碳纳米管多维多尺度杂化结构的可控制备和形成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(CNTs)由于其独特的准一维结构和优越的物理化学特性,在很多方面都有着巨大的潜在应用。在碳纳米管的诸多应用中,将其用于加强复合材料的性能或制备多功能复合材料方面具有很大的优势,并且可以很快的实现工业化应用。但在制备碳纳米管基聚合物复合材料时,由于碳纳米管纳米级的表面特征和易于弯曲缠绕的特点,使得碳管在聚合物中不易分散,这大大影响了复合材料的性能。为了解决碳管的分散性问题同时又不破坏其本身结构,我们设计了一种基于碳纳米管的多维多尺度复合杂化结构,这种复合杂化结构不但可以在微米尺度自组装碳管,解决其分散性的问题,而且还具有很多其它的优点。多维多尺度杂化结构中碳管的形貌和结构对其改性的复合材料性能有着重要影响,因此,我们对反应条件和载体性质共同塑造杂化结构的机理进行了研究,实现了多维多尺度杂化结构中碳管形貌和组织模式的可控制备。此外,我们还将几种特殊结构杂化粒子用于复合材料中,研究了杂化粒子的引入对复合材料性能的影响以及相应的结构-性能关系。本论文的主要工作如下:
     (1)对制备杂化结构过程中涉及到的几种碳氢化合物的化学气相沉积过程进行了实验研究。分别研究了反应条件对碳氢化合物热裂解以及催化剂与载体的相互作用对碳氢化合物催化裂解过程的影响。结果表明:H2对不同碳氢化合物热裂解有着不同的作用,而且几种碳氢化合物的成碳机理也不尽相同,但其成碳过程中都会有C6H6产生。
     (2)对基于A1203微球颗粒的CNTs/Al2O3多尺度杂化粒子的可控制备和形成机理进行了研究。制备了三种不同结构的杂化粒子,研究了反应条件和微球颗粒的表面性质对杂化粒子形貌和结构的影响以及各种结构的形成机理。制备了堆栈结构的CNTs/Al2O3纳微米杂化粒子,准原位的研究碳管的生长过程以及堆栈结构中界面的形成机理。将制备的CNTs/Al2O3杂化粒子用于改性水性聚氨酯/丙烯酸酯涂料(PUs)涂料,可使PUs涂料的导电、导热和硬度等多方面的性能得到加强,这种CNTs/Al2O3-PUs复合涂料在航空航天等领域有着重要的应用前景。
     (3)对基于板状SiC颗粒的CNTs/SiC多尺度杂化粒子的可控制备和形成机理进行了研究。制备了两种不同结构的杂化粒子,研究了反应条件和板状颗粒的表面性质对杂化粒子形貌和结构的影响以及各种结构的形成机理。将制备的杂化粒子用于改性聚偏氟乙烯(PVDF)聚合物复合材料,研究CNTs/SiC-PVDF复合材料的电学和热学性能,结果表明:杂化粒子的引入可有效的提高复合材料的电学和热学性能,并使其性能具有各向异性的特点,通过改变杂化粒子的含量可以调节此各向异性的差异。对复合材料结构性能关系进行研究表明:在微米范围自组织的CNTs/SiC杂化粒子,可以通过特殊制备的过程,使其在复合材料里宏观取向排列,在水平和垂直方向上形成了不同类型的导通网络,这种导通网络的差异决定了不同方向上性能的差异。
     (4)对基于石墨烯(GNs)的CNTs/GNs多维杂化结构的可控制备和形成机理进行了研究。研究了石墨烯的比表面积和反应条件对此多维杂化结构的影响,得到了制备CNTs/GNs多维杂化结构的最佳实验条件。这种CNTs/GNs多维杂化结构可以有效的防止GNs在复合材料里的聚集和堆栈,使得其在改性锂离子电池负极材料和多功能复合材料领域有着潜在的应用前景。
Since their discovery by detailed observations, carbon nanotubes (CNTs) attracted worldwide attention due to unique structure, excellent physical and chemical properties, and many potential applications. In particular, using CNT as an advanced filler material in composites is one of the most realizable industry applications in the short term. The composites prepared by adding CNTs usually exhibit reinforced and multifunctional properties. However, it is difficult to well disperse and distribute CNTs in polymer matrix when fabricating CNTs-based composites, because CNTs are usually entangled and aggregated due to high aspect ratio and nanoscale interface. To well disperse CNTs in composites and retain intrinsic properties of CNTs, we designed some multi-scale and multi-dimension hybrid structures based on self-assembly CNTs, which can significantly improve CNT dispersion in composites and had many other advantages. The morphology and organization mode of CNTs in hybrid structures greatly influenced the properties of composites. Therefore, we studied the effect of experimental parameters and substrate nature on hybrid structures, and the formation mechanism of multi-form hybrid structures was also investigated in detail.In addition, some hybrid structures with special CNT organization were applied to enforce the properties of composites and the corresponding relationship of structure and property was discussed. The main contents of this paper are presented as follows:
     (a) The chemical vapor deposition (CVD) process of several hydrocarbons involved was investigated experimentally. The effect of experimental parameters on thermal decomposition and the function of catalyst and substrate in catalytic decomposition of hydrocarbons were studied, respectively. The results indicated that the effect of H2 and the formation mechanism of carbon for these hydrocarbons were different. However, the bezene ring (C6H6) seemed to be a necessary intermediate for carbon formation from hydrocarbons.
     (b) The controllable preparation and formation mechanism of multi-scale hybrid structures based on CNTs and Al2O3 spherical particles were studied. The influence of reaction conditions and surface properties of Al2O3 spherical particles on hybrid structures were investigated, respectively. Three special forms of CNTs/Al2O3 hybrid structures were prepared, and the formation mechanism for different hybrid structures was discussed. Stacked CNTs/Al2O3 hybrid structures were prepared to monitor the CNT growth quasi-in situ, and the formation process of the boundary between stacks was discussed. Hybrid structures were used in waterborne acrylic polyurethane (PU) paint to improve its properties (hardness, thermal and electrical conductivity, etc.), and this CNTs/Al2O3-PUS composite shows great potential in the field of aerospace.
     (c) The controllable preparation and formation mechanism of multi-scale hybrid structures based on CNTs and SiC plate-like particles were studied. The co-effect of experimental conditions and SiC surface nature on the CNTs/SiC hybrid structures was researched in detail. Two special forms of CNTs/SiC hybrid structures were prepared and the related formation mechanism was discussed. The prepared CNTs/SiC was used in Polyvinylidene Fluoride (PVDF) polymer matrix to fabricate CNTs/SiC-PVDF composites. The results showed that the thermal and electrical conductivities of composites were greatly reinforced and the conductivity was asymmetric in different directions. The direction-related difference can be tuned by the content of hybrid structures in composites. The corresponding the structure-property relationship was analyzed. Perfectly self-assembly CNT array on micro-particles can be arranged directionally in composites by facile fabrication process. As a result, different types of conductive networks were formed in parallel and perpendicular directions, which led to the direction-related property difference.
     (d) The controllable preparation and formation mechanism of multi-dimension hybrid structures based on CNTs and graphene nanosheets (GNs) were studied. The effects of surface area of GNs and experimental conditions on hybrid structures were investigated, and the optimal experimental parameters were acquired. This multi-dimension hybrid structure can effectively prevent GNs aggregating and restacking in composites and can be used in the fields of lithium-ion battery and multifunctional composites.
引文
[1]http://www.zyvex.com/nanotech/feynman.html
    [2]Jin Z. Zhang, Zhong-lin Wang, Jun Liu, et al. Self-Assembled Nanostructures[M]. New York:Kluwer Academic Publishers,2004:1-2
    [3]Kroto H. W., Heath J. R., O'Brien S. C., et al. C60:Buckminsterfullerene[J]. Nature,1985, 318 (6042):162-163
    [4]Iijima S. HELICAL MICROTUBULES OF GRAPHITIC CARBON[J]. Nature,1991, 354 (6348):56-58
    [5]Iijima S., Ichihashi T. SINGLE SHELL CARBON NANOTUBES OF 1 NM DIAMETER[J]. Nature,1993,363 (6430):603-605
    [6]Bethune D. S., Kiang C. H., Devries M. S., et al. COBALT CATALYZED GROWTH OF CARBON NANOTUBES WITH SINGLE ATOMIC LAYER WALLS[J]. Nature,1993,363 (6430):605-607
    [7]Novoselov K. S., Geim A. K., Morozov S. V., et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306 (5696):666-669
    [8]Zhang Y., Tan Y.W., Stormer H. L., et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature,2005,438 (7065):201-204
    [9]Novoselov K. S., Geim A. K., Morozov S. V., et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature,2005,438 (7065):197-200
    [10]Novoselov K. S., Jiang Z., Zhang Y., et al. Room-Temperature Quantum Hall Effect in Graphene[J]. Science,2007,315 (5817):1379
    [11]Geim A. K., Novoselov K. S. The rise of graphene[J]. Nature Mater.,2007,6(3): 183-191
    [12]O'Connell M. J. Carbon Nanotubes:Properties and Applications[M]. Boca Raton:Taylor & Francis Group, LLC,2006:6-7
    [13]Yakobson B. I. Mechanical relaxation and "intramolecular plasticity" in carbon nanotubes[J]. Appl. Phys. Lett.,1998,72 (8):918-920
    [14]Falvo M. R., Clary G. J., Taylor R. M., et al. Bending and buckling of carbon nanotubes under large strain[J]. Nature,1997,389 (6651):582-584
    [15]Treacy M.M.J., Ebbesen T.W., Gilson J.M. Exceptionally high Young's modulus observed for individual carbon nanotubes[J]. Nature,1996,381 (6584):678-680
    [16]Jacobsen R.L., Tritt T.M., Guth J.R., et al. Mechanical properties of vapor-grown carbon fiber[J]. Carbon,1995,33 (9):1217-1221
    [17]Krishnan A., Dujardin E., Ebbesen T.W., et al. Young's modulus of single-walled nanotubes[J], Phys. Rev. B,1998,58 (20):14013-14019
    [18]Li F., Cheng H. M.,Bai S., et al. Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes[J]. Appl. Phys. Lett.,2000,20 (20): 3161-3163
    [19]Wong E.W., Sheehan P.E., Lieber C.M. Nanobeam mechanics:elasticity, strength and toughness of nanorods and nanotubes[J]. Science,1997,277 (5334):1971-9175
    [20]Yu M.F., Lourie O., Dyer M.J., et al. Strength and breaking mechanism of multi-walled carbon nanotubes under tensile load[J]. Science,2000,287 (5453):637-640
    [21]Yu M.F., Files B.S., Arepalli S., et al. Tensile loading of ropes of single-wall carbon nanotubes and their mechanical properties[J]. Phys. Rev. Lett.,2000,84 (24):5552-5555
    [22]Gogotsi Y. Carbon nanomaterials[M]. Boca Raton:Taylor and Francis Group, LLC,2006: 52-53
    [23]Popov V.N. Carbon nanotubes:properties and application[J]. Materials Science and Engineering:R:Reports,2004,43 (3):61-102
    [24]Berber S., Kwon Y.K., Tomanek D. Unusually high thermal conductivity of carbon nanotubes[J]. Phys. Rev. Lett.,2000,84 (20):4613-4616.
    [25]Che J.W., Cagin T., Goddard W.A. Thermal conductivity of carbon nanotubes[J]. Nanotechnology,2000,11 (2):65-69
    [26]Kim P., Shi L., Majumdar A., et al. Thermal Transport Measurements of Individual Multiwalled Nanotubes[J]. Physical Review Letters,2001,87 (21):215502
    [27]Pop E., Mann D., Wang Q., et al. Thermal Conductance of an Individual Single Wall Carbon Nanotube above Room Temperature [J]. Nano Letters,2005,6 (1):96-100
    [28]Yi W., Lu L., Zhang D.L., et al. Linear specific heat of carbon nanotubes[J]. Physical Review B,1999,59 (14):R9015-R9018
    [29]Tans S.J., Devoret M.H., Dai H., et al. Individual single wall carbon nanotubes as quantum wires[J]. Nature,1997,386 (6624):474-477
    [30]White C.T., Todorov T. N. Carbon nanotubes as long ballistic conductors[J]. Nature, 1998,393 (6682):240-242
    [31]Frank S., Poncharal P., Wang Z. L., et al. Carbon Nanotube Quantum Resistors[J]. Science,1998,280 (5370):1744-1746
    [32]Bachtold A., Strunk C., Salvetat J., et al. Aharonov-Bohm oscillations in carbon nanotubes[J]. Nature,1999,397 (6721):673-675
    [33]Thess A., Lee R., Nikolaev P., et al. Crystalline ropes of metallic carbon nanotubes[J]. Science,1996,273 (5274):483-487
    [34]Hong S., Myung S. Nanotube Electronics:A flexible approach to mobility[J]. Nat. Nano., 2007,2 (4):207-208
    [35]Kataura H., Kumazawa Y., Maniwa Y, et al. Optical properties of single-wall carbon nanotubes[J]. Synth. Metal.,1999,103 (1-3):2555-2558
    [36]Kazaoui S., Minami N., Jacquemin R., et al. Amphoteric doping of single-wall carbon-nanotube thin films as probed by optical absorption spectroscopy[J]. Phys. Rev. B, 1999,60 (19):13339-13342
    [37]Hwang J., Gommans H.H., Ugawa A., et al. Polarized spectroscopy of aligned single-wall carbon nanotubes[J]. Phys. Rev. B,2000,62 (20):R13310-R13313
    [38]Liu X., Pichler T., Knupfer M., et al. Detailed analysis of the mean diameter and diameter distribution of single-wall carbon nanotuibes from their optical response[J]. Phys. Rev. B,2002,66 (4):45411(1-8)
    [39]The Web site of Hyperion Catalysis International Inc. is available at www.fibrils.com.
    [40]Baughman R.H., Zakhidov A.A., de Heer W.A. Carbon Nanotubes-the Route Toward Applications[J]. Science,2002,297 (5582):787-792
    [41]Biercuk M.J., Llaguno M.C., Radosavljevic M., et al. Carbon nanotube composites for thermal management[J]. Applied Physics Letters,2002,80 (15):2767-2769
    [42]Glatkowski Paul, Mack Patrick, Conroy Jeffrey L., et al. Electromagnetic shielding composite comprising nanotubes[P]. US:6265466,24 July 2001.
    [43]Qian D., Dickey E.C., Andrews R., et al. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites[J]. Applied Physics Letters,2000,76(20): 2868-2870
    [44]Endo M., Strano M.S., Ajayan P.M. Potential applications of carbon nanotubes[J]. Carbon Nanotubes[M]. Berlin:Springer Verlag Berlin,2008:Vol. 111, pp 13-61
    [45]Niu C.M., Sichel E.K., Hoch R., et al. High power electrochemical capacitors based on carbon nanotube electrodes[J]. Applied Physics Letters,1997,70 (11):1480-1482
    [46]Baughman R.H., Cui C., Zakhidov A.A., et al. Carbon Nanotube Actuators[J]. Science, 1999,284 (5418):1340-1344
    [47]Zhou Z., Zhao J.J., Gao X.P., et al. Do Composite Single-Walled Nanotubes Have Enhanced Capability for Lithium Storage? [J]. Chemistry of Materials,2005,17 (5): 992-1000
    [48]Eom J.Y., Kwon H.S., Liu J., et al. Lithium insertion into purified and etched multi-walled carbon nanotubes synthesized on supported catalysts by thermal CVD[J]. Carbon,2004,42 (12-13):2589-2596
    [49]Peled E., Menachem C., Bar-Tow D., et al. Improved graphite anode for lithium-ion batteries. Chemically bonded solid electrolyte interface and nanochannel formation[J]. Journal of the Electrochemical Society,1996,143 (1):L4-L7
    [50]Che G, Lakshmi B.B., Fisher E.R., et al. Carbon nanotubule membranes for electrochemical energy storage and production[J]. Nature,1998,393 (6683):346-349
    [51]Li N.C., Mitchell D.T., Lee K.P., et al. A Nanostructured Honeycomb Carbon Anode[J]. Journal of the Electrochemical Society,2003,150 (7):A979-A984
    [52]Cheng F., Tao Z.L., Liang J., et al. Template-Directed Materials for Rechargeable Lithium-Ion Batteries[J]. Chemistry of Materials,2008,20 (3):667-681
    [53]Habazaki H., Kiriu M., Konno H. High rate capability of carbon nanofilaments with platelet structure as anode materials for lithium ion batteries[J]. Electrochemistry Communications,2006,8 (8):1275-1279
    [54]Akihiro M., Katsuhisa T., Hiroyuki F., et al. Charge-discharge characteristics of the mesocarbon microbeads heat-treated at different temperatures [J]. Journal of the Electrochemical Society,1995,142 (4):1041-1046
    [55]Landi B.J., Castro S.L., Ruf H.J., et al. CdSe quantum dot single wall carbon nanotube complexes for polymeric solar cells[J]. Solar Energy Materials and Solar Cells,2005,87 (14): 733-746
    [56]de Heer W.A., Chatelain A., Ugarte D. A Carbon Nanotube Field-Emission Electron Source[J]. Science,1995,270 (5239):1179-1180
    [57]Rinzler A.G. et al. Unraveling Nanotubes:Field Emission from an Atomic Wire[J]. Science,1995,269 (5230):1550-1553
    [58]Lee N.S., et al. Field emission display with carbon nanotubes cathode:prepared by a screen-printing process[J]. Diamond Relat. Materials,2001,10 (11):265
    [59]Bonard J.M., et al. Scanning tunneling microscopy study of polymerized carbon nanobells:Electronic effect and evidence of nitrogen incorporation[J]. Phys. Rev. Lett.,1998, 81 (8):1441-1444
    [60]Saito Y., Uemura S. Field emission from carbon nanotubes and its application to electron sources[J]. Carbon,2000,38 (2):169-182
    [61]Kwo J.L., et al. Fabrication Technologies of Nanofluidic Chips and Their Applications[J]. J. Vac. Sci. Technol. B,2001,19 (6):23-25
    [62]Zhu W., Bower C., Zhou O., et al. Large current density from carbon nanotube field emitters[J]. Appl. Phys. Lett.,1999,75 (6):873-875
    [63]Kong J., et al. Nanotube Molecular Wires as Chemical Sensors[J]. Science,2000,287 (5453):622-625
    [64]Dai H., Hafner J.H., Rinzler A.G., et al. Nanotubes as nanoprobes in scanning probe microscopy [J]. Nature,1996,384(6605):147-150
    [65]Wong S.S., Joselevich E., Woolley A.T., et al. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology[J]. Nature,1998,394 (6688):52-55
    [66]Kim P., Lieber C.M. Nanotube Nanotweezers[J]. Science,1999,286 (5447):2148-2150
    [67]Iijima S., Ichihashi T., Ando Y. Pentagons heptagons and negative curvature in graphite microtubule growth [J]. Nature,1992,356 (6372):776-778
    [68]Iijima S., Ajayan P.M., Ichihashi T. Growth model for carbon nanotubes[J]. Phys. Rev. Lett.,1992,69 (21):3100-3103
    [69]Ebbesen T.W., Ajayan P.M. Large-scale synthesis of carbon nanotubes[J]. Nature,1992, 358 (6383):220-222
    [70]Journet C., Maser W.K., Bernier P., et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique[J]. Nature,1997,388 (6644):756-758
    [71]Liu J., Rinzler A.G, Dai H., et al. Fullerene pipes[J]. Science,1998,280 (5367): 1253-1256
    [72]Choy K.L. Chemical vapour deposition of coatings[J]. Progress in Materials Science, 2003,48 (2):57-170
    [73]Colomer J.F., Stephan C., Lefrant S., et al. Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method[J]. Chemical Physics Letters,2000,317 (1-2):83-89
    [74]曹清.催化裂解甲烷制备碳纳米管研究[D].西安:电子科技大学硕士学位论文,2004
    [75]Hernadi K., Fonseca A., Nagy J.B. Production of nanotubes by the catalytic decomposition of different carbon-containing compound[J]. Applied catalysis A:Genaral, 2000,199 (2):245-255
    [76]郑瑞廷,程国安,赵勇,等.乙炔催化裂解制备碳纳米带及其结构表征[J].新型炭材料,2005,20(4):355-359
    [77]Zheng B., Lu C.G., Gu G., et al. Efficient CVD Growth of Single-Walled Carbon Nanotubes on Surfaces Using Carbon Monoxide Precursor[J]. Nano Letters,2002,2 (8): 895-898
    [78]李颖,李轩科,刘朗.不同原料气催化热解法制备碳纳米管的研究[J].新型炭材料,2004,19(4):298-302
    [79]彭峰,姜靖雯,冯景贤,等.LaAl1/3Fe2/3O3催化剂的制备及用于VOCs裂解制备碳纳米管[J].石油化工,2003,32(12):1068-1072
    [80]刘治,宋怀河,陈晓红.钴/正己烷原位合成碳纳米管[J].北京化工大学学报,2003,30(4):74-77
    [81]张艾飞,刘吉平,刘华.乙醇催化裂解法大量制备离散碳纳米管[J].功能材料,2005,22(9):658-660
    [82]俞国军,王森,巩金龙,等.乙醇作为碳源的碳纳米管阵列氧化铝模板法制备[J].科学通报,2005,50(1):20-23
    [83]Li Q.W, Yan H., Zhang J., et al. Effect of hydrocarbons precursors on the formation of carbon nanotubes in chemical vapor deposition[J]. Carbon,2004,42 (4):829-835
    [84]Lee D.C., Mikulec F.V., Korgel B.A. Carbon Nanotube Synthesis in Supercritical Toluene[J]. J.A.C.S.,2004,126 (15):4951-4957
    [85]Vohs J.K., Brege J.J., Raymond J.E., et al. Low-Temperature Growth of Carbon Nanotubes from the Catalytic Decomposition of Carbon Tetrachloride[J]. J.A.C.S.,2004,126 (32):9936-9937
    [86]Shen J.M, Huang Z., Li J.Y, et al. Synthesis of multi-walled carbon nanotubes at low temperature through anhydrous AlC13-assisted ethylene tetrachloride dechlorination:A new dechlorination pathway[J]. Carbon,2005,43 (13):2823-2826
    [87]吕德义,郑遗凡,徐丽萍,等.催化剂活性组分及温度对化学气相沉积法制备碳纳米管的影响[J].化学通报,2003,7:479-483
    [88]李建中,吕功煊,李克.甲烷在Ni/SiO2催化剂上裂解制碳纳米管和氢气[J].石油与天然气化工,2004,33(4):222-227
    [89]居艳,李凤仪,魏任重.镍基催化剂上催化裂解甲烷生长碳纳米管[J].合肥工业大学学报,2004,27(12):1528-1531
    [90]朱燕娟,陈玉莲,钟韶,等.催化剂的合成方法及配比对CVD法制备碳纳米管的影响[J].2004,27(3):238-241
    [91]Lucie Jodin, Anne-Claire Dupuis, Emmanuelle Rouviere, Peter Reiss. Influence of the Catalyst Type on the Growth of Carbon Nanotubes via Methane Chemical Vapor Deposition[J]. J. Phys. Chem. B,2006,110(14):7328-7333.
    [92]Zhang R.Y., Amlani I., Baker J., et al. Chemical Vapor Deposition of Single-Walled Carbon Nanotubes Using Ultrathin Ni/Al Film as Catalyst[J]. Nano Letter,2003,3 (6): 731-735
    [93]Huang L.M., White B., Sfeir M.Y., et al. Cobalt Ultrathin Film Catalyzed Ethanol Chemical Vapor Deposition of Single-Walled Carbon Nanotubes [J]. J. Phys. Chem. B,2006, 110(23):11103-11109
    [94]张先锋,曹安源,孙群慧,等.定向碳纳米管阵列在石英玻璃基底上的模板化生长研究[J].无机材料学报,2003,18(3):613-618
    [95]Iwasaki T., Motoi T, Den T. Multiwalled carbon nanotubes growth in anodic alumina nanoholes[J]. Appl. Phys. Lett.,1999,75 (14):2044-2046
    [96]Mizuno K., Hata K., Saito T., et al. Selective Matching of Catalyst Element and Carbon Source in Single-Walled Carbon Nanotube Synthesis on Silicon Substrates[J]. J. Phys. Chem. B,2005,109 (7):2632-2637
    [97]姚运金,张素平,颜涌捷.温度对CVD法制备多壁碳纳米管的影响[J].功能材料,2005,36(6):900-903
    [98]张兵,郭燕川,陈丽娟,等.载气对注入CVD法制备碳纳米管和碳纳米纤维的影响[J].化学学报,2004,62(22):2253-2258
    [99]姚运金,张素平,颜涌捷.气体流量对化学气相沉积法制备碳纳米管的影响[J].精细化工,2006,23(6):536-540
    [100]计道君,李轩科,汪厚植,等.反应时间对CVD法制备多壁碳纳米管产率和形貌的影响[J].炭素技术,2002,5:10-13
    [101]Matthew R.M, Placidus B., Amit G., et al. Parametric study of synthesis conditions in plasma-enhanced CVD of high-quality single-walled carbon nanotubes[J]. Carbon,2006,44 (1):10-18
    [102]Vander Wal R.L., Ticich T.M., Curtis V.E. Substrate-support interactions in metal-catalyzed carbon nanofiber growth[J]. Carbon,2001,39 (15):2277-2289
    [103]Carins J.A., Baglin J.E.E., Clark G.J., et al. Strong metal-support interactions for Pt and Rh on Al2O3 and TiO2:Application of nuclear backscattering spectrometry[J]. J Catalysis, 1983,83(2):301-314.
    [104]Heiz U., Vanolli F., Sanchez A., et al. Size-Dependent Molecular Dissociation on Mass-Selected, Supported Metal Clusters[J]. J Am. Chem. Soc.,1998,120(37):9668-9671.
    [105]Praliaud H., Martin G.A. Evidence of a strong metal-support interaction and of Ni-Si alloy formation in silica-supported nickel catalysts[J]. J. Catalysis,1981,72(2):394-396.
    [106]Jiang A.Q., Awasthi N., Kolmogorov A.N., et al. Theoretical study of the thermal behavior of free and alumina-supported Fe-C nanoparticles[J]. PHYSICAL REVIEW B,2007, 75 (20):205426(12)
    [107]Jung Y.J., Wei B.Q., Vajtai R., et al. Mechanism of Selective Growth of Carbon Nanotubes on SiO2/Si Patterns[J]. Nano Lett.,2003,3 (4):561-564
    [108]Seidel R., Duesberg G.S., Unger E., et al. Chemical vapor deposition growth of single-walled carbon nanotubes at 600℃ and a simple growth model [J]. Journal of Physical Chemistry B,2004,108 (6):1888-1893
    [109]Wagner R.S., Ellis W.C. Vapor-liquid-solid mechanism of single crystal growth (new method growth catalysis from impurity whisker epitaxial+large crystals SI E)[J]. Applied Physics Letters,1964,4 (5):89-90
    [110]Wagner R.S., Doherty C.J., Ellis W.C. Preparation+morphology of crystals of silicon+ germanium grown by vapor-liquid-solid mechanism[J]. Jom-Journal of Metals,1964,16: 761.
    [111]Saito Y., Okuda M., Tomita M., et al. Extrusion of single-wall carbon nanotubes via formation of small particles condensed near an arc evaporation source [J]. Chemical Physics Letters,1995,236 (4-5):419-426.
    [112]Huang S., Woodson M., Smalley R., et al. Growth mechanism of oriented long single walled carbon nanotubes using "fast-heating" chemical vapor deposition process[J]. Nano Letters,2004,4 (6):1025-1028
    [113]O'Connell M. J. Carbon Nanotubes:Properties and Applications[M]. Boca Raton: Taylor & Francis Group, LLC,2006:31-33
    [114]Georgakilas V., Gournis D., Tzitzios V., et al. Decorating carbon nanotubes with metal or semiconductor nanoparticles[J]. J. Mater. Chem.,2007,17 (26):2679-2694.
    [115]Banerjee S., Wong S.S. Synthesis and characterization of carbon nanotube nanocrystal heterostructures[J]. Nano Letters,2002,2 (3):195-200
    [116]Kim B., Sigmund W.M. Functionalized multiwall carbon nanotube/gold nanoparticle composites[J]. Langmuir,2004,20 (19):8239-8242
    [117]Tzitzios V., Georgakilas V., Oikonomou E., et al. Synthesis and characterization of carbon nanotube/metal nanoparticle composites well dispersed in organic media[J]. Carbon, 2006,44 (5):848-853
    [118]Li X.L., Liu Y.Q., Fu L., et al. Efficient synthesis of carbon nanotube-nanoparticle hybrids[J]. Adv. Funct. Mater.,2006,16 (18):2431-2437
    [119]Bozlar M., He D.L., Bai J.B., et al. Advanced carbon nanotube microarchitectures for enhanced thermal conduction at ultra-low mass fraction in polymer composites[J]. Adv. Mater.,2010,22 (14):1654-1658
    [120]Thostenson E.T., Li W.Z., Wang D.Z., et al. Carbon nanotube/carbon fiber hybrid multiscale composites [J]. J. Appl. Phys.,2002,91 (9):6034-6037
    [121]Ci L.J., Bai J.B. Novel micro/nanoscale hybrid reinforcement:multiwalled carbon nanotubes on SiC particles[J]. Adv. Mater.,2004,16 (22):2021-2024
    [122]Kuwana K., Saito K. Modeling ferrocene reactions and iron nanoparticle formation: Application to CVD synthesis of carbon nanotubes[J]. Proceedings of the Combustion Institute,2007,31 (2):1857-1864
    [123]He D.L., Bozlar M., Genestoux M., Bai J.B. Diameter- and length-dependent self-organizations of multi-walled carbon nanotubes on spherical alumina microparticles[J]. CARBON,2010,48 (4):1159-1170
    [124]Patole S.P., Kim H., Choi J., et al. Kinetics of catalyst size dependent carbon nanotube growth by growth interruption studies[J]. APPLIED PHYSICS LETTERS,2010,96(6): 094101 (3)
    [125]Zhang H.R., Liang E.J, Ding P., et al. Layered growth of aligned carbon nanotube arrays by pyrolysis[J]. Physica B,2003,337 (1-4):10-16
    [126]Zhu L.B., Hess D.W., Wong C.P. Monitoring Carbon Nanotube Growth by Formation of Nanotube Stacks and Investigation of the Diffusion-Controlled Kinetics[J]. J. Phys. Chem. B,2006,110 (11):5445-5449
    [127]Zhu L.B.,Hess D.W., Y.H. Xiu, et al. Aligned Carbon Nanotube Stacks by Water-Assisted Selective Etching[J]. Nano Lett.,2005,5 (12):2641-2645
    [128]http://en.wikipedia.org/wiki/SiC
    [129]Ci L.J., Zhao Z.G., Bai J.B. Direct growth of carbon nanotubes on the surface of ceramic fibers[J]. Carbon,2005,43(4):883-886.
    [130]Ci L.J., Ryu Z., Phillipp N.YJ.,et al. Carbon nanotubes/SiC whiskers composite prepared by CVD method[J]. Diamond & Related Materials,2007,16 (3):531-536
    [131]Iwanowski R.J., Fronc K., Paszkowicz W., et al. XPS and XRD study of crystalline 3C-SiC grown by sublimation method[J]. Journal of Alloys and Compounds,1999,286 (1-2): 143-147
    [132]Ortiz A.L., Sanchez-Bajo F., Cumbrera F.L., et al. X-ray powder diffraction analysis of a silicon carbide-based ceramic[J]. Materials Letters,2001,49 (2):137-145
    [133]Liu Z.C., Shen W.H., Bu W.B., et al. Low-temperature formation of nanocrystalline b-SiC with high surface area and mesoporosity via reaction of mesoporous carbon and silicon powder[J]. Microporous and Mesoporous Materials,2005,82 (1-2):137-145
    [134]Li Z.J., Gao W.D., Meng A.L., et al. Large-Scale Synthesis and Raman and Photoluminescence Properties of Single Crystalline β-SiC Nanowires Periodically Wrapped by Amorphous SiO2 Nanospheres[J]. J. Phys. Chem. C,2009,113 (1):91-96
    [135]Maher S., Gabriel F., Bilal N., et al. Characterization of a 3C-SiC Single Domain Grown on 6H-SiC (0001) by a Vapor-Liquid-Solid Mechanism[J]. Crystal Growth & Design, 2006,6 (11):2598-2602
    [136]Kusunoki M., Suzuki T., Hirayama T., et al. A formation mechanism of carbon nanotube films on SiC (0001)[J]. Appl. Phys. Lett.,2000,77 (4):531-533
    [137]Jung Y.J., Wei B.Q., Vajtai R., et al. Mechanism of Selective Growth of Carbon Nanotubes on SiO2/Si Patterns[J]. Nano Lett.,2003,3 (4):561-564
    [138]Cao A.Y., Ajayan P.M., Ramanath G., et al. Silicon oxide thickness-dependent growth of carbon nanotubes[J]. Appl. Phys. Lett.,2004,84 (1):109-111
    [139]Kuwana K., Saito K. Modeling ferrocene reactions and iron nanoparticle formation: Application to CVD synthesis of carbon nanotubes [J]. Proceedings of the Combustion Institute,2007,31 (2):1857-1864
    [140]Norinaga K., Deutschmann O. Detailed Kinetic Modeling of Gas-Phase Reactions in the Chemical Vapor Deposition of Carbon from Light Hydrocarbons[J]. Ind. Eng. Chem. Res., 2007,46 (11):3547-3557
    [141]Kim H., Sigmund W. Iron particles in carbon nanotubes[J]. Carbon,2005,43 (8): 1743-1748
    [142]Meyer J.C., Geim A.K., Katsnelson M.I., et al. the structure of suspended graphene sheets[J]. Nature,2007,446:60-63
    [143]Nelson D.R., Piran T., Weinberg S. Statistical Mechanics of Membranes and Surfaces[M]. Singapore:World Scientific,2004
    [144]Han M.Y., Ozyilmaz B., Zhang Y., et al. Energy Band-Gap Engineering of Graphene Nanoribbons[J]. Phys. Rev. Lett.,2007,98(20):206805
    [145]Lee C.G., Wei X.D., Kysar J.W., et al. Measurement of the elastic properties and intrinsic strength on monolayer graphene[J]. Science,2008,321:385-388
    [146]Rao C.N.R., Sood A.K., Subrahmanyam K.S., et al. Graphene:The New Two-Dimensional Nanomaterial[J]. Angew. Chem. Int. Ed.,2009,48:7752-7777
    [147]Park S.J., Ruoff R.S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology,2009,4:217-224
    [148]Li X., Zhang G, Bai X., et al. Highly conducting graphene sheets and Langmuir-Blodgett films[J]. Nature Nanotechnology,2008,3:538-542
    [149]Das B., Prasad K.E., Ramamurty U., et al. Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene[J]. Nanotechnology,2009,20(12):125705
    [150]Yu A.P., Ramesh Palanisamy, Sun X.B., et al. Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet-Carbon Nanotube Filler for Epoxy Composites[J]. Adv. Mater., 2008,20(24):4740-4744
    [151]Wang G, Shen X., Yao J., et al. Graphene nanosheets for enhanced lithium storage in lithium ion batteries[J]. Carbon,2009,47(8):2049-2053
    [152]Guo P., Song H.H., Chen X.H. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries[J]. Electrochemistry Communications,2009,11 (6): 1320-1324
    [153]Pan D.Y., Wang S., Zhao B., et al. Li Storage Properties of Disordered Graphene Nanosheets[J]. Chem. Mater,2009,21:3136-3142
    [154]Shen J.F., Hu Y.Z., Li C., et al. Synthesis of Amphiphilic Graphene Nanoplatelets[J]. Small,2009,5(1):82-85
    [155]Kohlmeyer R.R., Javadi A., Pradhan B., et al. Electrical and Dielectric Properties of Hydroxylated Carbon Nanotube-Elastomer Composites[J]. J. Phys. Chem. C,2009,113(41): 17626-17629
    [156]Hong W.J., Bai H., Xu Y.X., et al. Preparation of Gold Nanoparticle/Graphene Composites with Controlled Weight Contents and Their Application in Biosensors[J]. J. Phys. Chem. C,2010,114(4):1822-1826
    [157]Si Y.C., Samulski E.T. Exfoliated Graphene Separated by Platinum Nanoparticles[J]. Chem. Mater.,2008,20(21):6792-6797
    [158]Cao A., Liu Z., Chu S., et al. A facile one-step method to produce graphene-CdS quantum dots nanocomposite as a promising optoelectronic material[J]. Adv. Mater.,2010,22: 103-106
    [159]Xu C., Wang X. Fabrication of Flexible Metal-Nanoparticle Films Using Graphene Oxide Sheets as Substrates[J]. Small,2009,5(19):2212-2217
    [160]Berger, C., Song Z., Li X., et al. Electronic Confinement and Coherence in Patterned Epitaxial Graphene[J]. Science,2006,312 (5777):1191-1196
    [161]Gilje S., Han S.,Wang M., et al. Synthesis of Water Soluble Graphene[J]. Nano lett., 2007,7(11):3394-3398
    [162]Schniepp H. C., Li J.L., McAllister M.J., et al. Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide[J]. J. Phys. Chem. B.,2006,110(17):8535-8539
    [163]Hummers W., Offeman R. Preparation of graphitic oxide[J]. J. Am. Chem. Soc.,1958, 80 (15):1339-1344
    [164]Tong X., Wang H., Wang G, et al. Controllable synthesis of graphene sheets with different numbers of layers and effect of the number of graphene layers on the specific capacity of anode material in lithium-ion batteries[J]. Journal of Solid State Chemistry,2011, 184 (5):982-989
    [165]Wan L.J., Ren Z.Y., Wang H., et al. Graphene nanosheets based on controlled exfoliation process for enhanced lithium storage in lithium-ion battery [J]. Diamond & Related Materials,2011,20 (5-6):756-761