新型有机抑制剂的合成及结构与性能关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的研究内容主要包括以下四个方面:新型有机抑制剂的合成、合成抑制剂的浮选性能、合成抑制剂的作用机理以及合成抑制剂的结构-性能关系研究。
     首先以酚与一氯乙酸为主要原料,通过采用本生阀密封装置、控制体系的pH值,合成了七种苯氧乙酸类有机抑制剂:苯氧乙酸(ZBF),(2-羧基苯氧基)乙酸(ZSS),2,2’-二(1,2-苯二氧基)乙酸(ZLF),2,2’-二(1,3-苯二氧基)乙酸(ZJF),2,2’-二(1,4-苯二氧基)乙酸(ZDF),2,2’,2”-三(1,2,3-苯三氧基)乙酸(ZJS),2,2’,2”-三(5-羧基-1,2,3-苯三氧基)乙酸(ZMS)。探讨了相转移催化剂对酚与一氯乙酸成醚反应的影响,找到了一种性能优良的季铵盐催化剂——三丁基乙基硫酸乙酯铵,可以大大提高苯氧乙酸类化合物的产率。测定了苯氧乙酸类化合物的酸离解常数,并对其酸性的相对强弱规律做出解释。
     以聚乙烯醇、聚乙二醇和聚丙烯酰胺为原料,分别与一氯乙酸或盐酸羟胺在碱性条件下反应,制备了三类新型大分子有机抑制剂:羧甲基聚乙烯醇(CPVA)、羧甲基聚乙二醇(CPEG)和肟化聚丙烯酰胺(HPAM)。通过优化反应条件,CPVA、CPEG、HPAM的取代度分别达到28.3%、28.4%、5.78%。
     分别以方解石、一水硬铝石和黄铁矿作为浮选对象,系统地考察了合成抑制剂的抑制性能,比较了药剂结构对抑制性能的影响。小分子抑制剂的抑制能力的大小顺序为:ZMS>ZJS>ZDF>ZJF>>ZLF>ZSS>ZBF。人工混合矿和实际矿石的浮选实验说明ZJS和ZMS对方解石具有选择性抑制作用,它们对蛇纹石的抑制性能要优于传统的无机或有机抑制剂。大分子有机抑制剂的浮选性能随取代度的增大,抑制性能增强。高取代度的CPVA和CPEG对方解石的抑制能力都很强,CPEG对一水硬铝石表现出较强的抑制能力,而HPAM则对黄铁矿的抑制能力很强。
     利用动电位、接触角、吸附量和红外光谱等测试方法和手段,探讨了抑制剂的作用机理:苯氧乙酸类小分子抑制剂与方解石之间可发生较强的化学作用,可以选择性地吸附在方解石表面,使捕收剂发生解吸或阻止捕收剂在矿物表面的吸附而使矿物受到抑制;大分子抑制剂则主要是依靠亲固基吸附在矿物表面,再利用其长链的强亲水性而使矿物受到抑制。
     运用基团电负性、浮选剂特性指数和亲水-疏水平衡值的计算结果探讨了合成抑制剂的结构-性能关系。结果表明:这些药剂的性能与按照经典的浮选
    
    中南大学博士学位论文
    摘要
    剂分子设计理论所作的预测是完全相符的,得到了与浮选实验结果相一致的
    结论。
     通过药剂性能的量子化学计算和药剂与矿物作用的能量计算,对苯氧乙
    酸类小分子有机抑制剂的结构与性能关系进行了研究。提出了用键电荷密度
    比(po-H/pc-。)作为衡量苯氧乙酸类化合物酸性强弱的判据,po-H/pc一。
    值的大小顺序与实验所测得的酸离解常数的大小顺序是一致的;从药剂分子
    和药剂离子的前线轨道方面,解释了苯氧乙酸类抑制剂抑制性能的相对强弱
    和对方解石、一水硬铝石、黄铁矿的抑制性能上的差异,得到了与浮选实验
    相一致的结论。
     药剂与矿物作用的能量计算结果表明:苯氧乙酸类抑制剂与方解石和一
    水硬铝石作用后的能量变化均为负值,能量变化有利,可以形成稳定的吸附;
    而与黄铁矿作用后的能量变化为正,能量的变化是不利的,故不能形成稳定
    的吸附,表现出较弱的抑制作用。ZJS和ZMS可以优先吸附在方解石的表面,
    而其它小分子则有可能与捕收剂形成共吸附;苯氧乙酸类抑制剂在一水硬铝
    石表面上虽可形成吸附,但不如十二胺在一水硬铝石表面形成的吸附强,所
    以表现出来的抑制能力不强。
The studies relate to the discussion of several new flotation depressants as the following: the preparation, the flotation property, the depressing mechanism and the structure-activity relationship.
    A new type of little molecular weight flotation depressants, phenoxyl poly (acetic acid), was prepared by treating phenol or polyphenol with chloroacetic acid in an alkali solution. Controlling the reaction pH value and developing a new self-sealing method performed a good synthesizing result with high yield and selectivity. A new tert-amine salt, tributylethylammonium ethosulfate, is introduced as the phase transfer catalyst for the reaction, and it can greatly improve the yields of phenoxyl poly (acetic acid). The acidic dissociation constants of the synthesized reagents are determined.
    Three macromolecule organic depressants, carboxylmethylic poly (vinyl alcohol), carboxylmethylic polyethylene glycol, hydroxamic polyacrylamide, which are abbreviated as CPVA, CPEG, and HPAM respectively, were prepared from poly (vinyl alcohol)(PVA), polyethylene glycol (PEG), and polyacrylamide (PAM). The reaction conditions are optimized, which yield CPVA, CPEG, and HPAM with the degree of substitution (D.S.) 28.3%, 28.4%, and 5.78% respectively.
    Three pure minerals, i.e. calcite, diaspora and pyrite, are adopted for investigating the flotation properties of the synthesized reagents, which indicate that all the synthesized reagents behave as depressants in the flotation process. The phenoxyl poly (acetic acid) depressants show more effective depressing ability to calcite than to diaspore, and indicate much more weak depressing ability to pyrite. The flotation of manual blending mineral (fluorite with calcite) and some practical ores is consistent with the results. The depressing ability of the macromolecule organic depressants can be improved by the increase of their D.S.. The high D.S. CPVA and CPEG show strong depressing ability to calcite, while CPEG indicates strong depressing ability to diaspore, and HPAM to pyrite.
    The depressing mechanism of organic depressants was confirmed by the measurements of zeta potential, contact angles, adsorption capacity and IR spectrum. The little molecular weight depressants, phenoxyl poly (acetic acid) depressants, can form
    
    
    strong chemical reaction on the calcite surface; therefore, they can be adsorbed prior to the collectors, and release the collectors adsorbed on the surface or hold back the adsorption of the collectors. Meanwhile, the macromolecule organic depressants can also be adsorbed on the minerals surface, but they cannot release the collectors adsorbed on the mineral surface or hold back the adsorption of the collectors, and their depressing abilities owe to their long hydrophilic chains.
    The structure-activity relationships of the organic depressants are discussed by the calculation of electronegativity, reagent specific exponent, hydrophilic lipophilic balance (HLB). It has been shown that the flotation properties of the reagents are identical with the properties affirmed by the classical flotation theories.
    Quantum chemistry calculation was operated with Zindo/2 Method, by Cerius 2 software on MSI workstation, and the structure-activity relationships of organic depressants were discussed. The ratio of bond charge density, p O-h/ p c-o, was proposed as a standard of the acid intensity for phenoxyl poly (acetic acid) reagents, which was verified by the acidic dissociation constants. The highest occupied molecular orbit (HOMO) and the lowest unoccupied molecular orbit (LUMO) are calculated, and the energy gap of the two orbits determines the activity of the reagents, and yet, in an alkaline solutions for flotation, the HOMOs of the corresponding ions decide the rigidity of the reagents and therefore determine the reaction activity with different rigidity metal cations in minerals, which vary flotation performance to different minerals, and the experimental results were verified.
    The energy changes of reaction between reagent and mineral reveal that phenoxyl poly (acetic acid) ca
引文
[1] Wang D Z. Structure Model of Flotation Reagents Activity Criterion and Molecular Design. 115th AIME Annual Meeting, 1986, New Orleans, USA.
    [2] 王淀佐.浮选药剂性能的HLB计算.有色金属 (选矿部分),1977,(7):36.
    [3] 王淀佐.浮选药剂性能等比张容计算.有色金属(选矿部分),1977,(8):42.
    [4] 王淀佐.浮选药剂性能的CMC计算.有色金属(选矿部分),1977,(6): 25.
    [5] Wang D Z. Hydrophile-Hydropobicity Balance of Flotation Reagents. Advance of Mineral Processing. A Half-century of Progress in Application of Theory to Practice. Proceedings of a symposium honoring N Arbiter on his 75th Birthday. New Orleans. Somasundaran P. 1986: 260.
    [6] 王淀佐.浮选药剂性能的电负性计算.有色金属(选冶部分),1975,(4):44.
    [7] 王淀佐.浮选剂找药分子设计理论的应用与发展.矿冶工程,1987,7(2):18.
    [8] 王淀佐.浮选剂作用原理及应用.北京:冶金工业出版社,1982.
    [9] 王淀佐.矿物浮选和浮选剂.长沙:中南工业大学出版社,1986.
    [10] 王淀佐,林强,蒋玉仁.选矿与冶金药剂分子设计.长沙:中南工业大学出版社,1996.
    [11] 陆英英.盐类矿物新型浮选剂研究.长沙:中南工业大学硕士学位论文,1992.
    [12] 陆英英,林强,王淀佐.有色全属(季刊),1993,45(3):35-39.
    [13] Hansch C, Lev A. Substituent Constants for Correlation Analysis in Chemistry and Biology, Wiley Inter Science, New York, 1979.
    [14] 蒋玉仁.黄金浮选剂设计与合成及结构性能关系研究.长沙:中南工业大学博士学位论文,1994.
    [15] 王淀佐,白世斌.浮选有机抑制剂的结构与性能.有色金属,1983,35(2):47-53.
    [16] 朱建光.浮选药剂.北京:冶金工业出版社,1993.
    
    
    [17] 林强.新型浮选药剂合成及结构与性能关系研究.长沙:中南工业大学博士学位论文,1989.
    [18] 徐柏辉等. α-氨基膦酸类有机抑制剂在高冰镍浮选分离中的作用. 有色金属(季刊),1995,(1):20-23.
    [19] 冯其明,陈建华.硫化矿浮选分离有机抑制剂研究进展.国外金属矿选矿,1998,(4):12-15.
    [20] A V格列姆博斯基等.国外金属矿选矿.1996,(9):26.
    [21] Golikov A A, et al. U.S.S.R.: SU 1,614,853(1990).
    [22] Kimble K B, Bresson C R, Mark H W. Trithiocarbonates as depressants in ore flotation. U.S. US 4,650,568(1987).
    [23] Kimble K B, et al. Alkali carboxyalkyl dithiocarbamates and their use as ore flotation reagents. U.S. US 4,554,108(1985).
    [24] Klimpel R R, Hansen R D, Fazio M J. Pyrite depression during flotation of using sulfur-containing amines. U.S.: US 4,826,588(1989).
    [25] Bulatovic S M. Use of organic polymers in the flotation of polymetallic ores: a review. Minerals Engineering, 1999, 12(4): 341-354.
    [26] Laskowski J S, Liu Q, Bolin N J. Polysaccharides in flotation of sulphides. Part Ⅰ. Adsorption of polysaccharides onto mineral surfaces. Int. J. Miner. Process., 1991, (33): 223-234.
    [27] Kitchener J A. Flocculation in mineral processing. In: K J Ives(Editor). The Scientific Basis of Flocculation. Sijthoff &Noordhoff, Alphen a/d Rijn, pp. 283-328.
    [28] Lange L H. Concentrating phosphate-bearing material such as that with a quartz gang. US Patent No. 1914695 (1931) .
    [29] Bulatovic S, et al. U.S. US 5,693,692(1997).
    [30] Pinto C L L, Araufo de A C, Peres A E C. The effect of starch, amylose and amylopectin on the depression of oxi-minerals. Minerals Engineering, 1992, (5): 469-478.
    [31] Panzer H P. U.S.: US 5,030,340(1991).
    [32] Agafonova G S. Flotation process with depressant for separation of Cu-Mo pyretic ores. U.S.S.R.: SU 1,819,160(1993).
    [33] 彭先淦.金川低品位镍矿的浮选工艺研究.长沙:中南工业大学硕士论文,1998.
    
    
    [34] 陈建华.低碱度铜硫浮选分离新型有机抑制剂应用研究.有色金属(季刊),1997,49(4):29-33,44.
    [35] Nagarai D R, Wang S S. Polymeric depressant with acrylamide for separation of silicate gangue in froth flotation of sulfide ores. U.S. US 5,531,330(1996).
    [36] Furey J T, Lobban R J, Palmer M. Silica depressant in froth flotation of sulfide ores. U.S. US 4,719,009(1988).
    [37] Wang S S, Nagarai D R. Method for depressing non-sulfide silicate gangue minerals. U.S. US 5,507,395(1996).
    [38] Makenzie M. Organic polymers as depressants: Chemical reagents in the mineral processing industry. SIMME, 1986, pp139-145.
    [39] Wie J M, Laskowski J S, Chang S S. Dextrin adsorption by oxidized coal. Colloids and Surfaces, 1983(8): 137-151.
    [40] Khosla N K, et al. Calorimetric and other interaction studies on mineral starch adsorption systems. Colloids and Surfaces, 1984(8): 321-326.
    [41] Mackenzie J M W. Guar-based reagent. E. and M. J. Turkey, October, pp80-88.
    [42] Subramanian S, Natarajan K A. Some studies on the adsorption behaviour of an oxidized starch onto hematite. Miner. Eng., 1988, 1: 241-254.
    [43] Subramanian S, Natarajan K A, Sathyanarayana D N. FTIR spectroscopic studies on the adsorption of an oxidized starch on some oxide minerals. Min. Metall. Process., 1989, 6: 152-158.
    [44] Liu Q, Laskowski J S. The interaction between dextrin and metal hydroxides in aqueous solutions. J. colloid Interface Sci., 1989, 130:101-111.
    [45] Kennedy J F, Barker S A, Humphreys J D. Insoluble complexes of amino-acids, peptides, and enzymes with metal hydroxides. J. Chem. Soc., Perkin Trans, 1976, pp 962-967.
    [46] Kennedy J F, Barker S A, White C A. The adsorption of D-glueans by magnetic cellulose and other magnetic forms of hydrous titanium oxide. Carbohydrate Res., 1977, 54: 1-12.
    [47] Somasundaran P. Adsorption of starch and oleate and interaction between them on calcite in aqueous solutions, or. Colloid. Interface. Sci., 1969, 31: 557-565.
    [48] 陈建华.电化学调控浮选能带理论及其在有机抑制剂研究中的应用.长沙:中南工业大学博士论文,1999.
    [49] 张亚辉,卢荫之,许时.邻苯三酚在萤石—方解石浮选分离中的作用机理.
    
    有色金属,1991,43(3):22-27,21.
    [50] 顾可权.重要有机化学反应.上海:上海科学技术出版社出,1983.
    [51] 李述文,范如霖.实用有机化学手册.上海:上海科技出版社,1981.
    [52] Mirci L E. Production and purification of phenylenedioxyacetic acid. Romania: RO 100132 (1990) .
    [53] Suguro Y, Matsumoto M. Preparation of 1,3-phenylenedioxydiacetic acid as monomer. Japan: Jpn Kokai Tokkyo Koho JP 91052 (1992) .
    [54] Suguro Y, Matsumoto M. Preparation of 1,3-phenylenedioxydiacetic acid with low discoloration. Japan: Jpn Kokai Tokkyo Koho JP 173764 (1992) ; 173765 (1992) .
    [55] Maki T, Asahi Y, Moryasu M. preparation of phenylenedioxydiacetic acids. Japan: Jpn Kokai Tokkyo Koho JP 38544(1991).
    [56] Dehmlow E V,Pehmlow S S.贺贤璋,胡振民译.相转移催化作用.北京:化学工业出版社,1988.
    [57] 王孙准,杨俊英.电位法测定多元酸解离常数计算方法的改进.分析化学,1990,18(3):275-279.
    [58] 常文保,李克安.简明分析化学手册.北京:北京大学出版社,1981.
    [59] Nagy G, Filip S V. Solvent-free synthesis of substituted phenoxyacetic acid under microwave irradiation. Synth. Commun., 1997, 27(21): 3729-3736.
    [60] Wei Tai-bao, Chen Ji-chou, Wang Xi-cun. Phase transfer catalyzed synthesis of N,N'-diaryl-1,4-phenylenedioxydiacetamides. Chinese Journal of Synthetic Chemistry, 1995, 3(4): 355-359.
    [61] Wei, Taibao. Phase transfer catalyzed synthesis of diaryl- 1,4-phenylenedioxydiacetate. Synth. Commun., 1996, 26(7): 1447-1454.
    [62] 李毅群.新型相转移催化剂三丁基乙基硫酸乙酯铵催化合成芳氧乙酸的研究.化学试剂,2000,22(1):47-48.
    [63] 成本诚.有机化学.长沙:中南工业大学出版社,1997.
    [64] 北京大学化学系有机化学教研室编.有机化学词典.北京:高等教育出版社,1987.
    [65] 见百熙.浮选药扎北京:冶金工业出版社,1981.
    [66] 孙云明,陈国华.聚乙烯醇系水面溢油凝油剂的制备与性能.中国环境科学,1999,19(5):432-435.
    [67] 北京矿冶研究总院《有机浮选药剂分析》组.有机浮选药剂分析.北京:
    
    冶金工业出版社,1987.
    [68]赵桂英,时雨荃,张镜吾.快速测定羧甲基淀粉的官能团及取代度.天津化工,1999,(2):45-47.
    [69]徐寿昌主编.有机化学(第二版),北京:高等教育出版社,1995.
    [70]田芳,韩灵翠,靳长青.聚乙二醇端羟基的化学转化及其制备工艺的研究.太原工业大学学报,1995,26(4):106-110.
    [71]潘祖仁,孙经武.高分子化学.北京:化学工业出版社,1980.
    [72]Encyclopedia of polymer science and technology, 1965, Vol 1, p177.
    [73]鞠耐霜,曾文江.阴离子型聚丙烯酰胺的合成及应用.广州化工,26(4):66-69.
    [74]Zhang J, Huguenard C, Scarnecchia C, et al. Stabilization and destabilization of hematite suspensions by neutral and anionic polyacrylamide. Colloids Surf., A, 1999, 151(1-2): 49-63.
    [75]Tripathy T, Singh R P. High performance flocculating agent based on partially hydrolysed sodium alginate-g-polyacrylamide. Eur. Polym. J., 2000, 36(7): 1471-1476.
    [76]Pugh R J. Macromolecular organic depressants in sulphide flotation a review. Int. J. Miner. Process., 1989, 25: 101-130.
    [77]Xu D D, Aplan F F. Joint of metal ion hydroxy complexes and organic polymers to depress pyrite and ash during coal flotation. Miner. Metall. Process., 1994, 11: 223-230.
    [78]Nagaraj D R. Development of new flotation chemicals. Trans Indian Inst. Met., 1997, 50: 355-363.
    [79]Boulton A, Fomasiero D, Ralston J. Selective depression of pyrite with polyacrylamide polymers. Int. J. Process., 2001, 61(1): 13-22.
    [80]中国金属学会选矿学术委员会,“第二届全国选矿药剂学术讨论会论文选集”,北京:1982,11.p17:水杨羟肟酸钾浮选稀土矿物的研究,王化智.
    [81]中国金属学会选矿学术委员会,“第二届全国选矿药剂学术讨论会论文选集”,北京:1982,11.P54:难选氧化矿捕收剂—THA的研究,宋文才,周维志,陈竞清,周美华.
    [82]林江顺,高颖剑,张莱文.C5-9羟肟酸浮选赤铁矿.有色金属,1999,51(3):45-48.
    [83]唐玉海.医用有机化学.北京:高等教育出版社,2000.
    
    
    [84]孔柏岭,罗九明.高温油藏条件下聚丙烯酰胺水解反应研究.石油勘探与开发,1998,25(6):67-69.
    [85]Audibert A. Thermal stability of sulfonaicd polymers. SPE 28953(1995).
    [86]程新朝.钨矿物和含钙矿物分离新方法及药剂作用机理研究Ⅱ.药剂在矿物表面作用机理研究.国外金属矿选矿,2000,(7):16-21.
    [87]孟宪毅.印度某萤石矿选矿工艺研究.有色金属(选矿部分),1999,(3):13-15.
    [88]石伟,黄国智.萤石和方解石的溶解特性及浮选分离研究.非金属矿,2000,23(4):11-12.
    [89]李晔,刘奇,许时.淀粉类多糖在方解石和萤石表面吸附特性及作用机理.有色金属,1996,48(1):26-30,15.
    [90]李晔,刘奇,许时.矿物表面金属离子组分与糊精的相互作用(Ⅲ)——糊精存在时萤石/方解石、萤石/金红石的浮选分离.化工矿物与加工,1994,(6):23-25.
    [91]车丽萍.新型药剂在萤石与方解石、重晶石、石英浮选分离中的应用.有色金属(选矿部分),2000,23(6):36-40.
    [92]周维志.萤石与伴生含钙矿物的浮选分离.广东有色全属学报,1996,6(1): 14-19.
    [93]高峰.共生型复杂萤石矿石浮选分离研究.非金属矿,1996,110(2):19-21.
    [94]高玉德,胡春晖,邓丽红,吴石凤.降低金川镍精矿氧化镁含量的研究.广东有色全属学报,2000,10(02):96-99.
    [95]冯其明,张国范,卢毅屏.蛇纹石对镍黄铁矿浮选的影响及其抑制剂研究现状.矿产保护与利用,1997,(5):19-22.
    [96]张国范,卢毅屏,冯其明.抑制剂EP降低镍精矿中氧化镁含量研究.矿产保护与利用,1999,(3):28-31.
    [97]邱显阳,俞继华,戴子林.镍黄铁矿浮选中抑制剂的作用.广东有色金属学报,1999,9(2):86-89.
    [98]关杰,东乃良.有色金属,1985,37(4):29-36.
    [99]刘振中.有色金属(选矿部分),1981,(1):16-19.
    [100]邵志博.中国氧化铝工业的发展方向.世界有色金属,1999,(3):8-12.
    [101]王恩孚等.选矿-拜耳法处理中国高硅铝土矿生产氧化化铝的探讨.轻金属,1996,(7):3-6.
    [102]马朝建,赵岗.用我国中低位一水硬铝石矿生产氧化铝的新方法.轻金
    
    属,1998,(12):7-11.
    [103]黄国智,方启学,石伟,吴国亮,葛长礼.放粗铝土矿选矿精矿粒度的可行性研究.轻金属,2000,(7):7-10.
    [104]刘广义,卢毅屏,冯其明.阳离子捕收剂反浮选一水硬铝石型铝土矿研究.矿产保护与利用,2001,(2):38-42.
    [105]张强.选矿概论.冶金工业出版社,1984.
    [106]王淀佐,胡岳华.浮选溶液化学.长沙:湖南科学技术出版社,1988.
    [107]杨频,高孝恢.性能—结构—化学键.北京:高等教育出版社,1987.
    [108]曹阳.量子化学引论.北京:人民教育出版社,1980.
    [109]Hehre W J, Stewart R F, Pople J A. J. Chem. Phys., 1969, (51): 2557; 1970, 52: 2769.
    [110]Lathan W A, Hehre W J, Pople J A. J. Am. Chem. Soc., 1971, 93:808.)
    [111]Pauling L. The Nature of the chemical Bond. London: Oxford University Press, 1960.
    [112]Ricci J E. J. Amer. Chem. Soc., 1948, 70: 109.
    [113]徐光宪,吴瑾光.北京大学学报(自然科学版), 1956, (4): 489.
    [114]杨频.科学通报,1977,22(9):398.
    [115]杨频.“有效键电荷及其应用Ⅲ”,山西大学学报(自然科学版),1981,1:49-60.
    [116]俞庆森,朱龙观.分子设计导论.北京:高等教育出版社,2000.
    [117]Pearson R G. J Chem Soc, 1963, 85: 3533.
    [118]Pearson R G, Songstad J. JAmer Chem Soc, 1967, 89: 1827.
    [119]Klopman G. J. Amer. Chem. Soc., 1968, 90: 223.
    [120]Ahrland S. Chem. Phys. Letters, 1968, 2: 303.
    [121]王根元.矿物学.北京:中国地质大学出版社,1989.