基于聚膦腈渗透汽化膜的制备及分离性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渗透汽化作为一类新兴的膜分离技术,具有高分离性能、经济、安全和环保等显著的优点。近二十年来,亲有机物渗透汽化在环境保护、化学品回收及重要化学物提取等领域取得了良好的效果并得到极大的关注,然而现有的亲有机物聚合物基体材料和膜材料还存在不同程度的缺陷,特别是对极性有机物选择性不理想。开发和研究新型亲有机物渗透汽化膜材料是一条重要的提高分离性能的途径,对于探索材料分子结构与分离性能的关系同样具有重大意义。聚膦腈是一类新型的无机/有机聚合物,其中线性聚膦腈和以环膦腈为组成单元的聚膦腈在渗透汽化中具有潜在的应用价值。线性聚膦腈具有良好的分子结构可设计性,具有很好的主链柔顺性和成膜能力,是性能优异的亲有机物渗透汽化膜基体材料并为提高分离性能和研究结构性能关系提供了绝佳的条件。而交联环膦腈聚合物较一般的无机材料具有更好的亲有机物性质,可以作为亲有机物的膜填料,提高聚合物膜的分离性能。因此膦腈类聚合物在渗透汽化膜中的不同层面都有可能起到积极的作用,对该领域的研究具有重要的理论意义和应用价值。
     首先制备了一种典型的聚膦腈膜:乙氧基,邻烯丙基苯氧基和苯氧基混合取代聚膦腈膜并系统研究了制备条件对渗透汽化性能的影响。制备了更适合于渗透汽化的复合膜,采用尼龙微孔膜作为聚膦腈的载体,以甲苯为聚膦腈溶剂,水为微孔填充剂形成复合膜,该复合膜具有良好的机械稳定性,使用寿命长。详细研究了氧气、引发剂、交联温度和时间对膜性质的影响,进而优化了制备条件。根据以上结果总结了具体的交联机理。最后研究了膜溶解性和溶胀性能与分离性能间的关系,通过交联明显提高了分离膜的分离选择性,与非交联膜相比,交联膜对5%乙醇、丙酮和四氢呋喃的分离系数分别提高了0.9、4.8和7.8。
     设计并制备了分别含乙氧基,三氟乙氧基和八氟戊氧基的线性聚膦腈膜,研究了侧基分子结构对于乙醇-水混合物的渗透汽化分离性能的影响。溶胀实验表明三氟乙氧基取代聚膦腈膜具有最大的乙醇溶解能力,而八氟戊氧基取代聚膦腈膜具有最大的憎水能力,通过极性和非极性溶解度参数的分析很好地解释了溶胀现象。渗透汽化结果表明三氟乙氧基取代聚膦腈膜分离性能最好,主要来自于其最好的扩散选择性。对于40℃,10%乙醇水溶液,分离系数可达6.1,而渗透流量达到260 g·m~(-2)·h~(-1),均略好于通常硅橡胶膜的性能。而八氟戊氧基取代聚膦腈对于乙醇的溶解选择性最好,但扩散选择性差,导致了整体选择性的落后。研究结果很好地揭示了侧基极性、大小和柔顺性与分离性能的内在关系。
     设计并制备了不同三氟乙氧基含量的亲有机物线性聚膦腈膜,考察了它们对不同有机物-水体系包括四氢呋喃-水、丙酮-水和乙醇-水的分离性能。合成聚膦腈膜对40℃,5%乙醇水溶液、丙酮水溶液和四氢呋喃水溶液的分离系数最高分别达到7.9、24.1和30.2,明显优于聚二甲基硅氧烷膜,同时对于乙醇水溶液,聚膦腈膜还显示更高的渗透流量(273 g·m~(-2)·h~(-1))。通过调整三氟乙氧基含量进一步优化了聚膦腈膜的分离性能。采用溶解度参数,玻璃化转变温度和接触角分析给予了相应的理论解释,最后研究了不同温度和有机物浓度对于渗透汽化性能的影响。
     设计并制备了聚二甲基硅氧烷膜/膦腈纳米管复合膜,扫描电镜证明膦腈纳米管能够在聚合物中均匀分散,溶胀实验证明膦腈纳米管的引入增大了膜对乙醇的亲和能力,溶解度参数分析说明膦腈纳米管对乙醇有很好的亲和性和对水有很好的憎水性。渗透汽化实验证明膦腈纳米管的引入同时极大地提高了分离系数和流量,最高分离系数可达10,而渗透流量提高了1倍,达到478 g·m~(-2)·h~(-1)。随着膦腈纳米管含量提高,分离因子提高到最大值后基本保持不变而渗透流量上升到最大值然后稍微下降。比较了不同长径比膦腈纳米管和膦腈纳米球引入到聚合物中的作用,实验表明长径比大的膦腈纳米管的作用更好。研究表明,分离系数和渗透流量的提高主要来自于乙醇在膜中的溶解能力提高,显示了有机-无机杂化纳米管亲有机物的优势。
Pervaporation (PV) technique, as a new separation techniqure, is highly efficient, economical, safe, and ecofriendly. In recent twenty years, organophilic pervaporation has received considerable attention in the fields including environment protection, recycle of chemical product and extraction of important chemical material and exhibits good performance. However, pervaporation performance of present membrane for hydrophilic organics is not good. Developing and studying novel polymer, especially organic-inorganic hybrid polymer, as pervaporation membrane material is an important way to improve the performance. Phosphazene polymer is a new type of inorganic/organic and organophilic polymer which is as important as the silicon polymer. Phosphazene polymer can be classified as linear polyphosphazene based polymer and cyclophosphazene polymer. Linear polyphosphazene has good tailoring property of chemical structure, good flexibility of main chain, generally good membrane forming ability and good organophilic performance. Hence, linear polyphosphazene is an excellent pervaporation membrane material. Crosslinked Cyclophophazene polymer can be an alternative organophilic filler of membrane to improve performance. Thereby, phosphazene based polymer can be applied in different aspects of organophilic pervaporation membrane due to its low cost, ability of morphology control and good affinity to general solvents. This study is scientific important and has great industrial value.
     A model linear polyphosphazene: ethoxy, allylphenoxy and phenoxy substituting polyphosphazene membrane was prepared. Nylon microporous membrane was used as the support membrane of polyphosphazene membrane. Toluene was used as solvent of polymer and water was used to occupy the pore of support membrane. The formed composite membrane exhibited good mechanical stability. The effect of oxygen, initiator, crosslinking temperature and time on sorption and swelling behavior of crosslinked polyme was studied. The crosslinking condition was optimized. Experiments further show that crosslinking can improve separation factor of membrane. The improvement for acetone-water and THF-water is obvious, respectively from 19.7 to 24.5 and from 22.5 to 30.3. Based on the study, detailed cross-linking mechanisms were proposed
     The ethoxy, trifluoethoxy and octafluoro~(-1)-Pentanoxy containing organophilic polyphosphazenes were designed and prepared. By comparing the pervaporation properties, the effect of properties of groups, including hydrophobicity, group length and rigidity on the final separation performance was studied in detail. Sorption experiments showed that trifluoethoxy substituting polyphosphazene membrane had the largest sorption for ethanol and octafluoro~(-1)-Pentanoxy substituting polyphosphazene membrane had the lowest sorption for water. The sorption behaviors of the three membranes were explained by solubility parameters well. The separation performance of trifluoethoxy substituting polyphosphazene membrane is the best due to its highest ethanol sorption and diffusion selectivity. The highest separation factor and permeation flux are respectively 6.1 and 260 g·m~(-2)·h~(-1) for 10% ethanol aqueous solution at 40℃which are little better than general siloxane rubbery membrane. The sorption selectivity of octafluoro~(-1)-Pentanoxy substituting polyphosphazene membrane is the best but its diffusion selectivity is poor, leading to reduction of whole separation factor.
     A series of organophilic phosphazene heteropolymers (NP (OC6H4C3H5)x(OC6H5)y(OCH2CF3)z)n with different content of OCH2CF3 group were prepared. The pervaporation performance of as-prepared membranes for removal of tetrahydrofuran, acetone and ethanol was reported to study the effect of OCH2CF3 content on pervaporation performance. Pervaporation and swelling experiments showed that the incorporation of -OCH2CF3 group greatly enhances the sorption toward THF and acetone, resulting in higher selectivity comparing with polydimethylsiloxane membrane. The highest separation factors for 5% ethanol, acetone and THF aqueous solutions at 40℃are respectively 7.9, 24.9 and 30.2. Pervaporation performance was optimized by tailoring the content of OCH2CF3 group. The swelling degrees of polymers and solubility parameter analysis explain the results well. The effect of feed VOC composition, temperature and crosslinking on pervaporation results were discussed.
     Organophilic polyphosphazene nanotube was incorporated into polydimethylsiloxane forming nanocomposite membranes. SEM showed that polyphosphazene nanotube was uniformly dispersed in polydimethylsiloxane. Sorption experiments indicated that the nanocomposite membranes had higher ethanol affinity compared to the pure-polymer membrane. The nanocomposite membranes were demonstrated with greatly higher separation factor for water-ethanol mixture compared with polymer membranes. The highest separation factor achieves 10 and the highest permeation flux is twice that of polydimethylsiloxane which is 478 g·m~(-2)·h~(-1). As nanotube content increasing, selectivity increased at first and kept almost the same. Permeation flux increased at first to a maximum value and after that decreased slightly. Incorporation of short diameter nanotube caused better pervaporation. The effects of temperature and feed solution concentration on pervaporation properties were also investigated. The improvement of separation performance is owing to good affinity to ethanol and hydrophobic property of polyphosphazene nanotube which is well explained by solubility parameter analysis. This result exhibits the advantage of polyphosphazene nanotube in organophilic property.
引文
[1]刘茉娥,陈欢林,新型分离技术基础,1999.
    [2]刘茉娥,膜分离技术,1998.
    [3]陈翠仙,韩宾兵,朗宁·威,渗透蒸发和蒸汽渗透,2004.
    [4]陈镇,秦培勇,陈翠仙,渗透汽化和蒸汽渗透技术的研究、应用现状及发展,膜科学与技术,2003 (23) 103-109.
    [5] M.N. Hyder, R.Y.M. Huang, P. Chen, Correlation of physicochemical characteristics with pervaporation performance of poly(vinyl alcohol) membranes, Journal of Membrane Science, 2006 (283): 281–290.
    [6] S.I. Semenova, H. Ohya, K. Soontarapa, Hydrophilic membranes for pervaporation: An analytical view, Desalination, 1997 (110): 251-286.
    [7] P. Shao, R.Y.M. Huang, Polymeric membrane pervaporation, Journal of Membrane Science, 2007 (287): 162–179.
    [8]夏德万,张强,施艳荞,赵芸,矫庆泽,陈观文,渗透汽化膜分离研究的新进展,高分子通报,2007 (9): 1-8.
    [9] A.A. Kittur, S.S. Kulkarni, M.I. Aralaguppi, M.Y. Kariduraganavar, Preparation and characterization of novel pervaporation membranes for the separation of water–isopropanol mixtures using chitosan and NaY zeolite, Journal of Membrane Science, 2005 (247): 75–86.
    [10] S. Xiao, R. Y.M. Huang, X. Feng, Preparation and properties of trimesoyl chloride crosslinked poly(vinyl alcohol) membranes for pervaporation dehydration of isopropanol, Journal of Membrane Science. 2006 (286): 245–254.
    [11] M.Y. Kariduraganavar, S.S. Kulkarni, A.A. Kittur. Pervaporation separation of water–acetic acid mixtures through poly(vinyl alcohol)-silicone based hybrid membranes, Journal of Membrane Science. 2005 (246): 83-93.
    [12] T.M. Aminabhavi, H.G. Naik. Synthesis of graft copolymeric membranes of poly(vinyl alcohol) and polyacrylamide for the pervaporation separation of water/acetic acid mixtures, Journal of Applied Polymer Science. 2002 (83): 244
    [13] M. Takao, O. Shu2hei, T. Toshiro. Preparation of hydrophilic and acid-proof silicalite-1 zeolite membrane and its application to selective separation of water from water solutions of concentrated acetic acid by pervaporation, Separation and Purification Technology. 2003 (32): 181-189.
    [14] T.A. Peters, J. Fontalvo, M.A.G. Vorstman, Hollow fibre microporous silica membranes for gas separation and pervaporation: Synthesis, performance and stability, Journal of Membrane Science. 2005 (248): 73-80.
    [15] R. Jiraratananon, P. Sampranpiboon, D. Uttapap, Pervaporation separation and mass transport of ethylbutanoate solution by polyether block amide (PEBA) membranes, Journal of Membrane Science. 2002 (210): 389-409.
    [16] J.H. Yang, M. Asaeda. Permeation mechanism of water through microporous SiO2–ZrO2 membranes for separation of aqueous solutions of organic solvents by pervaporation, Separation and Purification Technology. 2003 (32): 29-36.
    [17] L.Y. Ye, Q.L. Liu, Q.G. Zhang, A.M. Zhu, G.B. Zhou, Pervaporation characteristics and structure of poly(vinyl alcohol)-poly(ethylene glycol)-tetraethoxysilane hybrid membranes, Journal of Applied Polymer Science, 2007 (105): 3640–3648.
    [18] S.G. Adoor, L.S. Manjeshwar, B.V.K. Naidu, M. Sairam, T.M. Aminabhavi, Poly(vinyl alcohol)-poly(methyl methacrylate) blend membranes for pervaporation separation of water+isopropanol and water+1,4-dioxane mixtures, Journal of Membrane Science, 2006 (280): 594-602.
    [19] J.W. Rhim, S.W. Lee, Y.K. Kim, Pervaporation separation of water-ethanol mixtures using metal-ion-exchanged poly(vinyl alcohol) (PVA)-sulfosuccinic acid (SSA) membranes, Journal of Applied Polymer Science, 2002 (85): 1867–1873.
    [20] L. Liang, E. Ruckenstein, Polyvinyl alcohol-polyacrylamide interpenetrating polymer network membranes and their pervaporation characteristics for ethanol-water mixtures, Journal of Membrane Science, 1995 (106): 167-182.
    [21] M.L. Gimenes, L. Liu, X. Feng, Sericin-poly(vinyl alcohol) blend membranes for pervaporation separation of ethanol-water mixtures, Journal of Membrane Science, 2007 (295): 71-79.
    [22] M.C. Burshe, S.B. Sawant, J.B. Joshi, V.G. Pangarkar, Sorption and permeation of binary water-alcohol systems through PVA membranes crosslinked with multifunctional crosslinking agents, Separation and Purification Technology, 1997 (12): 145-156.
    [23] U.S. Toti, T.M. Aminabhavi, Different viscosity grade sodium alginate and modified sodium alginate membranes in pervaporation separation of water+acetic acid and water isopropanol mixtures, Journal of Membrane Science, 2004 (228): 199–208.
    [24] R.Y.M. Huang, R. Pal, G.Y. Moon, Characteristics of sodium alginate membranes for the pervaporation dehydration of ethanol–water and isopropanol–water mixtures, Journal of Membrane Science, 1999 (160): 101-113.
    [25] B.V.K. Naidu, K.S.V. Krishna Rao, T.M. Aminabhavi, Pervaporation separation of water + 1,4-dioxane and water + tetrahydrofuran mixtures using sodium alginate and its blend membranes with hydroxyethylcellulose—A comparative study, Journal of Membrane Science, 2005 (260): 131–141.
    [26] J.H. Chen, Q.L. Liu, X.H. Zhang, Q.G. Zhang, Pervaporation and characterization of chitosan membranes cross-linked by 3-aminopropyltriethoxysilane, Journal of Membrane Science, 2007 (292): 125–132.
    [27] Y.M. Lee, S.Y. Nam, D.J. Woo, Journal of Membrane Science, Pervaporation of ionically surface crosslinked chitosan composite membranes for water-alcohol mixtures, 1997 (133): 103-110.
    [28] G.Y. Moon, R. Pal, R.Y.M. Huang, Novel two-ply composite membranes of chitosan and sodium alginate for the pervaporation dehydration of isopropanol and ethanol, Journal of Membrane Science, 1999 (156) 17-27.
    [29] J. Shieh, R.Y.M. Huang, Chitosan-N-methylol nylon 6 blend membranes for the pervaporation separation of ethanol–water mixtures, Journal of Membrane Science, 1998 (148) 243-255.
    [30] X. Feng, R.Y.M. Huang, Pervaporation with chitosan membranes. I. Separation of water from ethylene glycol by a chitosan-polysulfone composite membrane, Journal of Membrane Science, 1996 (116): 67-76.
    [31] R.Y.M. Huang, C.K. Yeom, Pervaporation separation of aqueous mixtures using crosslinked poly(vinyl alcohol). 2. Permeation of ethanol-water mixtures, Journal of Membrane Science. 1990 (51): 273.
    [32] C.K. Yeom, K.H. Lee, Vapor permeation of ethanol-water mixtures using sodium alginate membrane with crosslinking gradient structure, Journal of Membrane Science, 1997 (135): 225–235.
    [33] C.K. Yeom, J.G. Jegal, K.H. Lee, Characterization of relaxation phenomena and permeating behavior in sodium alginate membrane during pervaporation separation of ethanol-water mixtures, Journal of Applied Polymer Science, 1996 (62): 1561–1576.
    [34] A. Mochizuki, S. Amiya, Y. Sato, H. Ogawara, S. Yamashita, Pervaporation separation of water/ethanol mixtures through polysaccharide membranes. I. The effects of salts on the permselectivity of cellulose membrane in pervaporation, Journal of Applied Polymer Science. 1989 (37): 3357.
    [35] A. Mochizuki, Y. Sato, H. Ogawara, S. Yamashita, Pervaporation separation of water/ethanol mixtures through polysaccharide membranes. II. The permselectivity of chitosan membrane, Journal of Applied Polymer Science, 1989 (37): 3375–3384.
    [36] T. Uragami, T. Matsuda, H. Okuno, T. Miyata, Structure of chemically modified chitosan membranes and their characteristics of permeation and separation of aqueous ethanol solutions, Journal of Membrane Science, 1994 (88): 243–251.
    [37] B. Smitha, D. Suhanya, S. Sridhar, M. Ramakrishma, Separation of organic–organic mixtures by pervaporation—a review, Journal of Membrane Science, 2004 (241): 1-21.
    [38] S. Mandal. V.G. Pangarkar, Separation of methanol-benzene and methanol-toluene mixtures by pervaporation: effects of thermodynamics and structural phenomenon, Journal of Membrance Science. 2002 (201): 175-190.
    [39] S.Y. Jae, H.J. Kim, W.H. Jo, Y.S. Kang, Analysis of PV for MTBE/methanol mixture through CA and CTA membranes, Polymer, 1998 (39): 1381-1385.
    [40] R.Y.M. Huang, G.Y. Moon, R. Pal, N-acetylated chitosan membranes for the pervaporation separation of alcohol/toluene mixtures, Journal of Membrane Science, 2000 (176): 223-231.
    [41] N. Tanihara, K. Tanaka, H. Kita, K. Okamoto, Pervaporation of organic liquid mixtures through membranes of polyimides containing methyl-substituted phenylenediamine moieties, Journal of Membrane Science, 1994 (95): 161-169.
    [42] Y.C. Wang, C.L. Li, J. Huang, C. Lin, K.R. Lee, D.J. Liaw, J.Y. Lai, Pervaporation of benzene/cyclohexane mixtures through aromatic polyimide membranes, Journal of Membrane Science, 2001 (185): 193-200.
    [43] C.K. Park, M.Y. Lee, B. Oh, M.J. Choi, Separation of benzene/cyclohexane by pervaporation through chelate poly (vinyl alcohol)/poly (allyl amine) blend membrane, Polymer Bulletin, 1994 (33): 591.
    [44] H.R. Acharya, S.A. Stern, Z.Z. Liu, I. Cabasso, Separation of liquid cyclohexane mixtures by perstraction and pervaporation, Journal of Membrane Science, 1988 (37): 205-232.
    [45] F. Sun, R. Eli, Sorption and pervaporation of benzene-cyclohexane mixtures through composite membranes prepared via concentrated emulsion polymerization, Journal of Membrane Science, 1995 (99): 273-284.
    [46] V. Nikolakis, X. George, A. Ayome, D. Mark, T. Michael, V. Dionisios, Growth of faujasite-type zeolite membranes and its application in the separation of saturated/unsaturated hydrocarbon mixtures, Journal of Membrane Science, 2001 (184): 209-219.
    [47] H.L. Chen, L.G. Wu, J. Tan, C.L. Zhu, PVA membrane filledβ-cyclodextrin for separation of isomeric xylenes by pervaporation, Chemical Engineering Journal, 2000 (78) 159-164.
    [48] K. Wegner, J. Dong, Y.S. Lin, Polycrytalline MFI zeolite membranes: xylene pervaporation and its implication on membrane microstructure, Journal of Membrane Science, 1999 (158) 17-27.
    [49] S. Nair, Z. Lai, V. Nikolakis, X. George, B. Griselda, M. Tsapatsis, Separation of close-boiling hydrocarbon mixtures by MFI and FAU membranes made by secondary growth, Microporous and Mesoporous Materials, 2001 (48) 219-228.
    [50] F. Lipnizki, S. Hausmanns, P. Ten, R.W. Field, G. Laufenberg, Organophilic pervaporation: prospects and performance, Chemical Engineering Journal, 1999 (73): 113-129.
    [51]丁宇慧,刘禾,刘洪皋,刘家褀,渗透蒸发分离稀有机物水溶液,化学工业与工程,1998(15):27-35.
    [52]蒋晓钧,施艳荞,陈观文,有机液优先透过渗透汽化膜,功能高分子学报,2000 (13): 233-239.
    [53] A. Verhoef, A. Figoli, B. Leen, B. Bettens, E. Drioli. B.V.D. Bruggen, Performance of a nanofiltration membrane for removal of ethanol from aqueous solutions by pervaporation, Separation and Purification Technology. 2008 (60): 54-63.
    [54] L. Chris, C. Pierre, The use of pervaporation for the removal of organic contaminants from water, Environmental Progress, 1990 (9): 254-261.
    [55] T. Uragami, T. Ohshima, T. Miyata, Removal of Benzene from an Aqueous Solution of Dilute Benzene by Various Cross-Linked Poly(dimethylsiloxane) Membranes during Pervaporation, Macromolecules, 2003 (36): 9430-9436.
    [56] T. Ohshima, Y. Kogami, M. Minakuchi, T. Miyata, T. Uragami, Pervaporation Properties of Crosslinked Poly(dimethylsiloxane) Membranes for the Removal of Hydrocarbons from Water, Journal of Polymer Science: Part B: Polymer Physics, 2006 (44): 2079–2090.
    [57] P. Sampranpiboon, R. Jiraratananon, D. Uttapap, X. Feng, R.Y.M. Huang, Separation of aroma compounds from aqueous solutions by pervaporation using polyoctylmethyl siloxane (POMS) and polydimethyl siloxane (PDMS) membranes, Journal of Membrane Science, 2000 (174): 55–65.
    [58] L. Li, Zeyi Xiao, S. Tana, L.Pu, Z.B. Zhang, Composite PDMS membrane with high flux for the separation of organics from water by pervaporation, Journal of Membrane Science, 2004 (243): 177–187.
    [59] F. Xiangli, Y.W. Chen, W.Q. Jin, N.P. Xu, Polydimethylsiloxane (PDMS)-Ceramic Composite Membrane with High Flux for Pervaporation of Ethanol-Water Mixtures, Industrial and Engineering. Chemistry. Research, 2007 (46): 2224-2230.
    [60] P. Wu, R.W. Field, R. England, B.J. Brisdon, A fundamental study of organofunctionalised PDMS membranes for the pervaporative recovery of phenolic compounds from aqueous streams, Journal of Membrane Science, 2001 (190): 147–157.
    [61] M. Bennett, B.J. Brisdon, R. England, R.W. Field, Performance of PDMS and organofunctionalised PDMS membranes for the pervaporative recovery of organics from aqueous streams, Journal of Membrane Science, 1997 (137): 63-88.
    [62] X.K. Zhang, Y. Poojari, L.E. Drechsler, C.M. Kuo, J.R. Fried, S.J. Clarson, Pervaporation of Organic Liquids from Binary Aqueous Mixtures using Poly(trifluoropropylmethylsiloxane) and Poly(dimethylsiloxane) Dense Membranes, Journal of Inorganic and Organometallic Polymers, 2008 (18): 246–252.
    [63] M. Osorio-Galindo, A. Iborra-Clar, I. Alcaina-Mirand, A. Ribes-Greusi, Characterization ofpoly(dimethylsiloxane)-poly(methyl hydrogen siloxane) composite membranes for organic water pervaporation separation, Journal of Applied Polymer Science, 2001 (81): 546–556.
    [64] I.F. J. Vankelecom, J.D. Kinderen, B.M. Dewitte, J.B. Uytterhoeven, Incorporation of Hydrophobic Porous Fillers in PDMS Membranes for Use in Pervaporation, Journal of Physical. Chemistry B, 1997 (101): 5182-5185.
    [65] I.F.J. Vankelecom, D. DeprC, S.D. Beukelaer, J.B. Uytterhoeven, Influence of Zeolites in PDMS Membranes Pervaporation of WaterAlcohol Mixtures, Journal of Physical. Chemistry B, 1995 (99): 13193-13197;
    [66] C. Dotremont, I.F.J. Vankelecom, M. Morobe, J.B. Uytterhoeven, C. Vandecasteele, Zeolite-Filled PDMS Membranes. 2. Pervaporation of Halogenated Hydrocarbons, Journal of Physical. Chemistry B, 1997 (101): 2160-2163.
    [67] Ivo F. J. Vankelecom, S.D. Beukelaer, J.B. Uytterhoeven, Sorption and Pervaporation of Aroma Compounds Using Zeolite-Filled PDMS Membranes, Journal of Physical, Chemistry B, 1997 (101): 5186-5190.
    [68] B. Moermans, W.D. Beuckelaer, I.F.J. Vankelecom, R. Ravishankar, J.A. Martens, P.A. Jacobs, Incorporation of nano-sized zeolites in membranes, Chemical. Communications, 2000, 2467–2468.
    [69] B. Adnadjevid, J. Jovanovid, S. Gajinov, Effect of different physicochemical properties of hydrophobic zeolites on the pervaporation properties of PDMS-membranes, Journal of Membrane Science, 1997 (136): 173-179.
    [70] L.M. Vane, V.V. Namboodiri, T.C. Bowen, Hydrophobic zeolite–silicone rubber mixed matrix membranes for ethanol–water separation: Effect of zeolite and silicone component selection on pervaporation performance, Journal of Membrane Science, 2008 (308): 230–241.
    [71] R. De Jaeger, M. Gleria, Poly(organophosphazene) and related compound synthesis, properties and applications, Progress in Ploymer Science, 1998 (23): 179-276.
    [72] A.G. Scopelianos, H.R. Allcock, Polymerization of hexachlorocyclotriphosphazene in the presence of carbon disulfide, Macromolecules, 1987 (20): 432-433.
    [73] H.R. Allcock, R.L. Kugel, K.J. Valan, Phosphonitrilic Compounds. VI. High Molecular Weight Poly(alkoxy- and aryloxyphosphazenes), Inorganic Chemistry, 1966 (5): 1709-1715.
    [74] H.R. Allcock, Rational Design and Synthesis of New Polymeric Material, Science, 1992 (255): 1106-1112.
    [75] A.N. Mujumdar, S.G. Young, R.L. Merker, J.H. Magill, A study of solution polymerization of polyphosphazenes, Macromolecules, 1990 (23): 14-21.
    [76] M.S. Sennett, G.L. Hagnauer, R.E. Singler,Kinetics and mechanism of the boron trichloride-catalyzed thermal ring-opening polymerization of hexachlorocyclotriphosphazene in 1,2,4-trichlorobenzene solution, Macromolecules, 1986 (19): 959-964.
    [77] C.H. Honeyman, I. Manners, C.T. Morrissey, H.R. Allcock, Ambient Temperature Synthesis of Poly(dichlorophosphazene) with Molecular Weight Control, Journal of the American Chemical Society, 1995 (117): 7035.
    [78] H.R. Allcock, C.A. Crane, C.T. Morrissey, I. Manners,“Living”Cationic Polymerization of Phosphoranimines as an Ambient Temperature Route to Polyphosphazenes with Controlled Molecular Weights, Macromolecules, 1996 (29): 7740-7747.
    [79] H.R. Allcock, J.M. Nelson, S.D. Reeves, Ambient-Temperature Direct Synthesis of Poly(organophosphazenes) via the“Living”Cationic Polymerization of Organo-SubstitutedPhosphoranimines, Macomolecules, 1997 (30): 50-56.
    [80] H.R. Allcock, S.D. Reeves, C.R. Denus, C.A. Crane, Influence of Reaction Parameters on the Living Cationic Polymerization of Phosphoranimines to Polyphosphazenes, Macomolecules, 2001 (34): 748-754.
    [81] G.D. Halluin, R.D. Jaeger, J.P. Chambrette, P. Potin, Synthesis of poly(dichlorophosphazenes) from Cl3P:NP(O)Cl2. 1. Kinetics and reaction mechanism, Macromoleculaes, 1992 (25): 1254-1258.
    [82] G.A. Carriedo, F.J.G. Alonso, P. Gomez-Elipe, J.I. Fidalgo, J.L.G. Alvarez, A. Presa-Soto, A simplified and convenient laboratory-scale preparation of 14N or 15N high molecular weight poly(dichlorophosphazene) directly from PCl5, Chemistry: A European Journal. 2003 (9): 3833-3836.
    [83] D. Kumar, A.D. Gupta, Aromatic Cyclolinear Phosphazene Polyimides Based on a Novel Bis-Spiro-Substituted Cyclotriphosphazene Diamine, Macromolecules, 1995 (28): 6323-6329.
    [84] M. Kajiwara, H. Saito, Synthesis of Inorganic-Organic Oligomers Including Cyclotriphosphazenes and the Adhesive Properties of the Products, Journal of Macromolecular Science-Part A, Chemistry. 1981 (16): 873.
    [85] K. Miyata, K. Muraoka, T. Itaya, T. Tanigaki, K. Inoue, Synthesis and thermal properties of polyesters from cyclotriphosphazene, European Polymer Journal, 1996 (32): 1257.
    [86] I. Dez, R. De Jaeger, Organic-inorganic polymers: Synthesis and characterization of cyclophosphazene-substituted polyurethanes, Journal of Inorganic and Organometallic Polymers, 1996 (6): 111.
    [87] I. Dez, R.D. Jaeger, A NEW CYCLOLINEAR PHOSPHAZENE POLYURETHANE: SYNTHESIS FROM A DIISOCYANATE AND A BIS-SPIRO-SUBSTITUTED CYCLOTRIPHOSPHAZENE DIOL, Phosphorus Sulfur Silicon and the Relative Elements. 1997 (130): 1-14.
    [88] I. Dez, Thesis (University of Lille, France, 1997).
    [89] T. Zhang, Q. Cai, D.Z. Wu, R.G. Jin,Phosphazene Cyclomatrix Network Polymers: Some Aspects of the Synthesis, Characterization, and Flame-Retardant Mechanisms of Polymer, Journal of Applied Polymer Science, 2005 (95): 880–889.
    [90] D. Mathew, C.P. Reghunadhan Nair, K.N. Ninan, Phosphazene–triazine cyclomatrix network polymers: some aspects of synthesis, thermaland flame-retardant characteristics, Polymer International, 2000 (49): 48-56.
    [91] N. Kaskhedikar, M. Burjanadze, Y. Karatas, H.D. Wiemh?fer, Polymer electrolytes based on cross-linked cyclotriphosphazenes, Solid State Ionics, 2006 (177): 3129–3134,
    [92] F.F. Stewart, T.A. Luther, M.K. Harrup, R.P. Lash, Reactions and Polymerization of Hexa-[3-tert-butyl-4-hydroxyphenoxy]cyclotriphosphazene: A New Method for the Preparation of Soluble Cyclomatrix Phosphazene Polymers, Journal of Applied Polymer Science, 2001 (80): 242–251.
    [93] T.A. Luther, F.F. Stewart, R.P. Lash, J.E. Wey, M.K. Harrup, Synthesis and Characterization of Poly{hexakis[(methyl)(4-hydroxyphenoxy)]cyclotriphosphazene}, Journal of Applied Polymer Science, 2001 (82): 3439–3446.
    [94] K. Inoue, S. Kaneyuki, T. Tanigaki, Polymerization of 2-(4-methacryloyloxyphenoxy) pentachlorocyclotriphosphazene, Journal of Polymer Science, Polymer Chemistry, 1992 (30): 147.
    [95] J.B. Lee, T. Kato, S. Ujiie, K. Iimura, T. Uryu, Thermotropic Polyurethanes Prepared from 2,5-Tolylene Diisocyanates and 1,4-Bis(.omega.-hydroxyalkoxy)benzenes Containing No Mesogenic Unit, Macromolecules, 1995 (28): 2165.
    [96] M. Gleria, R.D. Jaeger, Polyphosphazenes: A Review, Topic of Current Chemistry, 2005 (250): 165-251.
    [97] P.M. Blonsky, D.F. Shriver, Polyphosphazene solid electrolytes, Journal of American Chemical Society, 1984 (106): 6854-6855.
    [98] P.M. Blonsky, D.F. Shriver, P. Austin, H.R. Allcock, Complex formation and ionic conductivity of polyphosphazene solid electrolytes, Solid State Ionics, 1986, (18-19): 258.
    [99] P.M. Blonsky, D.F. Shriver, P. Austin, H.R. Allcock, Polymeric Materials: Science and Engineering. 1985 (53): 118.
    [100] M.M. Lerner, A.L.Tipton, D.F. Shriver, A.A. Dembek, H.R. Allcock, Characterization and conductivities of polyphosphazene-iodine complexes, Chemistry of Materials. 1991 (3): 1117-1120.
    [101] M.M. Lerner, L.J. Lyons, J.S.Tonge, D.F. Shriver, Physical and electrical characterization of poly[bis((methoxyethoxy)ethoxy)phosphazene]-metal polyiodide complexes, Chemistry of Materials. 1989 (1): 601-606.
    [102] H.R. Allcock, S.E. Kuharcik, C.S. Reed, M.E. Napierala, Synthesis of Polyphosphazenes with Ethyleneoxy-Containing Side Groups: New Solid Electrolyte Materials, Macromolecules, 1996 (29): 3384-3389
    [103] H.R. Allcock, S.J.M. O’Connor, D.L. Olmeijer, M.E. Napierala, C.G. Cameron, Polyphosphazenes Bearing Branched and Linear Oligoethyleneoxy Side Groups as Solid Solvents for Ionic Conduction, Macromolecules, 1996 (29): 7544-7552.
    [104] H.R. Allcock, M.A. Hofmann, C.M. Ambler, E. Chalkova, S.N. Lvov, X.Y. Zhou, J.A. Weston, Phenyl phosphonic acid functionalized poly[aryloxyphosphazenes] as proton-conducting membranes for direct methanol fuel cells, Journal of Membrane Science, 2002 (201): 47-54.
    [105] X.Y. Zhou, J. Weston, E. Chalkova, M.A. Hofmann, C.M. Ambler, H.R. Allcock, S.N. Lvov,High temperature transport properties of polyphosphazene membranes for direct methanol fuel cells, Electrochimica Acta 2003 (48): 2173-2180.
    [106] R. Wycisk, P.N. Pintauro, Sulfonated polyphosphazene ion-exchange membranes, Journal of Membrane Science, 1996 (119): 155-160.
    [107] H.R. Allcock, M.A. Hofmann, C.M. Ambler, R.V. Morford, Phenylphosphonic Acid Functionalized Poly[aryloxyphosphazenes], Macromolecules, 2002 (35): 3484-3489.
    [108] H.R. Allcock, M.A. Hofmann, C.M. Ambler, E. Chalkova, S.N. Lvov, X.Y. Zhou, J.A. Weston, Phenyl phosphonic acid functionalized poly[aryloxyphosphazenes] as proton-conducting membranes for direct methanol fuel cells, Journal of Membrane Science, 2002 (201): 47-54.
    [109] M.A. Hofmann, C.M. Ambler, A.E. Maher, E. Chalkova, X.Y. Zhou, S.N. Lvov, H.R. Allcock, Synthesis of Polyphosphazenes with Sulfonimide Side Groups, Macromolecules, 2002 (35): 6490-6493.
    [110] H.R. Allcock, A.A. Dembek, C. Kim, R.L.S. Devine, Y.Q. Shi, W.H. Steier, C.W. Spangler, Second-order nonlinear optical poly(organophosphazenes) synthesis and nonlinear optical characterization, Macromolecules, 1991 (24): 1000-1010.
    [111] H.R. Allcock, C.G. Cameron, T.W. Skloss, S. Taylor-Meyers, J.F. Haw, Molecular Motion of Phosphazene-Bound Nonlinear Optical Chromophores,Macromolecules, 1996 (29): 233-238.
    [112] H.R. Allcock, R. Ravikiran, M.A. Olshavsky, Synthesis and Characterization of Hindered Polyphosphazenes via Functionalized Intermediates Exploratory Models for Electro-optical Materials, Macromolecules, 1998 (31): 5206-5214.
    [113] Z. Li, C. Huang, J.L. Hua, J.G. Qin, Z. Yang, C. Ye, A New Postfunctional Approach To Prepare Second-Order Nonlinear Optical Polyphophazenes Containing Sulfonyl-Based Chromophore, Macromolecules, 2004 (37): 371-376.
    [114] Z. Li, W. Gong, J.G. Qin, Z. Yang, C. Ye, Second-order nonlinear optical property of polyphosphazenes containing charge-transporting agents and indole-based chromophore, Polymer, 2005 (46): 4971-4978.
    [115] H.R. Allcock, S. Kwon, S.R. Pucher, Polymer Preprints, 1990 (31): 180.
    [116] H.R. Allcock, Polyphosphazenes: New Polymers with Inorganic Backbone Atoms, Science, 1976 (193): 1214.
    [117] H.R. Allcock, T.J. Fuller, D.P. Mack, Synthesis of Poly[(amino acid alkyl ester)phosphazenes], Macromolecules, 1977 (10): 824-830.
    [118] H.R. Allcock, W.A. Robert, P.B. John, Phosphorus-nitrogen compounds. 30. Synthesis of platinum derivatives of polymeric and cyclic phosphazenes, Journal of American Chemical Society, 1977 (99): 3984-3987.
    [119] H.R. Allcock, S.R. Pucher, A.G. Scopelianos, Synthesis of poly(orgnaophosphazenes) with glycolic acid ester and lactic acid ester side groups: prototypes for new bioerodible polymers, Macromolecules, 1994 (27): 1-4.
    [120] H.R. Allcock, The synthesis of functional polyphosphazenes and their surfaces, Applied Organometallic Chemistry, 1998 (12): 659-666.
    [121] H.R. Allcock, W.C. Hymer, P.E. Austin, Diazo coupling of catecholamines with poly(organophosphazenes), Macromolecules, 1983 (16): 1401-1406.
    [122] H.R.Allcock, C.J. Nelson, W.D. Coggio, I Manners, W.J. Koros, D.R.B. Walker, L.A. Pessan, Gas permeation and selectivity of poly(organophosphazene) membranes, Macromolecules, 1993 (26): 1493-1502.
    [123] K. Nagai, B.D. Freemana, A. Cannon, H.R. Allcock , Gas permeability of poly(bis-trifluoroethoxyphosphazene) and blends with adamantane amino/trifluoroethoxy (50/50) polyphosphazene, Journal of Membrane Science. 2000 (172): 167–176.
    [124] C.J. Orme, J.R. Klaehn, F.F. Stewart, Gas permeability and ideal selectivity of poly [bis-(phenoxy)-phosphazene], poly [bis-(4-tert-butylphenoxy)phosphazene], and poly [bis-(3,5-di-tert-butylphenoxy)1.2(chloro)0.8phosphazene], Journal of Membrane Science, 2004 (238): 47-55.
    [125] C.J. Orme, M.K. Harrup, T.A. Luther, R.P. Lash, K.S. Houston, D.H. Weinkauf, F.F. Stewart, Characterization of gas transport in selected rubbery amorphous polyphosphazene membranes, Journal of Membrane Science, 2001 (186): 249-256.
    [126] C.J. Orme, F.F. Stewart, Mixed gas hydrogen sulfide permeability and separation using supported polyphosphazene membranes, Journal of Membrane Science, 2005 (253): 243-249.
    [127] L. Zhu, Y.Y. Xu, W.Z. Yuan, J.Y. Xi, X.B. Huang, X.Z. Tang, S.X. Zheng, One-pot synthesis of poly(cyclotriphosphazene-co-4,4’-sulfonyldiphenol) nanotubes via an in situ template approach, Advanced Materials, 2006 (18): 2997-3000.
    [128] L. Zhu, Y. Zhu, P. Yang, Y.W. Huang, X.B. Huang, X.Z. Tang, Preparation and characterization of novel poly[cyclotriphosphazene-co-(4,4-sulfonyldiphenol)] nanofiber matrices,Polymer International, 2006 (55): 1357-1360.
    [129] Y. Zhu, X.B. Huang, W.Z. Li, J.W. Fu, X.Z. Tang, Preparation of novel hybrid inorganic–organic microspheres with active hydroxyl groups using ultrasonic irradiation via one-step precipitation polymerization, Materials Letters, 2008 (62): 1389-1392.
    [130] J.W. Fu, Y.W. Huang, Y. Pan, Y. Zhu, X.B. Huang, X.Z. Tang, An attempt to prepare carbon nanotubes by carbonizing polyphosphazene nanotubes with high carbon content, Materials Letters, 2008 (62): 4130-4133.
    [131] J.W. Fu, X.B. Huang, Y. Zhu, Y.W. Huang, X.Z. Tang, Facile fabrication of novel cyclomatrix-type polyphosphazene nanotubes with active hydroxyl groups via an in situ template approach, Applied Surface Science, 2008 In press.
    [132] J.W. Fu, X.B. Huang, Y. Zhu, L. Zhu, X.Z. Facile Synthesis and Characterization of Novel Capsicum-Like Polyphosphazene Nanotubes via an in situ Template Route, Macromolecular Chemistry and Physics, 2008 (209): 1845-1850.
    [133] J.W. Fu, X.B. Huang, L. Zhu, X.Z. Tang, One-pot synthesis of porous cyclomatrix-type polyphosphazene nanotubes with closed ends via an in situ template approach, Scripta Materialia, 2008 (58): 1047-1049.
    [134] J.W. Fu, X.B. Huang, Y. Zhu, Y.W. Huang, L. Zhu, X.Z. Tang, Rapid fabrication and formation mechanism of cyclotriphosphazene-containing polymer nanofibers, European Polymer Journal, 2008 (44): 3466-3472.
    [135] M.L. Stone, G.L. Gresham, L.A. Polson, Characterization of two polyphosphazene materials as membranes in membrane induction mass spectrometry, Analytica Chimica ACTA, 2000 (407): 311-317.
    [136] C.J. Orme, F.F. Stewart, M.K. Harrup, J.D. McCoy, D.H. Weinkauf, Pervaporation of water-dye, alcohol-dye, and water-alcohol mixtures using a polyphosphazene membrane, Journal of Membrane Science, 2002 (197): 89-101.
    [137] F.F. Stewart, M.K. Harrup, T. A. Luther, C.J. Orme, R.P. Lash, Formation of pervaporation membranes from polyphosphazenes having hydrophilic and hydrophobic pendant groups Synthesis and characterization, Journal of Applied Polymer Science, 2001 (80): 422–431.
    [138] Y. M. Sun, C. L. Lin, Y. K. Chen and C. H. Wu, Sorption and diffusion of organic vapors in poly [bis(trifluoroethoxy)phosphazene] and poly [bis(phenoxy)phosphazene] membranes, Journal of Membrane Science, 1997 (134): 117–126.
    [139] Y. M. Sun, C. H. Wu, A. Lin, Permeation and sorption properties of benzene, cyclohexane, and n-hexane vapors in poly[bis(2,2,2-trifluoroethoxy)phosphazene] (PTFEP) membranes, Polymer 2006 (47): 602–610
    [140] F. Suzuki, K. Onozato, H. Yaegashi, Pervaporation of organic solvents by poly[bis(2,2,2-trifluoroethoxy) phosphazene] membrane, Journal of Applied Polymer Science, 1987 (34): 2197–2204.
    [141] Y. M. Sun, Y.K. Chen, C. H. Wu, A. Lin, Pervaporation for the mixture of benzene and cyclohexane through ppop membranes, AIChE, 1999 (45): 523-534.
    [142] D. Roizard, R. Clement, P. Lochon, J. Kerres, G. Eigenberger, Synthesis, characterization and transport properties of a new siloxane-phosphazene copolymer. Extraction of n-butanol from water by pervaporation, Journal of Membrane Science, 1996 (113): 151-160.
    [1] G.A. Carriedo, G. Alonso, F.J. Gomez-Elipe, P.J.I. Fidalgo, G. lvarez, J.L.A. Presa-Soto, A simplified and convenient laboratory-scale preparation of 14N or 15N high molecular weight poly(dichlorophosphazene) directly from PCl5, Chemistry: A European Journal. 2003 (9): 3833-3836.
    [2]宋青,袁伟忠,李剑,唐小真,一步法合成线性聚二氯磷腈中间体及表征,上海交通大学学报,2005 (39):1824-1832.
    [3] L. Li, Z.Y. Xiao, S.J. Tan, L. Pa, Z. B. Zhang, Composite PDMS membrane with high flux for the separation of organics from water by pervaporation, Journal of Membrane Science. 2004 (243): 177–187
    [4] F.J. Xiangli, Y.W. Chen, W.Q. Jin, N.P. Xu, Polydimethylsiloxane (PDMS)-Ceramic Composite Membrane with High Flux for Pervaporation of Ethanol-Water Mixtures, Industrial and Engineering Chemical Research. 2007 (46): 2224-2230.
    [5] T. Ikegami, H. Yanagishita, D. Kitamoto, H. Negishi, K. Haraya, T. Sano, Concentration of fermented ethanol by pervaporation using silicalite membranes coated with silicone rubber, Desalination, 2002 (149): 49-54.
    [6] H.R Allcock, Crosslinking Reactions for the Conversion of Polyphosphazenes into Useful Materials, Chemistry of Materials, 1994 (6): 1476-1491.
    [7] C.J. Orme, F.F. Stewart, M.K. Harrup, J.D. McCoy, D.H. Weinkauf, Pervaporation of water-dye, alcohol-dye, and water-alcohol mixtures using a polyphosphazene membrane, Journal of Membrane Science. 2002 (197): 89.
    [8] H.R Allcock, A.M.A. Ambrosio, Synthesis and characterization of pH-sensitive poly(organophosphazene) hydrogels, Biomaterials, 1996 (17): 2295-2302.
    [9] R.P. Wycisk, W. Wang, P.N. Pintauro, O.S. Connor, Polyphosphazene membranes. I. Solid-state photocrosslinking of poly[(4-ethylphenoxy)-(phenoxy)phosphazene], Journal of Applied Polymer Science 1996 (59): 1607-1617.
    [10] H.R Allcock, M. Gebura, S. Kwon, T.X. Neenan, Amphiphilic polyphosphazenes as membrane materials: influence of side group on radiation cross-linking, Biomaterials. 1988 (9): 500-508.
    [11] F.F. Stewart, R.E. Singler, M.K. Harrup, E.S. Peterson, R.P. Lash, Electron beam crosslinking of fluoroalkoxy, methoxyethoxyethoxy, and substituted phenoxy polyphosphazenes: Physical and chemical characterization and comparison to a thermally induced free radical process and ionic complexation, Journal of Applied Polymer Science 2000 (76): 55-66..
    [12] H.R Allcock, K.B. Visscher, Y.B. Kim, New Polyphosphazenes with Unsaturated Side Groups: Use as Reaction Intermediates, Cross-Linkable Polymers, and Components of Interpenetrating Polymer Networks, Macromolecules 1996 (29): 2721-2728.
    [13] J.R. Lopez-Dehesa, C. Gonzalez-Marcos, J.A. Gonzalez-Velasco, Pervaporation of 50 wt % ethanol-water mixtures with poly(1-trimethylsilyl-1-propyne) membranes at high temperatures, Journal of Applied Polymer Science. 2007 (103): 2843-2848.
    [14] M. Bennett, B.J. Brisdon, R. England, R.W. Field, Performance of PDMS and organofunctionalised PDMS membranes for the pervaporative recovery of organics from aqueous streams, Journal of Membrane Science. 1997 (137): 63.
    [15] Q.T. Nguyen, Z. Bendjama, R. Clement, Z.h. Ping, Poly(dimethylsiloxane) crosslinked indifferent conditions. Part II. Pervaporation of water-ethyl acetate mixtures, Physical Chemistry and Chemical Physics. 2000 (2): 395.
    [16] S.D. Xiao, R.Y.M. Huang, X.S. Feng, Preparation and properties of trimesoyl chloride crosslinked poly(vinyl alcohol) membranes for pervaporation dehydration of isopropanol, Journal of Membrane Science. 2006 (286): 245-254.
    [17] T. Ohshima, T. Miyata, T. Uragami, H. Berghmens, Cross-linked smart poly(dimethylsiloxane) membranes for removal of volatile organic compounds in water, Journal of Molecular Structure. 2005 (739): 47.
    [18] K. Kumeta, I. Nagashima, S. Matsui, K. Mizoguch, Crosslinking reaction of poly(vinyl alcohol) with poly(acrylic acid) (PAA) by heat treatment: Effect of neutralization of PAA, Journal of Applied Polymer Science. 2003 (90): 2420.
    [19] S.C. Huang, I.J. Ball, R.B. Kaner, Polyaniline Membranes for Pervaporation of Carboxylic Acids and Water, Macromolecules. 1998 (31): 5456-5464.
    [20] N.S. Allen, M. Edgea, D. Mourelatoua, A. Wilkinson, C.M. Liauw, M.D. Parellada, J.A. Barrio, V.R.S. Quiteria, Influence of ozone on styrene–ethylene–butylene–styrene (SEBS) copolymer, Polymer Degradation and Stability. 2003 (79): 297.
    [21] N.S. Allen, A. Barcelona, M. Edgea, A. Wilkinson, C.G. Merchan, V.R.S. Quiteria, Thermal and photooxidation of high styrene–butadiene copolymer (SBC), Polymer Degradation and Stability. 2004 (86): 11.
    [22] N.S. Allen, M. Edgea, M. Rodriguez, C.M. Liauw, E. Fontan, Aspects of the thermal oxidation, yellowing and stabilisation of ethylene vinyl acetate copolymer, Polymer Degradation and Stability. 2001 (71): 1.
    [23] M. Gleria, F. Minto, F. Doriguzzi, R. Bertani, G. Facchin, E. Tondello, Functionalization of poly(organophosphazenes). thermally-induced grafting reactions of maleates onto poly[bis(4-ethylphenoxy)phosphazene], Macromolecules. 1997 (30): 4310.
    [24] D.D. Jiang, G.F. Levchik, S.V. Levchik, C.A. Wilekie, Thermal decomposition of cross-linked polybutadiene and its copolymers, Polymer Degradation and Stability. 1999 (65): 387.
    [25] K. Dusek, M. Duskova-Smrckova, Network structure formation during crosslinking of organic coating systems, Progress in Polymer Science. 2000 (25): 1215.
    [26] N. Ongun, M. Karakisla, L. Aksu, Sacak, M. 19Graft Polymerization of Methacrylamide onto Poly(ethylene terephthalate) Fibers with Benzoyl Peroxide as Initiator and their Characterization, Macromolecular Chemistry and Physics. 2004 (205): 1995.
    [27] M. Sacak, M. Celik, Hydrogen peroxide initiated grafting of acrylamide onto poly(ethylene terephthalate) fibers in benzyl alcohol, Journal of Applied Polymer Science. 1996 (59): 1191.
    [28] P. Chowdhury, M. Banerjee, Graft polymerization of methyl methacrylate onto polyvinyl alcohol using Ce4+ initiator, Journal of Applied Polymer Science. 1998 (70): 523.
    [29] D.D. Jiang, C.A. Wilekie, Chemical initiation of graft copolymerization of methyl methacrylate onto styrene-butadiene block copolymer, Journal of Polymer Science A: Polymer Chemistry. 1997 (35): 965
    [1] D.J. O’Brien, L.H. Roth, A.J. McAloon, Ethanol production by continuous fermentation–pervaporation: a preliminary economic analysis, Journal of Membrane Science. 2000 (166): 105-111.
    [2] M.D. Luccio, C.P. Borges, T.L.M. Alves, Economic analysis of ethanol and fructose production by selective fermentation coupled to pervaporation: effect of membrane costs on process economics, Desalination. 2002 (147): 161-166.
    [3] B.M Ennis, C.T Marshall, I.S Maddox, A.H.J Paterson, Continuous product recovery by in-situ gas stripping/condensation during solvent production from whey permeate usingClostridiumacetobutylicum, Biotechnology Letter. 1986 (8):725–730.
    [4] I.S Maddox, N, Qureshi, K Roberts-Thomson, Production of Acetone-Butanol-Ethanol from Concentrated Substrates Using Clostridium acetobutylicum in an Integrated Fermentation-Product Removal Process, Process of Biochemistry. 1995 (30): 209–215.
    [5] L.M. Vane, A review of pervaporation for product recovery from biomass fermentation processes, Journal of Chemical Technology and Biotechnology. 2005 (80): 603-629.
    [6] S. Takegemi, H. Yamada, S. Tusujii, Pervaporation of ethanol/water mixtures using novel hydrophobic membranes containing polydimethylsiloxane, Journal of Membrane Science. 1992 (75): 93-105.
    [7] L. Li, Z.Y. Xiao, S.J. Tan, L. Pa, Z. B. Zhang, Composite PDMS membrane with high flux for the separation of organics from water by pervaporation, Journal of Membrane Science. 2004 (243): 177–187
    [8] F.J. Xiangli, Y.W. Chen, W.Q. Jin, N.P. Xu, Polydimethylsiloxane (PDMS)-Ceramic Composite Membrane with High Flux for Pervaporation of Ethanol-Water Mixtures, Industrial and Engineering Chemical Research. 2007 (46): 2224-2230.
    [9] J.M. Molina, G. Vatai, E. Bekassy-Molnar, Comparison of pervaporation of different alcohols from water on CMG-OM-010 and 1060-SULZER membranes, Desalination. 2002 (149): 89–94.
    [10] K. Ishihara, Y. Nagase, K. Matsui, Pervaporation of alcohol/water mixtures through poly[1-(trimethylsilyl)-1-propyne] membrane, Die Makromolekulare Chemie, Rapid Communications. 1986 (7): 43-46.
    [11] T. Masuda, M. Takatsuka, B. Z. Tang, T. Higashimura, Pervaporation of organic liquid-water mixtures through substituted polyacetylene membranes, Journal of Membrane Science. 1990 (49): 69-83.
    [12] Z. Changliu, L. Moe, X. We, Separation of ethanol—water mixtures by pervaporation—membrane separation process, Desalination. 1987 (62): 299.
    [13] X.K. Zhang, Y. Poojari, L.E. Drechsler, C.M. Kuo, J.R. Fried, S.J. Clarson, Pervaporation of Organic Liquids from Binary Aqueous Mixtures using Poly(trifluoropropylmethylsiloxane) and Poly(dimethylsiloxane) Dense Membranes, Journal of Inorganic and Organometallic Polymer, 2008 (18): 246-252.
    [14] M. Osorio-Galindo, A. Iborra-Clar, I. Alcaina-Mirand, A. Ribes-Greusi, Characterization of poly(dimethylsiloxane)-poly(methyl hydrogen siloxane) composite membranes for organic water pervaporation separation, Journal of Applied Polymer Science, 2001 (81): 546–556.
    [15] P. Wu, R.W. Field, R. England, B.J. Brisdon, A fundamental study of organofunctionalised PDMS membranes for the pervaporative recovery of phenolic compounds from aqueous streams,Journal of Membrane Science, 2001 (190): 147–157.
    [16] M. Bennett, B.J. Brisdon, R. England, R.W. Field, Performance of PDMS and organofunctionalised PDMS membranes for the pervaporative recovery of organics from aqueous streams, Journal of Membrane Science, 1997 (137): 63-88.
    [17] T. Uragami, T. Ohshima, T. Miyata, Removal of Benzene from an Aqueous Solution of Dilute Benzene by Various Cross-Linked Poly(dimethylsiloxane) Membranes during Pervaporation, Macromolecules, 2003 (36): 9430-9436.
    [18] T. Miyata, Y. Nakanishi, T. Uragami, Ethanol permselectivity of poly(dimethylsiloxane) membranes controlled by simple surface modifications using polymer additives, Macromolecules. 1997 (30): 5563–5565
    [19] J. Miyata, O.H. Higuchi, T. Uragami, Preparation of polydimethylsiloxane/polystyrene interpenetrating polymer network membranes and permeation of aqueous ethanol solutions through the membranes by pervaporation, Journal of Applied Polymer Science. 1996 (61): 1315–1324.
    [20] F.F. Stewart, M.K. Harrup, T.A. Luther, C.J. Orme, R.P. Lash, ormation of pervaporation membranes from polyphosphazenes having hydrophilic and hydrophobic pendant groups: Synthesis and characterization, Journal of Applied Polymer Science. 2001 (80): 422–431.
    [21] D. Roizard, R. Clement, P. Lochon, J. Kerres, G. Eigenberger, Synthesis, characterization and transport properties of a new siloxane-phosphazene copolymer. Extraction of n-butanol from water by pervaporation, Journal of Membrane Science. 1996 (113): 151-160.
    [22] C.J. Orme, F.F. Stewart, M.K. Harrup, J.D. McCoy, D.H. Weinkauf, Pervaporation of water–dye, alcohol–dye, and water–alcohol mixtures using a polyphosphazene membrane, Journal of Membrane Science, 197 (2002) 89-101.
    [23] F. Suzuki, K. Onozato, H. Yaegashi, Pervaporation of organic solvents by poly[bis(2,2,2-trifluoroethoxy) phosphazene] membrane, Journal of Applied Polymer Science, 1987 (34): 2197–2204.
    [24] Y.M. Sun, C. L. Lin, Y. K. Chen and C. H. Wu, Sorption and diffusion of organic vapors in poly [bis(trifluoroethoxy)phosphazene] and poly [bis(phenoxy)phosphazene] membranes, Journal of Membrane Science, 1997 (134): 117–126.
    [25] Y.M. Sun, C. H. Wu, A. Lin, Permeation and sorption properties of benzene, cyclohexane, and n-hexane vapors in poly[bis(2,2,2-trifluoroethoxy)phosphazene] (PTFEP) membranes, Polymer 47 (2006) 602–610.
    [26] H. D. Kamaruddin, W. J. Koros, Some observations about the application of Fick's first law for membrane separation of multicomponent mixtures. J. Membr. Sci. 135 (1997) 147-159.
    [27] D.W. Van krevelen, In Properties of Polymers: Their Estimation and Correlation with Chemical Structure; Elsevier Science B.V, Amsterdam. PartⅦ, 1997, 761-845.
    [28] P. Shao, R.Y.M. Huang, Polymeric membrane pervaporation, Journal of Membrane Science, 2007 (287): 162-179.
    [1]姜忠义,李多,贾琦鹏,填充型渗透蒸发膜的研究进展,膜科学与技术,2002 (3):43-47.
    [2] P. Shao, R.Y.M. Huang, Polymeric membrane pervaporation, Journal of Membrane Science, 2007 (287) 162-179.
    [3] B. Smitha, D. Suhanya, S. Sridhar, M. Ramakrishna, Separation of organic–organic mixtures by pervaporation—a review, Journal of Membrane Science 2004 (241) 1-21.
    [4] I.F. J. Vankelecom, J.D. Kinderen, B.M. Dewitte, J.B. Uytterhoeven, Incorporation of Hydrophobic Porous Fillers in PDMS Membranes for Use in Pervaporation, Journal of Physical. Chemistry B, 1997 (101): 5182-5185.
    [5] I.F.J. Vankelecom, D. DeprC, S.D. Beukelaer, J.B. Uytterhoeven, Influence of Zeolites in PDMS Membranes Pervaporation of WaterAlcohol Mixtures, Journal of Physical. Chemistry B, 1995 (99): 13193-13197.
    [6] B. Moermans, W.D. Beuckelaer, I.F.J. Vankelecom, R. Ravishankar, J.A. Martens, P.A. Jacobs, Incorporation of nano-sized zeolites in membranes, Chemical. Communications, 2000, 2467–2468.
    [7] B. Adnadjevid, J. Jovanovid, S. Gajinov, Effect of different physicochemical properties of hydrophobic zeolites on the pervaporation properties of PDMS-membranes, Journal of Membrane Science, 1997 (136): 173-179.
    [8] L.M. Vane, V.V. Namboodiri, T.C. Bowen, Hydrophobic zeolite–silicone rubber mixed matrix membranes for ethanol–water separation: Effect of zeolite and silicone component selection on pervaporation performance, Journal of Membrane Science, 2008 (308): 230–241.
    [9] C. Dotremont, I.F.J. Vankelecom, M. Morobe, J.B. Uytterhoeven, C. Vandecasteele, Zeolite-Filled PDMS Membranes. 2. Pervaporation of Halogenated Hydrocarbons, Journal of Physical. Chemistry B, 1997 (101): 2160-2163.
    [10] Ivo F. J. Vankelecom, S.D. Beukelaer, J.B. Uytterhoeven, Sorption and Pervaporation of Aroma Compounds Using Zeolite-Filled PDMS Membranes, Journal of Physical. Chemistry B, 1997 (101): 5186-5190.
    [11] F.B. Peng, C.L. Hu, Z.Y. Jiang, Novel ploy(vinyl alcohol)-carbon nanotube hybrid membranes for pervaporation separation of benzene/cyclohexane mixtures, Journal of Membrane Science. 2007 (297): 236-242.
    [12] F.B. Peng, F.S, Pan, H.L. Sun, L.Y. Lu, Z.Y. Jiang, Novel nanocomposite pervaporation membranes composed of poly(vinyl alcohol) and chitosan-wrapped carbon nanotube, Journal of Membrane Science. 2007 (300): 13-19.
    [13] L. Zhu, Y.Y. Xu, W.Z. Yuan, J.Y. Xi, X.B. Huang, X.Z. Tang, S.X. Zheng, One-Pot Synthesis of Poly(cyclotriphosphazene-co-4,4’-sulfonyldiphenol) Nanotubes via an In Situ Template Approach, Advanced Materials, 2006 (18): 2997-3000.
    [14] L. Zhu, Y. Zhu, P. Yang, Y.W. Huang, X.B. Huang, X.Z. Tang, Fully crosslinked poly [cyclotriphosphazene-co-(4,4 '-sulfonyldiphenol)] microspheres via precipitation polymerization and their superior thermal properties, Macromolecular Reaction Engineering, 2007 (1): 45-52.
    [15] Y. Zhu, X.B. Huang, W.Z. Li, J.W. Fu, X.Z. Tang, Preparation of novel hybrid inorganic–organic microspheres with active hydroxyl groups using ultrasonic irradiation viaone-step precipitation polymerization, Materials Letters 2008 (62): 1389-1392.
    [16] J.W. Fu, X.B. Huang, Y. Zhu, Y.W. Huang, X.Z. Tang, Facile fabrication of novel cyclomatrix-type polyphosphazene nanotubes with active hydroxyl groups via an in situ template approach, Applied Surface Science, 2008 (255): 5088-5091.
    [17] J.W. Fu, X.B. Huang, Y.W. Huang, L. Zhu, Y. Zhu, X.Z. Tang, Facile Preparation of Branched Phosphazene-Containing Nanotubes via an in situ Template Approach, Macromolecular Materials and Engineering, 2008 (293): 173-177.
    [18] J.W. Fu, X.B. Huang, Y. Zhu, L. Zhu, X.Z. Tang, Facile Synthesis and Characterization of Novel Capsicum-Like Polyphosphazene Nanotubes via an in situ Template Route, Macromolecular Chemistry and Physics, 2008 (209): 1845-1850.
    [19] J.W. Fu, X.B. Huang, L. Zhu, X.Z. Tang, One-pot synthesis of porous cyclomatrix-type polyphosphazene nanotubes with closed ends via an in situ template approach, Scripta Materialia, 2008 (58): 1047-1049.
    [20] L. Zhu, W.Z. Yuan, P. Yang, X.Z. Tang, X.B. Huang, Preparation and characterization of novel poly[cyclotriphosphazene-co-(4,4-sulfonyldiphenol)] nanofiber matrices, Polymer International, 2006 (55): 1357-1360.
    [21] J.W. Fu, X.B. Huang, Y. Zhu, Y.W. Huang, L. Zhu, X.Z. Tang, Rapid fabrication and formation mechanism of cyclotriphosphazene-containing polymer nanofibers, European Polymer Journal, European Polymer Journal, 2008 (44): 3466-3472.
    [22] D.W. Van krevelen, In Properties of Polymers: Their Estimation and Correlation with Chemical Structure; Elsevier Science B.V, Amsterdam. PartⅦ, 1997, 761-845.