Ce under pressure:A direct investigation by resonant inelastic x-ray scattering. Physical Review Letters,2006.96(23):p.237403.
    298. J.P. Itie, F. Baudelet, A. Congeduti, B. Couzinet, F. Farges, and A. Polian, High pressure x-ray absorption spectroscopy at lower energy in the dispersive mode:application to Ce and FePO4. Journal of Physics-Condensed Matter,2005.17(11):p. S883-S888.
    299. F. Birch, Elasticity and Constitution of the Earth Interior. Journal of Geophysical Research, 1952.57(2):p.227-286.
    300. F. Birch, Finite Strain Isotherm and Velocities for Single-Crystal and Polycrystalline Nacl at High-Pressures and 300-Degree-K. Journal of Geophysical Research,1978.83(NB3):p. 1257-1268.
    301. I.K. Jeong, T.W. Darling, M.J. Graf, T. Proffen, R.H. Heffner, Y. Lee, T. Vogt, and J.D. Jorgensen, Role of the lattice in the gamma ->alpha phase transition of Ce:A high-pressure neutron and X-ray diffraction study. Physical Review Letters,2004.92(10):p.105702.
    302. J.W. Allen and R.M. Martin, Kondo volume Collapse and the γ→α a transition in cerium. Physical Review Letters,1982.49(15):p.1106-1110.
    303. M. Lavagna, C. Lacroix, and M. Cyrot, Volume Collapse in the Kondo Lattice. Physics Letters A,1982.90(4):p.210-212.
    304. J.M. Lawrence, P.S. Riseborough, and R.D. Parks, Valence Fluctuation Phenomena. Reports on Progress in Physics,1981.44(1):p.1-84.
    305. J.D. Thompson, Z. Fisk, J.M. Lawrence, J.L. Smith, and R.M. Martin,2 Critical-Points on the Gamma-Alpha-Phase Boundary of Cerium Alloys. Physical Review Letters,1983.50(14):p. 1081-1084.
    306. I. Vedel, A.M. Redon, and J.M. Leger, Pressure-Induced Electronic Instability in Ceo. Journal of Physics C-Solid State Physics,1986.19(19):p.3549-3554.
    307. P. J. Cote and L. V. Meisel, Resistivity in Amorphous and Disordered Crystalline Alloys. Physical Review Letters,1977.39(2):p.102-105.
    308. J.M. Ziman, A Theory of the Electrical Properties of Liquid Metals-the Monovalent Metals. Philosophical Magazine,1961.6(68):p.1013-1034.
    309. S.R. Nagel, Temperature-Dependence of Resistivity in Metallic Glasses. Physical Review B, 1977.16(4):p.1694-1698.
    310. P.A. Lee and T.V. Ramakrishnan, Disordered Electronic Systems. Reviews of Modern Physics, 1985.57(2):p.287-337.
    311. M.A. Howson and D. Greig, Magnetoresistance of Amorphous Metallic Alloys-Evidence for Coulombic Interaction Effects. Journal of Physics F-Metal Physics,1983.13(8):p. L155-L158.
    312. P.A. Lee and T.V. Ramakrishnan, Magnetoresistance of Weakly Disordered Electrons. Physical Review B,1982.26(8):p.4009-4012.
    313. K.V. Rao, Electrical transport properties, in Amorphous Metallic Alloys, F.E. Luborsky, Editor. London:Butterworth.1983, p.401-442.
    314. S.B. Roy, A.K. Nigam, G. Chandra, and A.K. Majumdar, Electrical-Resistivity and Magnetoresistance in Fe-B-C Amorphous-Alloys. Journal of Physics F-Metal Physics,1988. 18(12):p.2625-2633.
    315. M.B. Tang, H. Y. Bai, and W.H. Wang, Tunneling states and localized mode in binary bulk metallic glass. Physical Review B,2005.72(1):p.012202.
    316. K. Vladar and A. Zawadowski, Theory of the Interaction between Electrons and the 2-Level System in Amorphous Metals.1. Noncommutative Model Hamiltonian and Scaling of 1st Order. Physical Review B,1983.28(3):p.1564-1581.
    317. K. Vladar and A. Zawadowski, Theory of the Interaction between Electrons and the 2-Level System in Amorphous Metals.3. Experimentally Observable Quantities. Physical Review B, 1983.28(3):p.1596-1612.
    318. K. Vladar and A. Zawadowski, Theory of the Interaction between Electrons and the 2-Level System in Amorphous Metals.2.2nd-Order Scaling Equations. Physical Review B,1983. 28(3):p.1582-1595.
    319. R.W. Cochrane, R. Harris, J.O. Stromolson, and M.J. Zuckermann, Structural Manifestations in Amorphous Alloys-Resistance Minima. Physical Review Letters,1975.35(10):p.676-679.
    320. B.G. Shen, H.Q. Guo, H.Y. Gong, W.S. Zhan, and J.G. Zhao, Temperature dependence of the electrical resistivity of amorphous (Fe1-xCox)(78)Si9.5B12.5 alloys. Journal of Applied Physics,1997.81(8):p.4661-4663.
    321. H. W. Sheng, H.Z. Liu, Y.Q. Cheng, J. Wen, P.L. Lee, W.K. Luo, S.D. Shastri, and E. Ma, Polyamorphismin ametallic glass. Nature Materials,2007.6(3):p.192-197.
    322. Y.Z. Guo and M. Li, Atomistic simulation of a NiZr model metallic glass under hydrostatic pressure. Appl. Phys. Lett.,2009.94(5):p.051901.
    323. J.Z. Jiang, W. Roseker, M. Sikorski, Q.P. Cao, and F. Xu, Pressure effect of glass transition temperature in Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk metallic glass. Applied Physics Letters, 2004.84(11):p.1871-1873.
    324. Y.Y. Chen, Y.D. Yao, C.R. Wang, W.H. Li, C.L. Chang, T.K. Lee, T.M. Hong, J.C. Ho, and S.F. Pan, Size-induced transition from magnetic ordering to Kondo behavior in (Ce,Al) compounds. Physical Review Letters,2000.84(21):p.4990-4993.
    325. B. Johansson, I.A. Abrikosov, M. Alden, A.V. Ruban, and H.L. Skriver, Calculated phase diagram for the γ-α transition in Ce. Physical Review Letters,1995.74(12):p.2335-2338.
    326. M.J. Lipp, D. Jackson, H. Cynn, C. Aracne, W.J. Evans, and A.K. McMahan, Thermal Signatures of the Kondo Volume Collapse in Cerium. Physical Review Letters,2008.101(16): p.165703.
    327. Q.S. Zeng, Y. Ding, W.L. Mao, W. Luo, A. Blomqvist, R. Ahuja, W. Yang, J. Shu, S.V. Sinogeikin, Y. Meng, D.L. Brewe, J.Z. Jiang, and H.K. Mao, Substitutional alloy of Ce and Al. Proceedings of the National Academy of Sciences of the United States of America,2009. 106(8):p.2515-2518.
    328. J.Y. Qin, X.F. Bian, S.I. Sliusarenko, and W.M. Wang, Pre-peak in the structure factor of liquid Al-Fe alloy. Journal of Physics-Condensed Matter,1998.10(6):p.1211-1218.
    329. O.P. Rachek, X-ray diffraction study of amorphous alloys Al-Ni-Ce-Sc with using Ehrenfest's formula. Journal of Non-Crystalline Solids,2006.352(36-37):p.3781-3786.
    330. L. Zhang, Y.S. Wu, X.F. Bian, H. Li, W.M. Wang, and S. Wu, Short-range and medium-range order in liquid and amorphous Al90Fe5Ce5 alloys. Journal of Non-Crystalline Solids,2000. 262(1-3):p.169-176.
    331. L. Zhang, Y.S. Wu, X.F. Bian, S. Wu, and H. Li, Effects of quenching temperature on the chemical short-range order in Al-Fe-Ce amorphous alloys. Journal of Materials Science Letters,1999.18(24):p.1977-1979.
    332. F. Zhao, Y.S. Wu, Y.C. Shi, C.J. Zhang, and Z.Q. Zhu, Stability of the structure corresponding to the prepeak and amorphous Al90Tm5Ce5 alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2003.340(1-2):p.212-215.
    333. J.K. Zhou, X.F. Bian, W.M. Wang, X.Y. Xue, S.H. Wang, Y. Zhao, and K.B. Yin, Medium-range order and crystallization in amorphous Al-Ni-Pr alloys. Materials Letters, 2004.58(20):p.2559-2563.
    334. H.R. Wang, Y.F. Ye, G.H. Min, and X.Y. Teng, Pre-peak on the structure factor of non-crystalline alloy Mg70Zn30. Acta Physica Sinica,2001.50(3):p.523-527.
    335. H. Rudin, S. Jost, and H.J. Guntherodt, X-Ray-Diffraction from Liquid and Amorphous Mg70Zn30 Alloys. Journal of Non-Crystalline Solids,1984.61-2(JAN):p.291-294.
    336. L. Yang, J.Z. Jiang, K. Saksl, and H. Franz, Origin of the pre-peak in Zr70Cu29Pd1 metallic glass. Journal of Physics-Condensed Matter,2007.19(47):p.476217.
    337. S.C. Moss and D.L. Price, Physics of Disordered Marerials, ed. D. Adler, H. Fritzsche, and S.R. Ovshinsk. New York:Plenum Press.1985,85.
    338. H.S. Chen, D. Koskenmaki, and C.H. Chen, Formation and Structure of Icosahedral and Glassy Phases in Melt-Spun Al-Si-Mn. Physical Review B,1987.35(8):p.3715-3721.
    339. W. Hoyer and R. Jodicke, Short-Range and Medium-Range Order in Liquid Au-Ge Alloys. Journal of Non-Crystalline Solids,1995.193:p.102-105.
    340. L. Wang, H. Cong, Y. Zhang, and X. Bian, Medium-range order of liquid metal in the quenched state. Physica B:Condensed Matter,2005.355(1-4):p.140-146.
    341. X.R. Liu and S.M. Hong, Evidence for a pressure-induced phase transition of amorphous to amorphous in two lanthanide-based bulk metallic glasses. Applied Physics Letters,2007. 90(25):p.251903.
    342. Q.S. Zeng, Y. Ding, W.L. Mao, W.G. Yang, S.V. Sinogeikin, J.F. Shu, H.K. Mao, and J.Z. Jiang, Origin of Pressure-Induced Polyamorphism in Ce75Al25 Metallic Glass. Physical Review Letters,2010.104(10):p.105702.
    343. H.W. Sheng, E. Ma, H.Z. Liu, and J. Wen, Pressure tunes atomic packing in metallic glass. Applied Physics Letters,2006.88(17):p.171906.
    344. D.L. Decker, High-Pressure Equation of State for NaCl, KCl, and CsCl. Journal of Applied Physics,1971.42(8):p.3239-3245.
    345. K. Shimizu, K. Suhara, M. Ikumo, M.I. Eremets, and K. Amaya, Superconductivity in oxygen. Nature,1998.393(6687):p.767-769.
    346. M.I. Eremets, V.W. Struzhkin, H.K. Mao, and R.J. Hemley, Superconductivity in boron. Science,2001.293(5528):p.272-274.
    347. Y.H. Han, C.X. Gao, Y.Z. Ma, H.W. Liu, Y.W. Pan, J.F. Luo, M. Li, C.Y. He, X.W. Huang, and G.T. Zou, Integrated microcircuit on a diamond anvil for high-pressure electrical resistivity measurement. Applied Physics Letters,2005.86(6):p.064104
    348. J.P. Rueff, J.P. Itie, M. Taguchi, C.F. Hague, J.M. Mariot, R. Delaunay, J.P. Kappler, and N. Jaouen, Probing the gamma-alpha transition in bulk Ce under pressure:A direct investigation by resonant inelastic x-ray scattering. Physical Review Letters,2006.96(23).
    349. C. Dallera, M. Grioni, A. Shukla, G. Vanko, J.L. Sarrao, J.P. Rueff, and D.L. Cox, New spectroscopy solves an old puzzle:The Kondo scale in heavy fermions. Physical Review Letters,2002.88(19):p.196403.
    350. Y.R. Shen, R.S. Kumar, M. Pravica, and M.F. Nicol, Characteristics of silicone fluid as a pressure transmitting medium in diamond anvil cells. Review of Scientific Instruments,2004. 75(11):p.4450-4454.
    351. O.L. Anderson, D.G. Isaak, and S. Yamamoto, Anharmonicity and the Equation of State for Gold. Journal of Applied Physics,1989.65(4):p.1534-1543.
    352. A.P. Hammersley, S.O. Svensson, M. Hanfland, A.N. Fitch, and D. Hausermann, Two-dimensional detector software:From real detector to idealised image or two-theta scan. High Pressure Research,1996.14(4-6):p.235-248.
    353. K. Lu, Nanocrystalline metals crystallized from amorphous solids:Nanocrystallization, structure, and properties. Materials Science & Engineering R-Reports,1996.16(4):p. 161-221.
    354. A.C. Lawson, J.M. Lawrence, J.D. Thompson, and A. Williams, Low temperature crystal structure of Ce3Al Physica B,1990.163:p.587-590.
    355. Y.X. Zhuang, J.Z. Jiang, T.J. Zhou, H. Rasmussen, L. Gerward, M. Mezouar, W. Crichton, and A. Inoue, Pressure effects on Al89La6Ni5 amorphous alloy crystallization. Appllied Physics Letters,2000.77(25):p.4133-4135.
    356. Y. Li, Q. Guo, J.A. Kalb, and C.V. Thompson, Matching Glass-Forming Ability with the Density of the Amorphous Phase. Science,2008.322(5909):p.1816-1819.
    357. J.Z. Jiang, J.S. Olsen, L. Gerward, S. Abdali, J. Eckert, N. Schlorke-de Boer, L. Schultz, J. Truckenbrodt, and P.X. Shi, Pressure effect on crystallization of metallic glass Fe72P11C6Al5B4Ga2 alloy with wide supercooled liquid region. Journal of Applied Physics, 2000.87(5):p.2664-2666.
    358. J.Z. Jiang, T.J. Zhou, H. Rasmussen, U. Kuhn, J. Eckert, and C. Lathe, Crystallization in Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass under pressure. Appllied Physics Letters, 2000.77(22):p.3553-3555.
    359. F. Steglich, C. Geibel, K. Gloos, G. Olesch, C. Schank, C. Wassilew, A. Loidl, A. Krimmel, and G.R. Stewart, Heavy Fermions-Typical Phenomena and Recent Developments. Journal of Low Temperature Physics,1994.95(1-2):p.3-22.
    360. A. Amato, Heavy-fermion systems studied by muSR technique. Reviews of Modern Physics, 1997.69(4):p.1119-1180.
    361. M.B. Maple, C.L. Seaman, D.A. Gajewski, Y. Dalichaouch, V.B. Barbetta, M.C. Deandrade, H.A. Mook, H.G. Lukefahr, O.O. Bernal, and D.E. Maclaughlin, Non Fermi-Liquid Behavior in Strongly Correlated F-Electron Materials. Journal of Low Temperature Physics,1994. 95(1-2):p.225-243.
    362. M.B. Maple, M.C. Deandrade, J. Herrmann, Y. Dalichaouch, D.A. Gajewski, C.L. Seaman, R. Chau, R. Movshovich, M.C. Aronson, and R. Osborn, Non Fermi-Liquid Ground-States in Strongly Correlated F-Electron Materials. Journal of Low Temperature Physics,1995.99(3-4): p.223-249.
    363. F. Steglich, J. Aarts, C.D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schafer, Superconductivity in the Presence of Strong Pauli Paramagnetism:CeCu2Si2. Physical Review Letters,1979.43(25):p.1892-1896.
    364. M.B. Maple, Strongly correlated electron phenomena in f-electron materials. Journal of the Physical Society of Japan,2005.74(1):p.222-238.
    365. J.C. Jamieson, Crystal Structures at High Pressures of Metallic Modifications of Silicon and Germanium. Science,1963.139(355):p.762-764.
    366. H.D. Stromberg and D.R. Stephens, Effects of Pressure on Electrical Resistance of Certain Metals. Journal of Physics and Chemistry of Solids,1964.25(9):p.1015-1022.
    367. J. Kondo, Resistance Minimum in Dilute Magnetic Alloys. Progress of Theoretical Physics, 1964.32(1):p.37-49.
    368. C.L. Lyon-Caen and P. Lethuillier, Calculation of the magnetic susceptibility of a cerium Kondo system in the Anderson model. Physical Review B,1977.15(7):p.3522-3526.
    369. O. Gunnarsson and K. Schonhammer, Electron spectroscopies for Ce compounds in the impurity model. Physical Review B,1983.28(8):p.4315-4341.
    370. O. Gunnarsson, K. Schonhammer, J.C. Fuggle, F.U. Hillebrecht, J.M. Esteva, R.C. Karnatak, and B. Hillebrand, Occupancy and hybridization of the f level in Ce compounds. Physical Review B,1983.28(12):p.7330-7333.
    371. L. Journel, J.M. Mariot, J.P. Rueff, C.F. Hague, G. Krill, M. Nakazawa, A. Kotani, A. Rogalev, F. Wilhelm, J.P. Kappler, and G. Schmerber, Resonant inelastic x-ray scattering at the lanthanum L3 edge. Physical Review B,2002.66(4):p.045106.
    372. M.A. Ruderman and C. Kittel, Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons. Physical Review,1954.96(1):p.99-102.
    373. T. Kasuya, A Theory of Metallic Ferromagnetism and Antiferromagnetism on Zeners Model. Progress of Theoretical Physics,1956.16(1):p.45-57.
    374. K. Yosida, Magnetic Properties of Cu-Mn Alloys. Physical Review,1957.106(5):p.893-898.
    375. M.B. Tang, H.Y. Bai, W.H. Wang, D. Bogdanov, K. Winzer, K. Samwer, and T. Egami, Heavy-fermion behavior in cerium-based metallic glasses. Physical Review B,2007.75(17): p.172201.
    376. O.O. Bernal, D.E. MacLaughlin, H.G. Lukefahr, and B. Andraka, Copper NMR and Thermodynamics of UCu5-xPdx:Evidence for Kondo Disorder. Physical Review Letters,1995. 75(10):p.2023.
    377. T. Graf, J.D. Thompson, M.F. Hundley, R. Movshovich, Z. Fisk, D. Mandrus, R.A. Fisher, and N.E. Phillips, Comparison of CeRh2Si2 and CeRh2-xRuxSi2 near their Magnetic-Nonmagnetic Boundaries. Physical Review Letters,1997.78(19):p.3769.
    378. A.H. Castro Neto, G. Castilla, and B.A. Jones, Non-Fermi Liquid Behavior and Griffiths Phase in f-Electron Compounds. Physical Review Letters,1998.81(16):p.3531.
    379. J. Ruvalds and Q.G. Sheng, Magnetoresistance in heavy-fermion alloys. Physical Review B, 1988.37(4):p.1959.
    380. F.-s. Liu, W.A. Roshen, and J. Ruvalds, Resistivity from magnetic impurity pairs in metallic alloys. Physical Review B,1987.36(1):p.492.
    381. J.M. Ziman, A Theory of the Electrical Properties of Liquid Metals-the Monovalent Metals. Philos. Mag.,1961.6(68):p.1013-1034.
    382. P.J. Cote and L.V. Meisel, Resistivity in Amorphous and Disordered Crystalline Alloys. Phys. Rev. Lett.,1977.39(2):p.102-105.
    383. D. Lazarus, Effect of Pressure on Electrical-Resistance of Pd82-Xvxsi18 Metallic Glasses. Solid State Commun.,1979.32(2):p.175-177.
    384. L.V. Meisel and P.J. Cote, Application of Extended Ziman Theory to Amorphous Nickel-Phosphorus Alloys. Physical Review B,1977.15(6):p.2970-2973.
    385. G. Fritsch, J. Willer, A. Wildermuth, and E. Luscher, Pressure-Dependence of the Electrical-Resistivity of Some Metallic Glasses. J. Phys. F,1982.12(12):p.2965-2974.
    386. G. Fritsch, W. Dyckhoff, W. Pollich, and E. Luscher, Dependence on Pressure and Temperature of the Electrical-Resistivity of the Amorphous-Alloys-Co80p20 and Pd80si20. J. Phys. F,1985.15(7):p.1537-1545.
    387. Y.Y. Chen, J.M. Lawrence, J.D. Thompson, and J.O. Willis, Thermodynamic behavior of the heavy-fermion compounds Ce3X (X=Al,In,Sn). Physical Review B,1989.40(16):p. 10766-10777.
    388. D. Malterre, G. Krill, J. Durand, G. Marchal, and M.F. Ravet, Electronic Configuration of Cerium in Amorphous-Alloys Investigated by X-Ray Absorption-Spectroscopy. Physical Review B,1986.34(4):p.2176-2181.
    389. Z.P. Lu and C.T. Liu, Role of minor alloying additions information of bulk metallic glasses:A review. Journal of Materials Science,2004.39(12):p.3965-3974.
    390. W.H. Wang, Roles of minor additions information and properties of bulk metallic glasses. Progress in Materials Science,2007.52(4):p.540-596.
    391. W. Hume-Rothery, R.E. Smallman, and C. W. Haworth, The Structure of Metals and Alloys. fifth ed. London:Institute of Metals.1969,1-380.
    392. T. Atou, M. Hasegawa, L.J. Parker, and J.V. Badding, Unusual chemical behavior for potassium under pressure:Potassium-silver compounds. Journal of the American Chemical Society,1996.118(48):p.12104-12108.
    393. L.J. Parker, T. Atou, and J.V. Badding, Transition element-like chemistry for potassium under pressure. Science,1996.273(5271):p.95-97.
    394. J.S. Tse, G. Frapper, A. Ker, R. Rousseau, and D.D. Klug, Phase stability and electronic structure of K-Ag intermetallics at high pressure. Physical Review Letters,1999.82(22):p. 4472-4475.
    395. N. Dubrovinskaia, L. Dubrovinsky, I. Kantor, W.A. Crichton, V. Dmitriev, V. Prakapenka, G. Shen, L. Vitos, R. Ahuja, B. Johansson, and I.A. Abrikosov, Beating the miscibility barrier between iron group elements and magnesium by high-pressure alloying. Physical Review Letters,2005.95(24):p.245502.
    396. Y.K. Vohra, S.L. Beaver, J. Akella, C.A. Ruddle, and S.T. Weir, Ultrapressure equation of state of cerium metal to 208 GPa. Journal of Appllied Physics,1999.85(4):p.2451-2453.
    397. M. Lavagna, C. Lacroix, and M. Cyrot, The Gamma-Alpha Transition in Cerium Compounds. Journal of Physics F-Metal Physics,1983.13(5):p.1007-1015.
    398. A.P. Murani, S.J. Levett, and J.W. Taylor, Magnetic form factor of α-Ce:Towards understanding the magnetism of cerium. Physical Review Letters,2005.95:p.256403.
    399. L. de Medici, A. Georges, G. Kotliar, and S. Biermann, Mott transition and Kondo screening in f-electron metals. Physical Review Letters,2005.95:p.066402.
    400. A.K. McMahan, K. Held, and R.T. Scalettar, Thermodynamic and spectral properties of compressed Ce calculated using a combined local-density approximation and dynamical mean-field theory. Physical Review B,2003.67:p.075108.
    401. M.B. Zolfl, I.A. Nekrasov, T. Pruschke, V.I. Anisimov, and J. Keller, Spectral and magnetic properties of alpha- and gamma-Ce from dynamical mean-field theory and local density approximation. Physical Review Letters,2001.87(27):p.276403.
    402. M. Lavagna, C. Lacroix, and M. Cyro, The y-a transition in cerium compounds. Journal of Physics F:Metal Physics,1983.13:p.1007-1015.
    403. Y. Meng, G. Shen, and H.K. Mao, Double-sided laser heating system at HPCAT for in situ x-ray diffraction at high pressures and high temperatures. Journal of Physics-Condensed Matter,2006.18(25):p. S1097-S1103.
    404. P. Hohenberg and W. Kohn, Inhomogeneous electron gas. Physical Review,1964.136:p. B864-B871.
    405. W. Kohn and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review,1965.140(4A):p. A1133-A1138.
    406. G. Kresse and J. Furthmuller, Efficient iteractive schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B,1996.54(16):p.11169-11186.
    407. RE. Blochl, Projector augmented-wave method. Physical Review B,1994.50(24):p. 17953-17979.
    408. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical Review Letters,1996.77(18):p.3865-3868.
    409. B.H. Toby, EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 2001.34:p.210-213.
    410. L.S. Darken and R.W. Gurry, Physical Chemistry of Metals. fifth ed. New York:McGraw-Hill. 1953,86-89.
    411. J.S. Olsen, L. Gerward, U. Benedict, and J.-P. Itie, The crystal structure and the equation of state of cerium metal in the pressure range 0-46 GPa. Physica B,1985.133:p.129-137.
    412. L. Vegard, The constitution of the mixed crystals and the filling of space of the atoms. Zeitschrift Fur Physik,1921.5:p.17-26.
    413. A.K. Singh, H.P. Liermann, Y. Akahama, and H. Kawamura, Aluminum as a pressure-transmitting medium cum pressure standard for x-ray diffraction experiments to 200 GPa with diamond anvil cells. Journal of Applied Physics,2007.101(12):p.123526.
    414. M.J. Lipp, D. Jackson, H. Cynn, C. Aracne, W.J. Evans, and A.K. McMahan, Thermal signatures of the Kondo volume collapse in cerium. Phys. Rev. Lett.,2008.101:p.165703.
    415. F.A. Lindemann, The calculation of molecular natural frequencies. Physikalische Zeitschrift, 1910.11:p.609-612.
    416. J.J. Gilvarry, The Lindemann and Gruneisen Laws. Physical Review,1956.102(2):p. 308-316.
    417. S. M.G., ed. Amorphous Metallic Alloys. ed. F.E. Luborsky. Boston:Butterworths.1983, 144-166.
    418. M.B. Kruger and R. Jeanloz, Memory Glass-an Amorphous Material Formed from Alpo4. Science,1990.249(4969):p.647-649.
    419. B.B. Sun, Y.B. Wang, J. Wen, H. Yang, M.L. Sui, J.Q. Wang, and E. Ma, Artifacts induced in metallic glasses during TEM sample preparation. Scripta Materialia,2005.53(7):p.805-809.
    420. W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects. Physical Review,1965.140:p. A1133-A1138.
    421. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical Review Letters,1996.77:p.3865-3868.
    422. H.F. Poulsen, J.A. Wert, J. Neuefeind, V. Honkimaki, and M. Daymond, Measuring strain distributions in amorphous materials. Nature Materials,2005.4(1):p.33-36.
    423. J.J. Kim, Y. Choi, S. Suresh, and A.S. Argon, Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science,2002.295(5555):p.654-657.
    424. R.J. Hemley, L.C. Chen, and H.K. Mao, New Transformations between Crystalline and Amorphous Ice. Nature,1989.338(6217):p.638-640.
    425. H.Z. Liu, L.H. Wang, X.H. Xiao, F. De Carlo, J. Feng, H.K. Mao, and R.J. Hemley, Anomalous high-pressure behavior of amorphous selenium from synchrotron x-ray diffraction and microtomography. Proceedings of the National Academy of Sciences of the United States of America,2008.105(36):p.13229-13234.
    426. C.H. Polsky, L.M. Martinez, K. Leinenweber, M.A. VerHelst, C.A. Angell, and G.H. Wolf, Pressure-induced crystallization of vitreous ZnCl2. Physical Review B,2000.61(9):p. 5934-5938.
    427. N. Hamaya, K. Sato, K. UsuiWatanabe, K. Fuchizaki, Y. Fujii, and Y. Ohishi, Amorphization and molecular dissociation of SnI4 at high pressure. Physical Review Letters,1997.79(23):p. 4597-4600.
    428. D.B. Miracle and O.N. Senkov, Topological criterion for metallic glass formation. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2003.347(1-2):p.50-58.
    429. T. Egami, Universal criterion for metallic glass formation. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,1997.226:p.261-267.
    430. S.H. Liou and C.L. Chien, Composition Range of Binary Amorphous-Alloys. Physical Review B,1987.35(5):p.2443-2446.
    431. H.J. Fecht, P.J. Desre, and W.L. Johnson, Thermodynamic Aspects of Solid-State Amorphization-Polymorphous Melting Clapeyron Diagram. Philosophical Magazine B-Physics of Condensed Matter Statistical Mechanics Electronic Optical and Magnetic Properties,1989.59(5):p.577-585.
    432. H.J. Fecht and W.L. Johnson, Entropy and Enthalpy Catastrophe as a Stability Limit for Crystalline Material. Nature,1988.334(6177):p.50-51.
    433. P.H. Gaskell, Structure of Simple Inorganic Amorphous Solids. Journal of Physics C-Solid State Physics,1979.12(21):p.4337-4368.
    434. H. Fujimori, Magnetic anisotropy, in Amorphous Metallic Alloys, F.E. Luborsky, Editor. London:Butterworth.1983, p.300.
    435. T. Sakata, H.Y. Yasuda, and Y. Umakoshi, Development of microstructure and texture in rapidly solidified and annealed Ni-Al alloys. Materials Transactions,2001.42(11):p. 2382-2385.
    436. N. W. Blake and R. W. Smith, Preferred Orientation of Rapidly Frozen Metals. Canadian Journal of Physics,1982.60(12):p.1720-1724.
    437. R. Kurita, K. Murata, and H. Tanaka, Control of fluidity and miscibility of a binary liquid mixture by the liquid-liquid transition. Nature Materials,2008.7(8):p.647-652.