非传统水源供水管网水质模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,国内外对饮用水的生物稳定性和化学稳定性已经进行了广泛的研究,但是对新兴的非传统水源的水质稳定性关注还不够。本文根据再生水和海水淡化水的水质特点,分别对再生水的生物稳定性(余氯衰减模型)以及淡化水的化学稳定性(铁的释放速率模型)进行了研究。
     首先,通过再生水与饮用水的主体水余氯衰减实验,分析了再生水与饮用水余氯衰减的不同。再生水的余氯衰减分为投氯初期的快速衰减以及随后的慢速衰减两个阶段,两段衰减均为一级反应模型。在此基础上,以再生水输配管网为例,建立了再生水管网余氯衰减模型,模型形式为一级反应动力学方程。通过对模型进行校核,验证了模型的预测效果。在余氯衰减模型的基础上,对二次加氯的优化配置问题做了研究,结论是水厂一次性加氯与管网二次优化加氯相比,优化加氯不论从水质方面还是经济方面都有显著的优越性。
     其次,通过实验室搭建的两种管材的管网,对淡化水进入不同管材的旧市政管网后的化学稳定性进行了研究,提出了淡化水作为自来水补充水源的最佳掺混比。通过淡化水静态浸泡实验,研究了pH、碱度、氯离子浓度和硫酸根离子浓度等因素对铁的释放的影响。在此基础上,采用全回归、逐步回归以及主成分分析三种方法建立了铁的释放速率统计模型,经过分析比较,逐步回归从模型精度和意义两方面考虑都具有一定的优势,能够预测铁的释放速率。将该逐步回归模型应用于水质化学稳定性的判断,提出了铁的释放速率判别指数VI。
     最后,以EPANET为平台,将再生水的余氯衰减模型和淡化水的铁的释放速率模型分别在实际的再生水管网和实际的淡化水与自来水混配管网上进行考核应用。模拟结果与实测值较吻合,模型具有一定的应用意义。
At present, the researches concerned with drinking water’ chemical stability andbiological stability have been carried extensively worldwide, but the attention paid onthe water quality stability of anti-traditional water source is far from enough. Thispaper studies reclaimed water’s biological stability and desalinated water’s chemicalstability according to the water quality characteristic of reclaimed water anddesalinated water.
     Firstly, this paper analyses the differences of residual chorine decay betweenreclaimed water and drinking water through the experiments. The residual chlorinedecay of reclaimed water is divided into two phases: high velocity phage at chlorinefeeding stage and low velocity phage after that, both of which are fist-order reactionmodel. Then, taking a reclaimed water distribution network for example, a residualchlorine decay model is set up, which is first-order reaction kinetics equation. Themodel is verified by monitoring data and the result shows that simulation value hasgood agreement with monitoring data. On the basis of the residual chlorine decaymodel, optimal disinfection is studied and optimizing model of chlorine allocation isestablished which draws a conclusion that the optimal disinfection in distributionnetwork has a remarkable advantage on both water quality and economy comparedwith chlorine dosing only in water supply plant.
     Secondly, the desalinated water’s chemical stability after entering different oldmunicipal pipe network is investigated by two pilot systems of two different pipematerials in laboratory. The best mixing ratio of desalinated water and drinking wateris found when desalinated water is used as supplement source of drinking water. Staticexperiments are done to research the effect of water quality factors on iron release.The factors include pH value, alkalinity, chlorine ion and sulphate ion concentrationetc. Therefore, iron release velocity statistic model is built using total regression,stepwise regression and major constituent analysis methods. Stepwise regressionmodel is chosen to forecast the iron release velocity because of its better modelprecision and mechanism significance compared with the other two models.Consequently, stepwise regression model is applied to judge water’s chemical stability and the iron release velocity index VI is put forward.
     Finally, the residual chlorine decay model and iron release velocity model isrespectively evaluated and applied in actual reclaimed water distribution network anddesalinated water mixed with drinking water distribution network with EPANET. Theresults show that simulation values have good agreement with monitoring data.Therefore the two models can be used in actual network systems.
引文
[1]John Anderson. International water recycling case studies in the21st century[C].International Conference on Developing Strategy of Urban Waste Water Treatmentand Reuse, Beijing,2001.
    [2]杨蛟云.北京经济技术开发区经开再生水厂可行性研究[D].天津:天津大学,2005.
    [3]王芝国,周彦国.推进再生水利用规划建设节水型社会[J].山西建筑,2009,35(17):157-158.
    [4]许有鹏.城市水资源与水环境[M].贵州:贵州人民出版社,2003.
    [5]张颖,赵国志.城市再生水回用与水资源的可持续利用[J].水工业市场,2008,(4):25-28.
    [6]石辉,彭可珊.我国的水资源问题与持续利用[J].中国人口,环境与资源,2002,12(6):23-25.
    [7]赵明,舒春敏.我国城市供水状况及节水对策[J].干旱区资源与环境,2003,17(l):32-37.
    [8]魏杰,宁大亮.氯化/脱氯消毒对污水发光细菌毒性的影响[C].全国城市污水再利用经验交流和技术研讨会,2003.
    [9]郭瑾,王淑莹.国内外再生水补给水源的实际应用与进展[J].中国给水排水,2007,23(6):10-14.
    [10]杨益.我国再生水利用潜力巨大[J].经济月谈,2010(4):64-65.
    [11]马成良.发展海水利用产业解决我国缺水问题[J].水工业市场,2007,(4):23-27.
    [12]王世昌.发展海水淡化的制约因素及政策[J].水工业市场,2007,(12):26-30.
    [13]杨尚宝.关于我国海水淡化产业发展的政策思考[J].水处理技术,2008,34(l):1-4.
    [14]陈东辉,常青.21世纪城市水处理市场前景初探[J].陕西环境,2000,7(3):44-46.
    [15]Chang E, Chiang P C, Ko Ya Wen, et al. Characteristics of organic precursors andtheir relationship with disinfection by-products[J]. Chemosphere,2001,44(5):1231-1236.
    [16]王志鹏,罗奕凯,韩芸等.余氯量对城市污水再生利用中混凝过程的影响研究[J].中国给水排水,2008,24(13):52-54,57.
    [17]穆效群,马铃,谭壮生.氯化消毒对中水遗传毒性的影响[J].毒理学杂志,2008,22(2),137-140.
    [18]葛云红,刘艳辉,赵河立等.海水淡化水进入市政管网需考虑和解决的问题[J].中国给水排水,2009,25(8):84-87.
    [19]骆碧君,刘志强,郑毅等.海水淡化水在既有管网中的水质变化研究[J].中国给水排水,2009,25(23):57-60.
    [20]Clark R M. Developing and applying the water supply simulation model [J].Journal of the American Water Works Associations,1986,78(8):929-943.
    [21]吴文燕.给水管网系统水质模型的研究[D].哈尔滨:哈尔滨工业大学,1999.
    [22]Grayman W M, Clark R M, Males R M. Modeling distribution system waterquality: dynamic approach[J]. Journal of Water Resources Planning andManagement,1998,114(3):295-312.
    [23]Ormsbee L E, Wood D J. Explicit pipe network calibration[J]. Journal of WaterResources Planning and Management,1986,112(2):166-182.
    [24]Males R M, Clark R M, Wehrman P J, et al. Algorithm for mixing problems inwater systems[J]. Journal of Hydraulic Engineering,1985,111(2):206-219.
    [25]徐洪福.配水管网系统水质变化规律与水质模型研究[D].哈尔滨:哈尔滨工业大学,2003.
    [26]Clark R M, Rossman L A, Wymer L J. Modeling distribution system water quality:regulatory implications[J]. Journal of Water Resources Planning and Management,1995,121(6):423-428.
    [27]Lious C P, Kroon J R. Modeling the propagation of waterborne substances indistribution networks[J]. Journal of the American Water Works Associations,1987,79(11):54-58.
    [28]Rossman L A, Paul F Boulo, Tom Altman. Discrete volume-element method fornetwork water-quality models[J]. Journal of Water Resources Planning andManagement,1993,119(5):32-40.
    [29]Rossman L A, Boulos P F. Numerical methods for modeling water quality indistribution systems: A comparison[J]. Journal of Water Resources Planning andManagement,1996,122(2):137-146.
    [30]Rossman L A, Chaudhry M H, Grayman W M. Modeling chlorine residuals indrinking-water distribution systems[J]. Journal of Environmental Engineering,1994,120(4):803-820.
    [31]Chaudhry M H, Islam M R. Water quality modeling in pipe networks[M].Netherlard: Kluwer Academic publishers,1995.
    [32]Clark. Chlorine demand and trihalomethane formation kinetics: a second-ordermodel[J]. Journal of Environmental Engineering,1998,124(1),16-24.
    [33]Fang Hua, West J R, Barker R A, et al. Modelling of chlorine decay in municipalwater supplies[J]. Water Research,1999,33(12):2735-2746.
    [34]Jinhui, Jeanne Huang, Edward Arthur McBean. Using Bayesian statistics toestimate the coefficients of a two-component second-order chlorine bulk decaymodel for a water distribution system [J]. Water Research,2007,41:287-294.
    [35] Philip M R, Jonkergouw, Soon-thiam Khu. A variable rate coefficient chlorinedecay model [J]. Environmental Science and Technology,2009,43:408-414.
    [36] Helena M, Ramos D, Loureiro A. Evaluation of chlorine decay in drinking watersystems for different flow conditions: From theory to practice[J]. Water ResourcesManagement,2010,24(4):815-834.
    [37]李欣.配水管网水质变化的研究[D].哈尔滨:哈尔滨建筑大学,1999.
    [38]李欣,马建薇,袁一星.城市给水管网水质研究与进展[J].哈尔滨工业大学学报,2004,36(10):1392-1396.
    [39]李斌.城市输配水管网水质变化的动态模拟[D].长沙:湖南大学,2002.
    [40]周建华,赵洪宾,薛罡.配水管网中与有机物反应的余氯衰减动力学模型[J].环境科学,2003,24(3):45-49.
    [41]徐洪福,赵洪宾.输配水系统中水体余氯的衰减规律研究[J].中国给水排水,2003,19(8):15-18.
    [42]王阳.城市供水管网水质预测模型的研究与应用[D].天津:天津大学,2005.
    [43]王旭冕.城市供水系统水质安全性与余氯控制的研究[D].西安:西安建筑科技大学,2006.
    [44]吴晨光,孙雨石,赵洪宾.环状管网模拟余氯衰减模型[J].中国给水排水,2006,22(1):9-13.
    [45]董晓磊.给水管网水质动态模拟[D].合肥:合肥工业大学,2006.
    [46]马力辉.供水管网余氯优化控制决策支持系统研究[D].上海:同济大学,2007.
    [47]王鸿翔.供水管网水质模型校正及水质监控研究[D].杭州:浙江大学,2009.
    [48]张茹.次氯酸钠中水消毒的研究[D].北京:中国地质大学,2006.
    [49]马丽莎.中水二氧化氯消毒技术的研究[D].北京:中国地质大学,2006.
    [50]信昆仑,贾海峰,魏炜等.基于GIS的北京市再生水回用管网规划研究[J].中国给水排水,2007,23(05):69-72.
    [51]方伟.城市供水系统水质化学稳定性及其控制方法研究[D].长沙:湖南大学,2007.
    [52]潘海祥.海水淡化水厂供水的黄水现象及应对措施[J].中国给水排水,2008,24(12):90-92.
    [53]徐冰峰,胡越峰,杨泽.常用给水管网的选材分析[J].有色金属设计,2004,31(1):60-63,70.
    [54]吴红伟,刘文君.配水管网中管垢的形成特点和防治措施[J].中国给水排水,1998,14(3):37-39.
    [55]Zhang Z, Stout J E, Yu V L, et al. Effect of pipe corrosion scales on chlorinedioxide[J]. Water Research,2008,42(2):129-136.
    [56]Edwards M. Controlling corrosion in drinking water distribution systems: AGrand Challenge for the21st Century[J]. Environmental Science and Technology,2004,49(2):1-8.
    [57]Sarin P, Snoeyink V L, Bebeeb J, et al. Physical-chemical characteristics ofcorrosion scales in old iron pipes[J]. Water Research,2001,35(12):2961-2969.
    [58]Lin J P, Ellaway M, Adrien R, et al. Study of corrosion materials accumulated onthe inner wall of steel water pipe[J]. Corrosion Science,2001,43(11):2065-2081.
    [59]牛璋彬,王洋,张晓健等.给水管网中管内壁腐蚀管垢特性分析[J].环境科学,2006,27(6):1150-1154.
    [60]杨洪涛,丛苹,周荣敏.城市给水管网腐蚀机理及防护措施[J].管道技术与设备,2008,(3):50-51.
    [61]王绍华,赵庆良,祝琳.再生水水质对冷却水系统腐蚀的影响研究[J].中国给水排水,2009,25(13):98-101.
    [62]方伟,许仕荣,徐洪福.城市供水管网水质化学稳定性研究进展[J].中国给水排水,2006,22(14):10-13.
    [63]崔小明.水质稳定性指数判定法简析[J].净水技术,1998,64(2):21-24.
    [64]Rossum J R, Merrill D T. An evaluation of the calcium carbonate saturationindexes[J]. American Water Works Association,1983,75(2):95-100.
    [65]Singley J E. Laboratory studies of corrosion [C]. Proc. of the Eighth AnnualAWWA Water Quality Technology Conference, Denver, Colo: Journal of theAmerican Water Works Associations.
    [66]李杰.关于水质稳定性问题的分析[J].城镇供水,2003,23(1):12-13.
    [67]罗昊进,谭立国.城市供水管网选材与水质污染分析[J].净水技术,2005,25(6):68-70.
    [68]Laurie S McNeill, Mar C Edwards. Iron pipe corrosion in distribution systems[J].American Water Works Association,2001,93(7):88-93.
    [69]岳舜琳.城市供水水质问题[J].中国给水排水,1997,13:35-38.
    [70]郑毅,彭晨蕊,谭浩.给水管网内铁离子的释放[D].天津大学学报,2008,41(2):137-141.
    [71]张晓健,牛璋彬.给水管网中铁稳定性问题及其研究进展[J].中国给水排水,2006,22(2):13-16.
    [72]牛璋彬,王洋,张晓健等.某市给水管网中铁释放现象影响因素与控制对策分析.环境科学,2006,27(2):310-314.
    [73]Panka J Sarin. Iron release from corrosion scales in old iron/steel drinking waterdistribution pipes[M]. Urbana, University of Illinois at Urbana-Champaign,2002.
    [74]Abigail F Cantor, Jae K Park, Prasit VaiyavatJamai, et al. Effect of chlorine oncorrosion in drinking water systems[J]. American Water Works Association,2003,95(5):112-123.
    [75]Sontheimer H, Benjamin M, Leroy P. Corrosion of Iron and Steel[M]. Internalcorrosion of water distribution systems, Journal of the American Water WorksAssociations Research Foundation, Denver,1985.
    [76]Sontheimer H, Kolle W, Snoeyink V L, et a1. The Siderite model of the formationof corrosion resistant scales[J]. American Water Works Association,1981,73(11):572-579.
    [77]Baylis J R. Prevention of corrosion and red water[J]. American Water WorksAssociation,1926,18(6):598.
    [78]Benjamin. Internal corrosion of water distribution systems[M].2nd edition,American Water Works Association Research Foundation,1996.
    [79]Kuch A. Investigations of the reduction and re-oxidation kinetics of iron(III)oxide scales formed in waters[J]. Corrosion Science,1988,30(3):221-231.
    [80]Sarin P, Snoeyink V L, Bebee J, et al. Physical-chemical characteristics ofcorrosion scales in old iron pipes[J]. Water Research,2001,35(12):2961-2969.
    [81]P Sarin. Iron release from corrosion scales in old iron/steel drinking waterdistribution pipes[D]. Illinois: University of Illinois at Urbana-Champaign,2001.
    [82]Sarin P, Bebee J, Beckett M A, et al. Mechanism of release of iron from corrodediron/steel pipes in water distribution systems[J]. Corrosion&Materials,2001,26(3):1-4.
    [83]Clement J A, Hayes M E, Sarin P, et a1. Development of red water controlstrategies[M]. The USA: American Water Works Association Research Foundation,2002.
    [84]Theis T L, Singer P C. The stabilization of ferrous iron by organic compounds innatural waters[M]. Ann Arbor: MI Ann Arbor Science Publishers, Inc.,1973.
    [85]Emde K M E, Smith D W, Facey R, et al. Initial investigation of microbiallyinfluenced corrosion in a low temperature water distribution system[J]. WaterResearch,1992,26(2):169-175.
    [86]牛璋彬,王洋,张晓健等.给水管网中铁释放现象的影响因素研究[J].环境科学,2007,28(10):2270-2274.
    [87]牛璋彬,张晓健,韩宏大等.给水管网中金属离子化学稳定性分析[J].中国给水排水,2005,21(5):18-20.
    [88]王洋,牛璋彬,张晓健等.某市给水管网铁细菌生长特征调查[J].中国给水排水,2007,23(1):34-37.
    [89]王洋,张晓健.给水管网管壁铁细菌生长特性模拟及控制对策研究[J].环境科学,2009,30(11):3293-3299.
    [90]谭浩.供水管网管道内铁离子的释放研究[D].天津:天津大学,2007.
    [91]刘扬.水质变化对腐蚀管段中铁释放的影响[D].天津:天津大学,2010.
    [92]童祯恭.供水管网水质建模研究[J].华东交通大学学报,2006,23(5):51-54.
    [93]Shang F, Uber J G. EPANET Multi-Species Extension User's Manual[M].Cincinnati, US: Environmental Protection Agency,2007.
    [94]许刚.给水管网水力模型校正研究[D].杭州:浙江大学,2006.
    [95]Demoyer R, Horwitz L B. Macroscopic Distribution-System Modeling[J]. Journalof American Water Works Association,1975,(7):377-380.
    [96]吴学伟,赵洪宾.给水管网状态估计方法的研究[J].哈尔滨建筑大学学报,1995,28(6):61-65.
    [97]许刚,洪赟,吕谋等.城市给水管网状态模拟方法探讨[J].水利水电技术,2005,36(7):129-131.
    [98]许刚,吕谋,张土乔.给水管网神经网络模型数据预处理方法探讨[J].中国农村水利水电,2005,(5):17-19.
    [99]Axworthy D H. Water Distribution Network Modeling: From Steady State toWaterhammer[D]. Toronto: University of Toronto,1997.
    [100]Todini E, Pilati S. A Gradient Algorithm for the Analysis of Pipe Networks[C].Proc. Computer Applications in Water Supply, New York, USA,1988.
    [101]吴学伟.给水管网状态估计及多目标直接优化运行调度[D].哈尔滨:哈尔滨建筑大学,1996.
    [102]吕谋.大规模供水系统多目标混合直接优化调度[D].哈尔滨:哈尔滨建筑大学,1998.
    [103]张宏伟.城市供水系统运行决策支持系统[D].天津:天津大学,2001.
    [104]何文杰.供水管网系统动态模拟技术的研究[D].哈尔滨:哈尔滨工业大学,2002.
    [105]周建华.大规模城市给水管网系统优化运行模型研究[D].哈尔滨:哈尔滨建筑大学,2003.
    [106]俞亭超.城市供水系统优化调度研究[D].杭州:浙江大学,2004.
    [107]陈磊.大规模供水系统直接优化调度研究[D].杭州:浙江大学,2005.
    [108]信昆仑.给水管网微观模型优化调度应用研究[D].上海:同济大学,2003.
    [109]徐洪福,赵洪宾,尤作亮等.配水系统的水质模型研究概况[J].中国给水排水,2002,18(3):33-36.
    [110]赵洪宾,严煦世.给水管网系统理论与分析[M].北京:中国建筑工业出版社,2003.
    [111]Rossman, L A. EPANET2User’s Manual[M]. Cincinnati, US EnvironmentalProtection Agency,2000.
    [112]Orlob G T, Shubinski R P, Feiger K D. Mathematical modeling of water qualityin estuarial systems[C]. Proc., Nat. Symp. on Estuarine Pollution, StanfordUniversity, Stanford, Calif.,1967.
    [113]许仕荣,李斌,李黎武.事件驱动法模拟输配水管网中余氯浓度变化[J].湖南大学学报(自然科学版),2003,30(5):61-64.
    [114]Boulos P F, Altman T, Bowcock R W, et al. An explicit algorithm for modelingdistribution system water quality with applications[C].2nd BHR Int. Conf. WaterPipeline Systems, D. S. Miller, ed., Civil-Comp Press, Edinburgh, Scotland,1994A,405-432.
    [115]Boulos P F, Altman T, Jarrige P A, et al. An event-driven method for modelingcontaminant propagation in water networks[J]. Appl. Math. Modeling,1994,18(2):84-92.
    [116]Boulos P F, Altman T, Jarrige P A, et al. Discrete simulation approach fornetwork water quality models[J]. Water Resources Planning and Management,1995,121(1):49-60.
    [117]F Hua, West J R, Barker RA, et al. Modeling of chlorine decay in municipalwater supplies[J]. Water Research,2003,33(12):2735-2746.
    [118]国家质量监督检验检疫总局,GB/T18920-2002,城市污水再生利用城市杂用水水质,北京,2002.
    [119]中华人民共和国卫生部,中国国家标准化管理委员会,GB5749-2006,生活饮用水卫生标准,北京,2006.
    [120]中华人民共和国水利部,SL368-2006,再生水水质标准,北京,2006.
    [121]赵志领,赵洪宾,何文杰等.天津市给水管网余氯衰减模型研究[J].给水排水,2006,32(5):36-39.
    [122]迟海燕.城市供水管网氯的优化配置[D].天津:天津大学,2004.
    [123]陈涛、张国亮.化工传递过程基础[M].北京:化学工业出版社,2002.
    [124]王运东,骆广生,刘谦.传递过程原理[M].北京:清华大学出版社,2002.
    [125]周鲁,刘钟海.复杂反应动力学基础[M].成都:成都科技大学出版社,1994.
    [126]Kastle G J, Fisher I H, Jegatheesan V. Evaluation of chlorine decay kineticsexpressions for drinking water distribution systems modeling[J]. Journal ofSRT-Aqua,1999,48(6):219-226.
    [127]徐成贤,陈志平,李乃成.近代优化方法[M].北京:科学出版社,2002.
    [128]李冲,王兴华.求解一类非光滑优化问题的Gauss-Newton法[J].自然科学进展,2000,10(4):372-374.
    [129]Womersley R S. Local properties of algorithms minimizing nonsmoothcomposite functions[J]. Mathematical Programming,1985,12(1):32-69.
    [130]Jittomtrum K, Osbome M R. Strong uniqueness and second order convergencein nonlinear discrete approximation[J]. Numerische Mathematik,1980,32(5):34-39.
    [131]Burke J V, Ferris M C. A Gauss-Newton method for convex compositeoptimization, Mathematical Programming[J].1995,(7):71-79.
    [132]O H Tuovinen, et al. Bacterial, chemical and mineralogical characteristics oftubercles in distribution pipelines[J]. J AWWA,1980(11):626-635.
    [133]Chen X, Stewart P S. Chlorine penetration into artifical biofilm is limited by areaction-diffusion interaction[J]. Environmental Science and Technology,1996(6):2078-2083.
    [134]齐晶瑶,李欣.关于供水管道内余氯消耗机理的探讨[J].给水排水,2000,26(8):66-69.
    [135]李欣,宋学峰.配水管网水质变化的研究(Ⅱ)——余氯消耗动力学机制的研究[J].哈尔滨建筑大学学报,1999,32(3):52-56.
    [136]吴育华,杜纲.管理科学基础[M].天津:天津大学出版社,2001.
    [137]中国科学院数学研究所运筹室编.最优化方法[M].北京:科学出版社,1980.
    [138]汪光焘.城市供水行业2000年技术进步发展规划[M].北京:中国建筑工业出版社,1993.
    [139]Sander A, Berghult B, Broo A E, et al. Iron Corrosion in Drinking WaterDistribution Systems-The Effect of pH, Calcium and Hydrogen Carbonate[J].Corrosion Science,1996,38(2):443-455.
    [140]Pisigan R A, Singley J E. Calculating of the pH of Calcium CarbonateSaturation[J]. J.Am.Water Works Assoc.,1985,77(10):83-91.
    [141]Butler G, Ison H C K. Corrosion and its Prevention in Waters[M]. New York:Reinhold Publishing Corporation,1966.
    [142]Pisigan R A, Singley J E. Effect of the Water Quality Parameters on theCorrosion of Galvanized Steel[J]. J.Am.Water Works Assoc.,1985,77(11):76-82.
    [143]Imran S A V. Effect of Water Quality on Red Water Release in Iron DrinkingWater Distribution Systems[D]. Florida: University of Central Florida,2003.
    [144]任若恩,王惠文.多元统计数据分析——理论、方法、实例[M].北京:国防工业出版杜,1997.
    [145]何晓群,刘文卿.应用回归分析[M].北京:中国人民大学出版社,2001.
    [146]史道济,张玉环.应用数理统计[M].天津:天津大学出版社,2008.
    [147]王冬梅,沈颂东.逐步回归分析法[J].工业技术经济,1997,16(3):54-57.
    [148]Nawrocki J, Raczyk-Stanis awiak U, Swietlik J, et al. Corrosion in a distributionsystem: Steady water and its composition[J]. Water research,2010,44(6):1863-1872.