ST/A1-PILC催化剂的制备、结构表征及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SO_4~(2-)/M_XO_Y超强酸作为一类新型的催化剂,具有酸强度高、催化活性高、易分离、无腐蚀及对环境友好等优势,因而广泛用于酯化、烷基异构化、聚合及酰化等有机反应。但由于SO_4~(2-)/M_XO_Y超强酸存在比表面小、酸量少、成本较高及使用寿命较短等不足之处,因而在一定程度上制约了其推广应用。本论文利用储量丰富、价格低廉的广西宁明膨润土为原料,经提纯钠化后,采用微波辐射法制备出具有高比表面及热稳定性好的铝交联膨润土(Al-PILC),再将活性组分SO_4~(2-)/TiO_2(ST)超强酸负载于其上,制备了负载型超强酸ST/Al-PILC催化剂。采用粉末X射线衍射(XRD)、吡啶吸附红外光谱(Py-IR)、傅立叶变换红外光谱(FT-IR),X-射线光电子能谱(XPS)及N_2等温吸附-脱附等多种现代测试手段,对催化剂的晶体结构及表面性能进行了表征,并以苯甲酸与正戊醇酯化反应为探针反应考察了催化剂的活性及活性稳定性。为进一步提高负载催化剂的活性稳定性,还采用稀土元素镧和铈对ST/Al-PILC催化剂进行了改性,并探讨稀土元素对催化剂的结构及表面性能的影响。根据表征分析及实验结果得出以下结论:
     在微波辐射时间为10min,OH~-/Al~(3+)(摩尔比)为2:1,投料比Al~(3+)/土为5mmol/g的条件下,可制备出性能较好的铝交联膨润土载体。所得交联产物的层面距(d 001)为19.8 (?),比表面积为239 m~2/g,
    
    孔体积为0.34 ml/g。与传统水热法相比,微波辐射法制备的铝交联膨
    润土比表面积较大,孔径分布较为集中,热稳定性较高,经650“C
    焙烧后,层柱结构完好无损。而传统水热法制备的铝交联膨润土比表
    面积较小(仅为198 mZ/g),孔径分布较为弥散,经650“c焙烧后层
    柱结构完全塌陷。
     Hammett指示剂法测定结果表明,负载型超强酸ST/AI一PILC催
    化剂的酸强度可通过控制TIO:的负载量加以调节。TIO:负载量越小,
    ST/AI一PILC催化剂的酸强度越低,当TIO:负载量达到29.5%时,样
    品才具有超强酸性。与ST相比,ST/Al一PILC催化剂酸强度减小,但
    与载体Al一PILC相比,ST/A1一PILC的酸强度大幅度提高。毗陡吸附
    红外光谱分析结果表明,ST/Al一PILC催化剂表面同时具有Lewis酸
    及Br6nsted酸,且表面酸中心数量远远大于载体Al一PILC的酸中心
    数量。低温N:吸附一脱附实验结果显示,载体Al一PILC的引入,有效
    地增大了催化剂的比表面。XRD测试结果表明,ST负载于载体
    Al一PILc后,使TIO:锐钦矿晶相的形成及其向金红石晶相的转变被迟
    滞。FT一11毛光谱分析结果表明,sT/AI一PILc中5042一离子与Tio:形
    成了桥式双配位的酸中心结构。
     通过考察催化剂对苯甲酸与正戊醇醋化反应的催化活性,表明载
    体Al一PILC催化活性很低,ST/AI一PILC催化剂使反应物苯甲酸的转
    化率显著提高,而ST催化剂的活性低于ST/AI一PILC催化剂。对催
    化剂活性稳定性及失活原因的考察结果表明,载体Al一PILC的引入,
    减缓了催化剂的失活速率,使ST/AI一PILC的活性稳定性比ST有所
    提高。ST/AI一PILC催化剂的失活,不是由于活性组分中硫的价态变
    化或催化剂中TIO:晶型的变化,而是有机物覆盖了催化剂的部分活
    
    I陛中心以及催化剂上活性物种硫元素的流失所致。对失活催化剂的再
    生实验结果表明,高温焙烧及补充活性组分法能使失活催化剂的活性
    得到有效的恢复。
     稀土元素斓和钵对ST/AI一PILC催化剂的改性研究表明,斓和饰
    的引入对TIO:锐钦矿晶相形成温度无影响,但斓对TIO:的转晶有迟
    滞作用,而饰对TIO:的转晶有促进作用,稀土斓和饰的引入对
    ST/Al一PILC催化剂的酸强度及酸中心数量有不同的调变作用,斓的
    引入使得ST/AI一PILC的超强酸中心的强度有所增强,酸中心数量增
    加,而饰的引入则导致催化剂的酸强度及酸中心的数量下降。稀土元
    素斓及钵改性对ST/Al一PILC催化剂的活性没有显著的影响,但使催
    化剂的活性稳定性大为提高,稀土斓及钵提高ST/AI一PILC催化剂活
    性稳定性的原因是有效地减少了催化剂表面5042一的流失。
     广西宁明膨润土矿为国内特大型矿床之一,该矿虽然储量丰富,
    但目前只开发了一些初级产品,资源的利用率不高,产品的附加值较
    低,因此探索膨润土新的应用功能,有利于进一步拓宽我区膨润土矿
    产资源的应用领域和促进地方经济的发展。
SO42-/MxOY type superacid, as a new type of catalyst, has some advantages such as its high acid strength and high activities in many organic reactions, it is easy to seperated from the reaction mixture, no corrosive to reactor and friendly to the environment. So it has been extensively used in many organic catalytic reactions of esterification, isomerization of n-alkanes, polymerization, acylation and so on. However, SO42-/MxOY also has some disadvantages such as small in surface area, hard to adjust its acidity and easy to deactivate, which limited its utilization in some extent. In this thesis, a naturally abundant bentonite from Ningmin County, Guangxi Zhuang Autonomous Region was used as raw material to prepare A1-pillared clay by using microwave irradiation method. The A1-pillared clay is of large surface area and good thermal stability. ST/A1-PILC (SO42-/TiO2/Al-pillared clay) solid superacid was prepared by loading active component SO42/TiO2 on Al-pillared clay. The texture structure and surface prope
    rties of ST/A1-PILC were characterized by means of modern physical and chemical techniques such a X-ray powder diffraction (XRD), nitrogen adsorption-desorption isotherms, pyridine-adsorption infra-red spectra (Py-IR), Hammett indicator method, X-ray photoelectron spectroscopy (XPS) and Fourier transformation infra-red spectra (FT-IR) technique. Catalytic activity of the catalyst was evaluated using esterification of pentanol with benzoic acid as probe reaction. In order to enhance catalytic stability of the catalyst, ST/A1-PILC was modified with rare-earth elements (La and Ce), and the effect of rare-earth elements on texture structure and surface properties of ST/A1-PILC catalyst was investigated. Several conclusions can be drawn as follows.
    A1-pillared clay with good properties can be prepared when microwave irradiation time is 10 min, a molar ratio OH7Al3+=2, ratio of Al/clay is 5mmol of aluminum per gram of clay. The basal spacing, specific surface area and pore volume of the Al-pillared clay are 19.8 A, 239 m2/g and 0.34 ml/g respectively. Comparing that obtained from conventional heating method, the Al-pillared clay prepared by
    
    
    
    microwave irradiation method has larger specific surface area, better thermal stability and its pore distribution is quite narrow. The pillared structure is still preserved well after calcination at 650C. While the conventional A1-pillared clay has lower specific surface area (only 198 m2/g) and broadening pore distribution, its pillared structure collapsed after calcination at 650C.
    The testing results of Hammett indicator method show that the acid strength of ST/A1-PILC catalyst can be adjusted by the loading of TiO2. The acid strength decreases with the decrease in the loading of TiO22. When the loading of TiO2 is less than 29.5 wt%, the samples have no superacidity. Py-IR spectra show that ST/A1-PILC catalyst possesses both Lewis and Bronsted acid sites, and the number of acid sites on ST/ Al-PILC is much larger than that on Al-PILC carrier. The adsorption and desorption of N2 experiment indicates that the introduction of Al-PILC carrier into ST can enhance the specific surface area of ST/A1-PILC catalyst effectively. The X-ray patterns indicate that Al-PILC carrier can inhibit the formation of anatase TiO2 and the transformation of anatase TiO2 into rutile TiO2. FT-IR spectra show that a bridged bidentate complex acid site was formed.
    The ability of various catalysts to promoted benzoic acid esterification shows that the Al-PILC carrier exhibits very low catalytic activity, and the conversion of benzoic acid increases significantly over the ST/A1-PILC catalyst, the catalytic activity of ST/A1-PILC is higher than that of ST. By studying the stability and deactivation of catalyst, it turns out that the introduction of Al-PILC carrier into ST can reduce the rate of catalyst deactivation, acid sites partly blockage by organics and the loss of sulfur are the main contributors for deactivation, but not the change valence state of sulfur and transition of TiO2 crystal form. The
引文
[01] 姚道坤,史泰端,中国膨润土矿床及其开发应用,北京:地质出版社,1994,7
    [02] R. A. Schoonheydt, T. Pinnavaia, G. Lagaly, N. Gangas, Pillared Clays and Pillared Layered Solids, Pure Appl. Chem., 1999, 71(12): 2367-2371
    [03] 王忠杰,蔡哗,陈银飞,葛忠华,交联粘土的研究与发展,化工生产与技术,1997,16(4):23-28
    [04] T. J. Pinnavaia, S. D. Landau, M. S. Tsou, et al. Layercross linking in pillared clays. J. Amer. Sot., 1985, 107: 7222~7224
    [05] F. Figueras, Z. Klapyta, P. Massiani, et al. Use of competitive exchange for inter TRAlation of montmorillonite with hydroy aluminum species, Clays Clay Miner., 1990, 38: 257~264
    [06] R. A. Schoonheydt, H. Leeman, A. Scorpion, et al. The Alpil iadng of clays: part Ⅱ. Pillaring with Al_(1304)(OH)_(24)(H_2O)_(137)~+, Clay Miner., 1994, 42: 518~607
    [07] P. H. Hsu, Reaction of OH Al polymer swith smectites and vermiculites, Clays Clay Miner., 1992, 40: 300~305
    [08] 曹明礼,余永富,聚合羟基Al-柱撑蒙脱土的制备与机理研究,硅酸盐通报,2002,4:23~27
    [09] 郝玉芝,张盈珍,陶龙骧,等,新型层柱分子筛的骨架振动红外光谱研究,催化学报,1990,11(5):394~402
    [10] S. Moreno, R. Sun Kou, G. Poncelet, Influence of preparation variable sonthe structural, testural and catalytic properties of Alpillaredsmec tites, J. Phys. Chem. B., 1997, 101: 1569~1575
    [11] S. Narayanan, K. Deshpande, Alumina pillared montmorillonite: Chracterization and catalysis of tobluenebenzylation and anilineethylation, Appl. Catal. A., 2000, 193(1~2): 17~27
    [12] S. Moreno, R. Sun Kou, R. Molina, G. Poncelet, Al-, Al, Zr-, and Zr pillared mintmor ilinoites and saponites: preparation, character ization and catalytic activity in heptane hydroconversion, J. Catal., 1999, 182: 174~185
    [13] M. Sychev, V. H. J. Sande Beer, A. Kodentsov, et al. Chromia and chromium sulfide pillared clays: Preparation, characterization and catalyticactivity forthiophenehy and catalytic activity for thiophenehy frode sulfurization, J. Catal., 1997, 168: 245~254
    [14] J. Bovey, F. Kooli, W. Jones, Preparation and characteriztion of Ti pillared acid activated clay catalysts, Clay minerals, 1996, 31: 501~506
    [15] B. M. Choudry, V. L. Valli, K. Prasad, A. Durga, Design and synthesis of new pillared catalystsfor highly selective organictrans formations [A], Graziani M, Rao CNR.
    
    Advances in catalyst designs [C]. Singapore: World Scientific, 1991
    [16] H. L. D. Castillo, P. Grange, Preparation and catalytic activity of titanium pillared montrnorillonite, Appl. Catal. A, 1993, 103: 23~34
    [17] H. J. Chae, I. S. Nam, S. W. Ham, S. B. Hong, PhysicochemiTRAl characteristics of pillared interlayered clays, Catal. Today, 2001, 68: 31~40
    [18] 谢鲜梅,姚以朝,成钢,等,铝镁柱联粘土的制备及表征,分子催化,1994,8(1):63~69
    [19] Mauruzio Lenarda, Renzo Ganzerla, Loretta Storaro, et al. Bifunctonal catalysts from pillared clays: vapourphase conversion of propenetoacrtone catalyzed by iron and rutheniumcon taining aluminum pillared bentonites, Joural of Molecular Catalysis, 1994, 92: 201~215
    [20] 黄世明,肖金凯,刘灵燕,层柱粘土研究现状和进展,岩石矿物学杂志,2001,21(1):76~88
    [21] 吴平霄,张惠芬,肖文丁等,柱撑蒙脱土制备与表征,矿物学报,1997,17(2):200~207
    [22] 刘优,陆琦,雷新荣,柱撑粘土矿物的研究新进展.新矿物材料研究综述之一,矿物岩石,1999~19(1):101~104
    [23] Storaro Loretta, Lenarda Maurizio, Perissinotto Michele, Lucchini Vittorio, Ganzerla Renzo, Hydroxy-Al pillaring of concentrated suspensions of smectite clays, Micropor. Mesopor. Mater., 1998, 20: 317~331
    [24] J. Bovey, W. Jones, Characterization of Al-pillared acid activated clay catalysts, Journal of Materials Chemistry, 1995, 5(11): 2027~2035
    [25] 葛忠华,陈银飞,孙勤,等,铝支撑酸化蒙脱土的表怔与催化性能,高校化学工程学报,1997,11(1):50~54
    [26] R. Mokaya, W. Jones, Pillared Clays and Pillared Acid-Activated Clays: A Comparative-Study of PhysiTRAl, Acidic, and Catalytic Properties, Journal of Catalysis 1995, 153: 76~85
    [27] N. D. Hutson, M. J. Hoekstra, R. T. Yang, Control of microporosity of Al_2O_3-pillared clays: effect of pH, TRAlcination temperature and clay cation exchange capacity, Micropor. Mesopor. Mater., 1999, 28: 447-459
    [28] A. Kathleen Carrado, L. Christopher Marshall, R. James Brenner, P. P. Song Kang, Materials derived from synthetic organo-clay complexes as novel hydrode sulfurization catalyst supports, 1998, 20: 17-26
    [29] Volzone, Cristina Pillaring of different smectite members by chromium species (Cr-PILCs), Micropor Mesopor Mater, 2001, 49: 197-202
    [30] R. A. Schoonheydt, H. Leeman, Pillaring of saponite in concentrated medium, Clay Miner., 1992, 27: 249~252
    [31] M. L. Occelli, J. Lynch, TEM analysis of pillared and delaminated hectorite catalysts, J. Catal, 1987, 107: 557~565
    [32] Suna Balci., Elif Gkcay, Effects of drying methods and TRAlcination temperatures on the physiTRA1 properties of iron interTRAlated clays, Materials Chemistry and Physics, 2002, 76, 46~51
    [33] Yang SuHan, et al. A new thermally stable SiO_2-Cr_2O_3 solpillared montmorillonite with high surface area, Applied Catalysis A: General, 1998, 174: 83~90
    [34] Bahranowskik, et al. PhysicochemiTRAl characterization and cataly ticproperties of
    
    copper doped alumina pillaredmontmoril Ionites, Clays and Clay Minerals, 1998, 46 (1): 98~102
    [35] D. Y. Zhao, Y. S. Yang, X. X. Guo, Preparation and characterization of hydroxy silico alumium pillared clays, Inorganic Chemistry, 1992, 31: 4727~4732
    [36] 孙来生,李栋藩,陶龙骧,羟基硅铝交联粘土的合成和热稳定性研究,催化学报,1994,15(5):392~395
    [37] J. Sterte, Preparation and properties of large-pore La-AI-pillared montmorillonite, Clays and Clay Minerals, 1991, 39(2)167~173
    [38] J. L. Valverde, E Canizares, M. R. Sun Kou, et al. Reply to the comment by J. T. Kloprogge, J. A. Robvan Veen, E. Booij, and Ray L. Frost on" Enhanced thermal stability of Al-pillared smectites modified with Ce and La", Clays and Clay Minerals, 2001 49 (2): 186~187
    [39] J. L. Valverde, E Canizares, M. R. Sun Kou, et al. Enhanced thermal stability of Al-pillared smectites modified with Ce and La, Clays and Clay Minerals, 2000, 48 (4): 424~432
    [40] E. Booij, J. T. Kloprogge, J. A. R. Van Veen, Preparation structure characteristics and catalytic properties of large-pore rare earth element (Ce, La)/Al pillareds mectites, Clays and Clay Minerals, 1996, 44(6): 774~782
    [41] S. M. Bradley, R. A. Kydd, C. A. Fyfe. Characterization of the [GaO_4Al_(12)(OH)_(24) (H_2O)_(12)] ~(7+) polyoxocation by MAS NMR and infrared spectroscopies and powder X-ray diffraction, Inorganic Chemistry, 1992, 31: 1181~1185
    [42] S. M. Bradley, R. A. Kydd, Ga_(13), Al_(13), GaAl_(12), and chromium-pillared montmorillonites: Acidity and reactivity for cumene conversion, Journal of Catalysis, 1993, 141: 239~249
    [43] I. Benito, C. Blanco, M. Martinez, Thermogravimetric analysis for acidity determination in pillared clays, Journal of Thermal Analysis and TRAlorimetry, 1999, 55: 461~466
    [44] J. Ahenach, E Cool, Impens Ren, et al. Silica-pillared clay derivativesusing aminopropyltrieth oxysilane, Journal of Porous Materials, 2000, 7: 475~481
    [45] I. Heylen, C. Vanhoof, Vansant, Preadsorption of organic compounds on iron oxide-pillared clays, Microporous Mater, 1995, 5(1-2): 53~60
    [46] 王忠杰,蔡晔,陈银飞等,表面活性剂改性的铝交联蒙脱土的表征及催化性能,高校化学工程学报,1998,12(3):271~276
    [47] J. Michot Laurent, J. Pinnavaia Thomas, Adsorpotion of chlorinated phenols from aqueous solution by surfactant-modified pillared clays, Clays and Clay Minerals, 1991, 39(6): 474~479
    [48] Polverejan M, LiuY, Pinnavaia T. J A. Mesostructured clay catalysts: a new porous clay heterostructure derived from syntheticsaponite, Studies in Surface Science and Catalysis, 2000, 129: 4012-4018
    [49] A. Galarneau, A. BarodaMIAlla, T. J. Pinnavaia, Porous clay heterostructures for medbygallery templated synthesis, Nature, 1995, 374: 529~535
    [50] 周春晖,蔡晔,葛忠华,有机膨润土制备研究与应用,浙江化工,2001,32(3):3~6
    [51] 李庆伟,周春晖,葛忠华,等,蒙脱土多孔异构材料合成初探,浙江工业大学学报,2002,30(2):95~99
    [52] C. H. Zhou, Q. W. Li, Z. H. Ge, X. N. Li, Synthesis and catalysis of mesoporous
    
    silica-hetered materials based on montmorillonite, Feng SH, Chen JS. Frontiers of solid state chemistry, Singpore: World Scientific, 2002, 275~282
    [53] 李庆伟,周春晖,葛忠华,等,蒙脱土改性催化材料的研究进展,工业催化,2002,10(4):55~59
    [54] 周春晖,葛忠华,李春生,等,层柱粘土材料制备与应用研究,矿物岩石地球化学通报,2002,21(4):243~247
    [55] 高滋,陈建民,唐颐,用常温正丁烷异构化反应表征固体超强酸性,物理化学学报,1994,10(8):698~703
    [56] 高滋,华伟明,陈建民,正戊烷异构化反应表征固体超强酸性,物理化学学报,1994,10(10):897~902
    [57] 邹新禧,固体超强酸AlEl_3·Fe_2(SO)_3的研究,化学通报,1992,(12):23~25
    [58] 杨挥荣,黎碧娜,陆乾生,聚合物试剂和催化剂,广东:广东科学技术出版社,1991
    [59] 杨辉荣,黎碧娜,方岩雄,等,羧酸酯催化合成的新方法,精细化工,1995,12(1):33~36
    [60] 王庆昭,王公慰,郑禄彬,丝光沸石的超强酸性及其催化作用,石油化工,1990.19(10):667~680
    [61] T. Jin, T. Yamaguchi, K. Tanabe, Mechanism of Acidity Generation on Sulflur-promoted Metal Oxide, J. Phy. Chem., 1986, 90: 4794~4797
    [62] H. Matsubashi, M. Hino, K. Arata, Solid Catalyst Treated with An ion. XIX. Synthesis of the Solid Super acid Catalyst of Tin Oxide Treated with Sulfate Ion, Appl. Catal., 1990, 59: 205~212
    [63] 缪长喜,陈庆龄,高滋,SO_4~(2-)/ZrO_2超细粒子固体超强酸的研究,工业催化,1997,4:26~30
    [64] 于世涛,王志强,杨锦宗,SO_4~(2-)/TiO_2 Al_2O_3复合固体超强酸的结构表征,工业催化.1996,4:44~48
    [65] M. Hino, S. Kobayashi, Reactions of Butane and Isobutane Catalyzed by Zirconium Oxide Treated with Sultate Ion. Solid Superacid Catalyst, J. Amer. Chem. Soc., 1979, 101: 6439~6446
    [66] K. Arata, et al. Solid Catalyst Treated with Anion. ⅩⅧ. Benzoylation of Toluene with Benzoylchloride and Benzoic Anhydride Catalyzed by solid Superacid of Sulfate-Supported Alumina, Appl. Catal., 1990, 59: 205~209
    [67] 于世涛,宋湛谦,固体超强酸的研究进展,化工科技,2000,8(4):60~64
    [68] J. C. Yoir, J. M. Parera, Isomerization of n-butane over Ni/SO_4~(2-)-ZrO_2, J. Appl. Catal., 1995, 129: 83~91
    [69] 曾健青,罗庆云,王琴,等,SO_4~(2-)/M_nO_m固体超强酸催化剂的研究发展,石油化工,1994,23(3):192~195
    [70] 王新平,唐新硕,沉淀剂SO_4~(2-),ZrO_2-NiO对催化性能的影响,石油化工,1996,25 (5):20~31
    [71] 华卫琦,周力,吴肖群等,SO_4~(2-)/M_nO_m固体超强酸及其制备技术,石油化工,1997,26(8):553~560
    [72] 田部浩三著,崔圣范译,超强酸与超强碱,北京:化学工业出版社,1986
    [73] 蒋平平,卢冠忠,固体超强酸催化剂改性研究进展,现代化工,2002,22(7):13~21
    [74] 廖长喜,陈庆龄,高滋,SO_4~(2-)/ZRO_2超细粒子固体超强酸的研究,工业催化,1997
    
    (4): 26~30
    [75] Z. Gao, C. X. Miao, Preparation and properties of ultrafine SO_4~(2-)/ZrO_2 superacid catalysts, Materals Chem. Phys., 1997, 50(1): 15~19
    [76] 林德娟,潘海波,沈水发,纳米固体超强酸SO_4~(2-)/Fe_2O_3的红外光谱研究,光谱学与光谱分析,2000,20(5):616~618
    [77] 林德娟,沈水发,潘海波等,纳米复合固体超强酸SO_4~(2-)/CoFe_2O_4的制备和表征,无机化学报,2000,16(5):758~762
    [78] Tien-syh Yang, Tsong-huei Chong, Chuin-tih Yeh, Acidities of sulfate species formed on a superacid of sulfated alumina, J. Mol. Catal., A ChemiTRAl, 1997, 115: 339~346
    [79] Guanzhong Lu, Catalytic properties of SO_4~(2-)/Ti-M-O superacids in esterification, Appl. Catal. A: Gen., 1995, 133: 11~18
    [80] Hua Yang, Tong Lu, Jingzhe Zhao, Xuwei Yang, et al. Sulfated binaryoxide solid superacids, Materials Chemistry and Physics, 2003, 80: 68~72
    [81] V. Adeeva, J. W. Haan, J. Janchen, et al. Acid Sites in Sulfated and Metal-Promoted Zirconium Dioxide Catalysts, J. Catal., 1995, 151: 364~372
    [82] W. M. Hua, C. X. Miao, J. M. Chen, et al. Temperature-programmed desorption of pyridine on solid superacids, Materials Chemistry and Physics 1996, 45: 220~222
    [83] 赵璧英,马华容,唐有祺,制备方法对MoO_3/ZrO_2结构的影响及MoO_3/ZrO_2固体超强酸的结构特征,物理化学学报,1995,16(3):171~176
    [84] O. V. Melezhyk, S. V. Prudius, V. V. Brei, Sol-gel polymer-template synthesis of mesoporous WO_3/ZrO_2, Miroporous and Mesoporous Material, 2001, 49: 39~44
    [85] 张黎,王琳,S_2O_8~(2-)/ZrO_2固体超强酸的研究,高等学校化学学报,2000,21(1):116~120
    [86] G. Santiesteban, J. C. Vartuli, S. Han, R. D. Bastian, Influence of the Preparative Method on the Activity of Highly Acidic WO_x/ZrO_2 and the Relative Acid Activity Compared with Zeolites, J. Catal, 1997, 168: 431~441
    [87] 但悠梦,孙浩,陈欣智,等,固体超强酸催化剂的研究进展,湖北民族学院学报(自然科学版),2001,19(2):63~66
    [88] 黄银燕,赵壁英,复合固体超强酸催化剂SO_4~(2-)-WO_x/ZrO_2中WO_3形态与作用,石油化工,1995,24(7):394~397
    [89] 黄碧纯,黄钟涛,超强酸催化剂SO_4~(2-)/MoO_3-ZrO_2的制备与表征,精细石油化工,1996 (4):34~37
    [90] T. K. Cheung, J. L. Ditri, B. C. Gates, Low-Temperature Superacid Catalysis: Reactions of n-Butane Catalyzed by Iron-and Manganese-Promoted Sulfated Zirconia, J. Catal, 1995, 151: 464~466
    [91] J. C. Yori, J. M. Parera, Isomerization of n-butane over Ni/SO_4~(2-)-ZrO_2, Appl. Catal., 1995, 129(1): 83~91
    [92] 缪长喜,华伟明,陈建民,等,SO_4~(2-)促进多元氧化物固体超强酸研究,中国科学(B 辑)1996,26(03):275~278
    [93] 王新平,唐新硕,固体超强酸SO_4~(2-)/ZrO_2-NiO异构化性能的研究,石油化工,1993,22(3):145~149
    [94] R. A. Keogh, R. Srinivasan, B. H. Davis, Pt-SO_4~(2-)-ZrO~_2 Catalysts: The Impact of Water on Their Activity for Hydrocarbon Conversion, J. Catal., 1995, 151: 292~299
    [95] Lengop, M. Diserio, Preparation and Properties of New Acid Catalysts Obtained by
    
    Grafting Alkoxides and Derivatives on the Most Common Supports, Appl. Catal. A, 1998. 167(1): 85~89
    [96] 夏勇德,华伟明,夏勇德,等,AI促进SO_4~(2-)/qM_xO_y(M=Zr, Ti,Fe)固体超强酸的研究,化学学报,2000,58(1):86~91
    [97] 雷霆,华伟明,γ-Al_2O_3负载Cr促进SO_4~(2-)/ZrO_2固体超强酸研究,高等学校化学学报,2000,21(11):1697~1702
    [98] 吴少林,李来生,SO_4~(2-)/Fe_3O_4-Dy_2O_3固体超强酸催化α-萘乙酸甲酯,化学世界,1997(4):184~185
    [99] 徐景士,陈慧宗,稀土固体超强酸催化合成羟基苯甲酸酯研究,江西师范大学学报,2000,24(4):144~146
    [100] 郭锡坤,林绮纯,林维明,固体超强酸催化剂ZrO_2-Dy_2O_3/SO_4~(2-)HZSM-5的制备及结构性能关系的研究,分子催化,2000,14(5):369~372
    [101] Li Weishi, Shen Zhiquan, Zhang Yifeng, Activity and mechanism of rare earth solid superacid for initiating ring-opening polymerization of chloromethyl thiirane, European Polymer Journal, 2001, 37 (6): 1185~1190
    [102] 林进,稀土固体超强酸SO_4~(2-)/TiO_2·L~(-1)a~(3+)催化合成水杨酸异丁酯,有机化学,2000,20(5):805~807
    [103] 林进,刘华亭,王兰芝,稀土固体酸SO_4~(2-)/TiO_2·L~(-1)a~(3+)制备及其催化酯化作用,稀有金属材料与工程,2001,30(1):77~79
    [104] 李远志,魏富智,含Ce固体超强酸SO_4~(2-)/ZrO_2-Ce_2O_3的制备及对环已醇催化脱水制环己烯的研究,精细化工,2000,17(2):8~10
    [105] J. S. Reddy, A. Snyari, Nanoporous zirconium oxide prepared using the supramolecular templating approach, Catai. Lett., 1996, 38: 219~223
    [106] Y. Huang, W. M. H. Sachtler, Preparation of mesostructured lamellar zirconia, Chem. Commun., 1977, 1: 181~184
    [107] J. M. Debra, A. K. Ronald, Tailoring the poresize of mesoporous sulfated zireonia, Microp. Mesop. Mater, 2000, 37: 281~28
    [108] 季山,廖世军,王乐夫,具有MSM-11结构的分子筛型SO_4~(2-)/ZrO_2-ZSM-11超强酸的制备,分子催化,2001,15(3):228~230
    [109] Chang Lin Chen, Tao Li, Soofin Cheng, et al. Direct Impregnation Method Forpreparing Sulfated Zirconia Supported on Mesoporous Silica, Micropor. Mesopor. Mater., 2001, 50: 201~208
    [110] Weiming Hua, Yinghong Yue, Zi Gao. Acidity Enhancement of SBA Mesoporous Molecular Sirve by modification With SO_4~(2-)/ZrO_2, J. Mol. Catal. A, 2001, 170: 195~202
    [111] I. V. Kozhe K. R. vnikov, K. loetstra, A. Sinnema, et al. Srudy of Catalysts Comprising Eteropoly Acid H_3PW_(12)O_(40) Supported on MCM-41 Molecular Sieve and Amorphous Silica, J. Mol. Catal. A, 1996, 114: 287~298
    [112] 孙渝,乐红英,李惠云,MCM-41负载钨磷杂多酸催化剂的性能研究,化学学报,1999,57:746~753
    [113] 江国东,余灯华,廖世军,分子筛型超强酸催化剂的研究新进展,化学反应工程与工艺,2003,19(3):78~82
    [114] 廖世军,季山,简弃非,具有中孔结构的SO_4~(2-)/Zr-HMS型固体超强酸的合成和结构表征,高等学校化学学报,2003,24(3):469~472
    [115] 蒋文伟,超强酸催化剂的研究进展,精细化工,1997,1:46~49
    
    
    [116] 刘小军,于广锁,王亦飞,等,SO_4~(2-)/M_xO_y型无机固体超强酸研究进展,工业催化,2001,11(6):35~40
    [117] 孙闻东,赵振波,吴越,WO_3/ZrO_2固体超强酸上异丁烷/丁烯的烷基化反应(Ⅱ),催化学报,2000,21(3):229~233
    [118] 张武阳,杨胥微,王国强,油田轻烃在SO_4~(2-)/M_xO_y型超强酸上的催化转化,吉林大学学报(自然科学版),1997,(4):95~977
    [119] 胡健平,储伟.SO_4~(2-)/ZrO_2-TiO_2-SiO_2固体酸催化苯乙烯选择性氧化反应的研究,合成化学,2000,8(4):326~330
    [120] 蒋平平,季娴,王琪,固体超强酸SO_4~(2-)/ZrO_2的动态行为及催化酯化活性,石油化工高等学校学报,1998,11(3):11~14
    [121] 于世涛,宋湛谦,SO_4~(2-)/TiO_2固体超强酸催化合成乙酸松油酯的研究,化学世界,2000,(8):408~411
    [122] 王存德,牛岫琴,于世龙,稀土固体超强酸乳酸正丁酯,化学世界,1994,35(7):311~313
    [123] 王绍艳,张志强,吕玉珍,等,纳米固体超强酸SO_4~(2-)/Fe_2O_3的制备及其催化合成乙酸乙酯,无机化学学报,2002,18(3):279~283
    [124] 王维平,杨锦宗,复合固体超强酸SO_4~(2-)/ZrO_2-TiO_2催化合成马来酸双酯,石油化工,1990,19(5):315~319
    [125] 高根之,于世涛,杨锦宗,SO_4~(2-)/TiO_2-Al_2O_3-SnO_2催化剂的研制及其催化合成己二酸二辛酯,催化学报,1996,17(1):83~85
    [126] 张济璜,对广西宁明膨润土矿开发利用的战略设想,矿产保护与利用,1990,(6):12~14