复方川脊方治疗椎动脉型颈椎病兔动物模型作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     复制椎动脉型颈椎病兔动物模型,探讨复方川脊方治疗兔椎动脉型颈椎病动物模型效果;探讨兔椎动脉型颈椎病动物模型椎动脉基质金属蛋白酶-2(matrix metalloproteinase-2, MMP-2)、肌浆球蛋白(α-smooth muscle actin,α-SMA)表达的意义及复方川脊方的干预效果;完善椎动脉型颈椎病关于血管病变的发病机制,发展中药治疗椎动脉型颈椎病的作用机理。
     方法
     40只日本大耳兔随机分为四组:空白组,模型组,颈复康组,川脊方组。用硬化剂注射法造模,10 ml消痔灵注射于日本大耳兔右侧颈3至颈5椎体横突处,并于第二周,第四周各重复一次。四周后,经颅多普勒(TCD)检测显示模型组,颈复康组,川脊方组日本大耳兔右侧血流速度较左侧显著降低,搏动指数和阻力指数较右侧均显著提高(p<0.05),脑干听觉诱发电位显示模型组,颈复康组,川脊方组日本大耳兔右耳Ⅲ,Ⅴ波潜伏期均较注射前显著延长,差异有统计学意义(p<0.05)。显示造模成功。药物干预四周:模型组给予20 ML生理盐水灌胃,颈复康组给予20 ML颈复康混悬液灌胃,川脊方组给予20ML川脊方混悬液灌胃,均为每日一次。治疗四周后TCD检测血流速度,搏动指数和阻力指数,脑干听觉诱发电位检测双耳Ⅰ、Ⅲ、Ⅴ波潜伏期,血流变仪检测全血粘度及血浆粘度,常规HE染色测量血管壁中膜厚度,免疫组织化学检测血管α-SMA变化及MMP-2的表达。
     结果
     与空白组相比模型组血流速度降低,搏动指数和阻力指数均显著提高,Ⅲ,Ⅴ波潜伏期均显著延长,全血粘度及血浆粘度增加,管壁增厚,α-SMA和MMP-2表达增多,差异有统计学意义(p<0.05);与模型组及颈复康组相比,川脊方组血流速度升高,搏动指数和阻力指数均降低,全血粘度及血浆粘度降低,管壁增厚受抑制,α-SMA表达减少,MMP-2表达较少,差异有统计学意义(p<0.05)。川脊方组与模型组相比,Ⅲ,Ⅴ波潜伏期缩短,差异有统计学意义(p<0.05)。复方川脊方组与颈复康组相比Ⅲ,Ⅴ波潜伏期无明显差异(p>0.05)。四组中Ⅰ波潜伏期均无明显改变(p>0.05)。
     结论
     复方川脊方能有效治疗兔动物模型椎动脉型颈椎病,提高平均血流速度,降低搏动指数和阻力指数,改善脑干供血,降低全血粘度及血浆粘度;血管壁增殖与重构是椎动脉型颈椎病血供减少的机制之一,复方川脊方能有效抑制椎动脉血管增殖与重构。
Objective
     First of all:to rebuild the rabbits model of vertebral artery type of cervical spondylosis and explore the efficacy compound chuanji formula in treatment of rabbits model of cervical spondylosis. The second:to detect the expression of MMP-2 andα-SMA in the vertebral artery and the interference effects of compound chuanji formula to it. The third:to interpret the pathogenesis of the vertebral artery in vertebral artery type cervical spondylosis and develop the mechanism of Chinese medicine in treatment of vertebral artery type of cervical disease.
     Methods
     Forty rabbits were randomly divided into four groups:the normal group, the control group, the Jingfukang group (JFKG) and the chuanji formula group (CJFG). The method of injecting sclerosing agent was used to induce the vertebral artery type of cervical spondylosis animal model.10 mL scleroing agent was injected into the left side of C3 to C5 cervical vertebra next to the edge of transverse process with the syringe needle. The above steps were repeated at the 1st day of the 2nd and 4th week, respectively. Four weeks later, the TCD detection showed that the pulsatility index, resistent index were significantly higher and the blood flow rate was remarkedly slower in the left side vertebral artery than those in the right side vertebral artery in the control group, JFKG and CJFG respectively (p<0.05); Brainstem auditory evoked potentials (BAEP) showed thatⅢ,Ⅴlatencies were longer than four weeks ago in the control group, JFKG and CJFG (p<0.05). It showed the animals model were successfully reproduced.The control group, JFKG and CJFG were treated with 20 ML Normal saline,20 ML suspended compound chuanji formula or 20 ML suspended Jingfukang granule respectivily with intragastric administration, once a day. After four weeks therapy, the transcranial doppler was used to detect the blood flow rate、pulsatility index and the resistent index of the vertebral artery;BAEP apparatus detected theⅠ、Ⅲ、Ⅴlatency; the blood flow rheometer was. used to detected the plasma viscosity and the blood viscosity; the HE staining was used to measure the thickness of tunica media vasorum, the immunohistochemistry was used to detect the expression ofα-SMA and the expression of MMP-2 in the vertebral artery.
     Results
     The plasma viscosity, blood viscosity, pulsatility index, resistent index, thickness of tunica media vasorum, expression ofα-SMA and the expression of MMP-2 were significantly higher in the model group than those in the normal group, theⅢ,Ⅴlatency was significantly longer (p<0.05), in the contrast, the blood flow rate was remarkably decreased (p<0.05). The plasma viscosity, blood viscosity, pulsatility index, resistent index, thickness of tunica media vasorum, expression ofα-SMA and the expression of MMP-2 were decreased significantly in the CJFG compared with the normal group and the control group (p<0.05), and the blood flow rate was increased remarkably (p<0.05) Compared with the control group, theⅢ,Ⅴlatency was significantly longer in the CJFG (p<0.05); Compared with the JFKG, theⅢ,Ⅴlatency was the samilar (p>0.05).TheⅠlatency was not changed too much in the four group (p>0.05)
     Conclusion
     Compound chuanji formula is effective in treatment of the animal model of vertebral artery type cervical spondylosis; The tunica media vasorum proliferation is one of the mechanism of blood-supply insufficient in vertebral artery type of cervical spondylosis; It would improve the blood supply to the brain stem, decrease the plasma viscosity, blood viscosity, pulsatility index and resistent index, also increase the blood flow rate. Proliferation and reconstitution of vertebral artery is one of the mechanism of vertebral artery type of cervical spondylosis; CJP is effective in inhibit the proliferation and reconstitution of vertebral artery.
引文
1. Yoshimoto M, Miki K, Fink GD, et al. Chronic angiotensin Ⅱ infusion causes differential responses in regional sympathetic nerve activity in rats. Hypertension.2010,55(3):644-51
    2. Diskin CJ. Novel insights into the pathobiology of the vascular access do they translate into improved care? Blood Purif.2010,29(2):216-29
    3. Boulanger CM. Microparticles, vascular function and hypertension. Curr Opin Nephrol Hypertens.2010,19(2):177-180
    4. Gluba A, Banach M, Mikhailidis DP, et al. Genetic determinants of cardiovascular disease:the renin-angiotensin-aldosterone system, paraoxonases, endothelin-1, nitric oxide synthase and adrenergic receptors. In Vivo.2009,23(5):797-812
    5. Jiao L, Wang MC, Yang YA, et al. Proliferation and phenotypic transformation of vascular smooth muscle cells. Exp Mol Pathol.2008,85(3):196-200
    6. Johnson R, Webb JG, Newman WH, et al. Regulation of human vascular smooth muscle cell migration by beta-adrenergic receptors. Am Surg. 2006,72(1):51-54
    7. Bleeke T, Zhang H, Madamanchi N, et al. Catecholamine-induced vascular wall growth is dependent on generation of reactive oxygen species. Circ Res.2004, 94(1):37-45
    8. Anggrahini DW, Emoto N, Nakayama K, et al. Vascular endothelial cell-derived endothelin-1 mediates vascular inflammation and neointima formation following blood flow cessation. Cardiovasc Res.2009,82(1):143-151
    9. Miyake T, Aoki M, Morishita R, et al. Inhibition of anastomotic intimal hyperplasia using a chimeric decoy strategy against NFkappaB and E2F in a rabbit model. Cardiovasc Res.2008,79(4):706-714
    10. Kurokawa K, Sakiyama K, Abe S, Hiroki E, et al. Expression of myosin heavy-chain mRNA in cultured myoblasts induced by centrifugal force. Bull Tokyo Dent Coll.2008,49(4):179-184
    11. Chiang HY, Korshunov VA, Serour A, et al. Fibronectin Is an Important Regulator of Flow-Induced Vascular Remodeling. Pediatr Res. 2008,63(1):26-32
    12. Ambalavanan N, Nicola T, Li P, et al. Role of matrix metalloproteinase-2 in newborn mouse lungs under hypoxic conditions. Pediatr Res.2008,63:26-32
    13. Grote K, Flach I, Luchtefeld M, et al. Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P) Hoxidase-derived reactive oxygen species. Circ Res.2003,92:80-86
    14. Ishikawa Y, Asuwa N, Ishii T, et al. Vascular remodeling by hemodynamic factors. VirchowaArch.2000,437:138-148
    15. Sap ienza P, diMarzo L, BorrelliV, et al. Metalloproteinases and their inhibitors are markers of plaque instability. Surgery.2005,137:355-363
    16. Zou Y, Qi Y, Roztocil E, et al. Patterns of Gel'atinase Activation Induced by Injury in the Murine Femoral Artery. J Surg Res.2009,154(1):135-142
    17. Yang EV, Sood AK, Chen M, et al. Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2 and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res. 2006,66(21):10357-10364
    19. Menon B, Singh M, Singh K. Matrix metalloproteinases mediate beta-adrenergic receptor-stimulated apoptosis in adult rat ventricular myocytes. Am J Physiol Cell Physiol.2005,289(1):C368-376
    20. Spiegel A, Shivtiel S, Kalinkovich A, et al. Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nat Immunol.2007,8(10):1123-1131\
    1.周丕琪,沈霖,杨艳萍等。复方川脊方治疗椎动脉型颈椎病患者的临床观察.中国中医骨伤科杂志.2004,2;12(2)12-14
    2.朱明双,郑重,黄勇。注射硬化剂法制作家兔椎动脉型颈椎病动物模型.中医正骨.2000,12 (12) 11-13
    3.苗明三.实验动物和动物实验技术[M].北京:中国中医药出版社,1997:144
    4. Wang YJ, Shi Q, Lu WW,et al. Cervical intervertebral disc degeneration induced by unbalanced dynamic and static forces:a novel in vivo rat model. Spine. 2006,31(14):1532-15328
    5.Henderson FC, Geddes JF, Vaccaro AR, et al. Stretch-associated injury in cervical spondylotic myelopathy:new concept and review. Neurosurgery.2005,56(5):1101-1113
    6.Teixeira LR, Vargas FS, Acencio MM,et al. Influence of parecoxib (cox-2 inhibitor) in experimental pleurodesis. Respir Med.2009,103(4):595-600
    7.Demircan MN, Asir A, Cetinkal A, et al. Is there any relationship between proinflammatory mediator levels in disc material and myelopathy with cervical disc herniation and spondylosis? A non-randomized, prospective clinical study. Eur Spine J. 2007,16(7):983-986
    8.Tachihara H, Kikuchi S, Konno S,et al. Does facet joint inflammation induce radiculopathy?:an investigation using a rat model of lumbar facet joint inflammation. Spine.2007,32(4):406-412
    9. Narouze S, Vydyanathan A, Patel N. Ultrasound-guided stellate ganglion block successfully prevented esophageal puncture. Pain Physician.2007,10(6):747-752
    10. Yu Y, Zhang ZH, Wei SG, et al. Brain perivascular macrophages and the sympathetic response to inflammation in rats after myocardial infarction. Hypertension. 2010,55(3):652-659
    11.Rodriguez-Manas L, El-Assar M, Vallejo S,et al. Endothelial dysfunction in aged humans is related with oxidative stress and vascular inflammation. Aging Cell. 2009,8(3):226-238
    12.Tatenkulova SN, Mareev VIu, Zykov KA,et al. The role of inflammatory factors in pathogenesis of ischemic heart disease. Kardiologiia.2009,49(1):4-8
    13.Donato AJ, Gano LB, Eskurza I,et al. Vascular Endothelial Dysfunction with Aging: Endothelin-1 and Endothelial Nitric Oxide Synthase. Am J Physiol Heart Circ Physiol. 2009,297(1):H425-532
    1.于腾波,夏玉军,周秉文.颅外段椎动脉壁交感神经分布特点及其临床意义.青岛医学院学报.1999,35(4):244-246
    2.于腾波,夏玉军.椎动脉壁交感神经节后纤维与颈部交感神经节的对应关系.齐鲁医学杂志.2003,18(1):13-15
    3.李敏才,李应续,陈耀光.椎动脉横突段交感神经的应用解剖研究.颈腰痛杂志.2005,26(5):332-333
    4.左金良,韩建龙,马英文,等.交感神经在兔椎动脉被膜节段性分布的实验研究.泰山医学院学报.2006,27(2):107-109
    5.Yan J, Ogino K, Hitomi J. The terminal insertional segments and communications of the vertebral nerve in the human cervical region. Surg Radiol Anat.2009,31(3):165-71
    6.Johnson GM. The sensory and sympathetic nerve supply within the cervical spine:review of recent observations. Man Ther.2004,9(2):71-6
    7.钱军,田野,胡建华,等.颈椎不稳与交感型颈椎病的相关性研究.中国脊柱脊髓杂志.2009,19(1):27-29
    8.李淳德,刘宪义,马忠泰,等.颈椎节段不稳在交感型颈椎病中的作用.中华外科杂志.2002,40(10):730-732
    9.杨米雄,吴连国,马伟丰,等.家兔枕后急性炎症对椎动脉血流影响的实验研究。中国中医骨伤科杂志.2007,15(2):20-25
    10.吴连国,杨米雄, 邵国明.兔枕后软组织急性炎症对血浆内皮素水平的影响.2007,15(12):12-14
    11.李曙明,李相柱,张志刚,等.颈部疼痛及颈性眩晕与交感神经反射弧的联系。中国 临床康复.2005,9(25):112-113
    12. Clements JD, Jamali F.Norepinephrine transporter is involved in down-regulation of betal-adrenergic receptors caused by adjuvant arthritis. J Pharm Pharm Sci. 2009,12(3):337-345
    13.夏玉军,于腾波.刺激颈部交感神经节对椎动脉血流影响的实验研究.中国临床解剖学杂志.2002,20(5):380-382
    14.张清,佟大伟,孙树椿.刺激椎神经对椎动脉血流量影响的实验研究.中国骨伤.2001,14(10):599-600
    15.杨玉杰,王金锐,贾建文,等.交感型颈椎病伴单侧椎动脉狭窄患者头颈部活动后椎动脉血流的观察.中国超声医学杂志.2004,20(1):45-48
    16.杨玉杰,王金锐,贾建文,等.交感型颈椎病患者头颈部运动后椎动脉血流的观察.中国超声医学杂志.2002,18(9):706-708
    17.张军,孙树椿,于栋,等.交感神经及其递质在椎动脉型颈椎病中的调控机制.中国骨伤.2005,18(7):413-415
    18.Ruiz-Nuno A, Villarroya M, Cano-Abad M, et al. Mechanisms of blockade by the novel migraine prophylactic agent, dotarizine, of various brain and peripheral vessel contractility. Eur J Pharmacol.2001,411(3):289-99
    19.贺俊民,陈忠和,韦贵康,等.刺激兔颈交感神经节及椎动脉对血压影响的实验观察.中国骨伤.2000,13(3):144-146
    20.Kim CY, Paek SH, Seo BG, et al. Changes in vascular responses of the basilar artery to acetylcholine and endothelin-1 in an experimental rabbit vasospasm model. Acta Neurochir (Wien).2003,145(7):571-577
    21.Kameda Y. VIP-, galanin-, and neuropeptide-Y-immunoreactive fibers in the chicken carotid bodies after various types of denervation. Cell Tissue Res.1999,298(3):437-47
    22.伍海昭,林列,朱加德,等.椎动脉型颈椎病血浆ET.NO的变化.中医正骨.2004,16(2):-5
    23.杜协彬,张军,齐越峰,等.椎动脉型颈椎病患者中缩血管活性肽类物质的变化及 意义.中国骨伤.2003,16(5):262-263
    24.张清,张淳,孙树椿,等.旋转手法对椎动脉型颈椎病去甲肾上腺素及内皮素含量的影响.中国骨伤.2004,17(12):763
    25.李俊华,子毅.椎动脉受压动物模型血浆内皮素的变化.中国中医骨伤科杂志.2003,11(5):16-18
    26.Dogulu FH, Ozogul C, Akpek S, et al. Intra-arterial simultaneous administration of anandamide attenuates endothelin-1 induced vasospasm in rabbit basilar arteries. Acta Neurochir (Wien).2003,145(7):579-582
    27.Jiajun Wei, Jinzhi Xu,Suming Zhang, et al. Relationship among plasma endothelin, calciton in gene-related peptide and blood flow rate of bilateral vertebral arteries in patients with cervical vertigo. Journal of Nanjing Medical University.2008,22(3): 168-17
    28. Albert AP, Saleh SN, Large WA.Identification of canonical transient receptor potential (TRPC) channel proteins in native vascular smooth muscle cells. Curr Med Chem.2009, 16(9):1158-1165
    29. Jiao L, Wang MC, Yang YA, et al.Norepinephrine reversibly regulates the proliferation and phenotypic transformation of vascular smooth muscle cells. Exp Mol Pathol.2008, 85(3):196-200
    30. Li Z, Yu C, Han Y, et al.Inhibitory effect of D1-like and D3 dopamine receptors on norepinephrine-induced proliferation in vascular smooth muscle cells.Am J Physiol Heart Circ Physiol.2008,294(6):H2761-H2768
    31.Daub K, Seizer P, Stellos K, et al.Oxidized LDL-activated platelets induce vascular inflammation..Semin Thromb Hemost.2010,36(2):146-156
    32. Puddu P, Puddu GM, Cravero E, et al.The involvement of circulating microparticles in inflammation, coagulation and cardiovascular diseases.Can J Cardiol.2010,26(4):140-145
    33.Donato AJ, Gano LB, Eskurza I, et al. Vascular Endothelial Dysfunction with Aging: Endothelin-1 and Endothelial Nitric Oxide Synthase. Am J Physiol Heart Circ Physiol. 2009,297(1):H425-H432
    34.Anggrahini DW, Emoto N, Nakayama K, et al. Vascular endothelial cell-derived endothelin-1 mediates vascular inflammation and neointima formation following blood flow cessation. Cardiovasc Res.2009,82(1):143-151
    35.YanagisawaM, Kurihara H, Kimura S, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature.1988,332(6163):411-415
    36.冯世庆,杨敏杰,孔晓红,等.椎动脉型颈椎病血浆内皮素变化.中华骨科杂志.1997,17(6):387-388
    37. Mao J, Yuan H, Xie W, et al. Specific involvement of G proteins in regulation of serum response factor-mediated gene transcription by different receptors. J Biol Chem.1998,273(42):27118-27123
    38. Buhl AM, Johnson NL, Dhanasekaran N and Johnson GL. G alpha 12 and G alpha 13 stimulate Rho-dependent stress fiber formation and focal adhesion assembly. J Biol Chem.1995,270(42):24631-24634
    39. Gohla A, Schultz G and Offermanns S. Role of G(12)/(G13) in agonist-induced vascular smooth muscle cell contraction. Circ Res.2000,87(3):221-227
    40. Wettschureck N, Offermanns S. Rho/Rho-kinase mediated signaling in physiology and pathophysiology. J Mol Med.2002,80(10):629-638
    41. Mack CP, Somlyo AV, HautmannM, et al. Smooth muscle differentiation marker gene expression is regulated by RhoA-mediated actin polymerization. J Biol Chem.2001,276(1):341-347
    42. Zvibel I, Atias D, Phillips A, et al. Thyroid hormones induce activation of rat hepatic stellate cells through increased expression of p75 neurotrophin receptor and direct activation of Rho. Lab Invest. 2010;90(5):674-684
    43. Chou MT, Chang SN, Ke C, et al. The proliferation and differentiation of placental-derived multipotent cells into smooth muscle cells on fibrillar collagen. Biomaterials.2010;31(15):4367-4375
    44. Garvey SM, Sinden DS, Schoppee Bortz PD, et al. Cyclosporine up-regulates Kruppel-like factor-4 (KLF4) in vascular smooth muscle cells and drives phenotypic modulation in vivo. J Pharmacol Exp Ther.2010;333(1):34-42
    45. Ruddy JM, Jones JA, Stroud RE, et al. Differential effect of wall tension on matrix metalloproteinase promoter activation in the thoracic aorta. J
    Surg Res.2010;160(2) :333-339
    46. Ruddy JM, Jones JA, Stroud RE, et al. Differential effects of mechanical and biological stimuli on matrix metalloproteinase promoter activation in the thoracic aorta. Circulation.2009 Sep 15;120(11 Suppl):S262-S268
    47. Raffetto JD, Qiao X, Koledova VV, et al. Prolonged increases in vein wall tension increase matrix metalloproteinases and decrease constriction in rat vena cava:Potential implications in varicose veins. J Vasc Surg. 2008:48(2):447-456
    1. Endo K, Ichimaru K, Komagata M, et al. Cervical vertigo and dizziness after whiplash injury. Eur Spine J.2006,15(6):886-890
    2.杨学良,孙建民.颈椎不稳在椎动脉型颈椎病发病中的意义.中国骨伤.2009,22(5): 352-353
    3. Wang CJ, Liu JT, Guo F. (-)-Epigallocatechin Gallate Inhibits Endothelin-1-Induced C-Reactive Protein Production in Vascular Smooth Muscle Cells. Basic Clin Pharmacol Toxicol.2010 Mar 22
    4. Edvinsson L, Ho TW. CGRP receptor antagonism and migraine. Neurotherapeutics. 2010,7(2):164-75
    5.郭金明,依萨穆丁.钩椎关节增生与骨源性椎动脉型颈椎病的相关性研究.医学临床研究.2008,25(5):797-798
    6. Kavtaradze S, Mosidze T.Neuro-endocrinal regulation and disorders of intracranial hemocirculation in rheumatic diseases in children. Georgian Med News.2007, (153):32-5.
    7. Veraldi GF, Zecchinelli MP, Furlan F, et al. Mesenteric revascularisation in a young patient with antiphospholipid syndrome and fibromuscular dysplasia:report of a case and review of the literature. Chir Ital. 2009,61 (5-6):659-65.
    8.宋敏,蒋宜伟,史达.椎动脉型颈椎病发病机制研究进展.2003,24(5):310-312
    9.严培军.椎动脉解剖特点及其发病学意义.2007,4(22):101-102
    10.陈锡兵,董剑,许力昭,等.颈部硬膜外注射治疗法治疗颈性眩晕125例.实用医学杂志.2009,25(18):3112
    11.王贇,丁仁君.颈交感神经阻滞治疗椎动脉型颈椎病120例体会.青海医药杂志.2008,38(12):33-34
    12.徐阳平,方苏亭,杨功旭.星状神经节阻滞治疗椎动脉型颈椎病的效果及其机制.中国床康复.2004,8(11):2008-2009
    13. Huntoon MA. The Vertebral Artery is Unlikely to be the Sole Source of Vascular Complications Occurring during Stellate Ganglion Block. Pain Pract.2009 Sep 15.
    14.江志,邵国富.椎动脉型颈椎病发病机制及治疗进展.医学综述.2003,9(增刊):40-41
    15.张新根,石钢,曹铨,等.小针刀治疗椎动脉型颈椎病的临床研究.浙江创伤外科.2009,14(3):259-260
    15.马军光,刘海潮.针刀垂直浅刺法治疗椎动脉型颈椎病.针灸临床杂志.2008,24(11):19-20
    16.马红炜,张乐平,马晓东.针刀加手法治疗椎动脉型颈椎病74例.宁夏医科大学学报.2009,31(2):255-256
    17.滕春光.针刀推拿并用治疗椎动脉型颈椎病的临床对照试验。中国社区医师.2009,11(213):140-141
    18.黄锦军,赖耀铭,粟胜勇. “调督”推拿治疗椎动脉型颈椎病疗效观察.广西中医药.2009,32(3):14-16
    19.陈才,洪芳芳.Mulligan手法治疗椎动脉型颈椎病的临床研究.中国康复医学杂志.2009,24(4):325-327
    20.万金来,肖树明,杜跃.定位旋转复位法治疗椎动脉型颈椎病及对血流动力学的影响.河北中医药学报.2009,24(3):37,49
    21。李秀彬,王立新,李正祥,等.脊柱微调手法为主治疗椎动脉型颈椎病临床观察.中国中医骨伤科杂志.2008,16(1):10-12
    22.徐乐勤,宋敏.中医药治疗椎动脉型颈椎病作用机理的研究进展.中医正骨.2008,20(2):69-70
    23.王庆来.辨证结合活血化瘀法治疗椎动脉型颈椎病43例.浙江中医杂志.2009,44(4):283
    24.张纯武,李章平,滕红林,等.化痰祛湿法治疗椎动脉型颈椎病临床研究.中医正骨.2009,21(5):15-17
    25.高春梅.半夏白术天麻汤治疗椎动脉型颈椎病120例临床观察.河北中医.2009,31(6):868-869
    26.蔡水奇,华全科,胡建岳,等.劳氏颈椎Ⅱ号方治疗椎动脉型颈椎病痰湿阻滞证80例.浙江中医杂志.2009,44(5):322-323
    27.刘元梅.阳和汤加减治疗椎动脉型颈椎病79例.光明中医.2009,24(7): 1280-1281
    28.曹和平.补肾通络中药配合针刺对椎动脉型颈椎病患者血流动力学的影响.中国中医急症.2009,18(5):698-699
    29.王全权,陈海林,宗芳,等.穴位注射配合微波治疗椎动脉型颈椎病疗效观察.颈腰痛杂志.2008,29(3):271-272
    30.张丽君.穴位注射与药物结合治疗椎动脉型颈椎病.中华现代中医学杂志.2008,4(3):240
    31.曾群.针刺加穴位注射治疗椎动脉型颈椎病的疗效观察.湖北中医杂志.2009,31(9): 71
    32.李晓昊,谢珠蓉,徐木创,等.天宗穴穴位注射治疗椎动脉型颈椎病临床体会.中国中医急症.2009,18(9):1525-1526
    33.刘志义.针刺颈夹脊穴治疗椎动脉型颈椎病的临床观察.中国现代药物应用.2009,3(16):65-66
    34.陈晓强,赵金荣,王成,等.火针正骨疗法治疗椎动脉型颈椎病的临床研究.河北医药学报.2009,24(2):43-44
    35.孙云廷,索兴旺,杨际超,等.温针灸对椎动脉型颈椎病患者经颅多普勒的影响.中医外治杂志.2008,17(5):49-50
    36.张秋玲,吴扬扬.浮针治疗椎动脉型颈椎病45例.陕西中医.2009,30(8):1054-1055
    37.李国武,张冲.浮针疗法治疗椎动脉型颈椎病的疗效分析.西部医学.2009,21(9):1562-1563
    38.韩伟,宋沛松,欧阳甲,等.椎动脉型颈椎病的外科手术治疗.中国骨伤.2006,19(8):469-471
    39.王麓山,王文军,刘利乐,等.植骨融合加双侧椎动脉外膜剥离治疗椎动脉型颈椎病.医学临床研究;2007,24(8):1321-1323
    40.姜恒,单建林,郭光金,等.颈椎前路手术中椎动脉定位的相关解剖研究。第三军医大学学报.2005,27(2):157-159
    41.V61ker W, Ringelstein EB, Dittrich R, et al. Morphometric analysis of collagen fibrils in skin of patients with spontaneous cervical artery dissection. J Neurol Neurosurg Psychiatry.2008,79(9):1007-1012
    42. Natello GW, Carroll CM, Katwal AB. Rotational vertebrobasilar ischemia due to vertebral artery dynamic stenoses complicated by an ostial atherosclerotic stenosis. Vase Med.2009,14(3):265-269
    43. Arnold M, De Marchis GM, Stapf C, et al. Triple and quadruple spontaneous cervical artery dissection:presenting characteristics and long-term outcome. J Neurol Neurosurg Psychiatry.2009,80(2):171-174
    44. Brandt T, Morcher M, Hausser I. Association of cervical artery dissection with connective tissue abnormalities in skin and arteries. Front Neurol Neurosci.2005,20:16-29
    45. Jenkins JS, Patel SN, White CJ, et al. Endovascular Stenting for Vertebral Artery Stenosis. J Am Coll Cardiol.2010,55(6):538-542
    46.喻 明,聂本刚,巾 杰,等.椎动脉支架成形术治疗椎动脉狭窄患者的疗效.四川医学.2008,29(11):1492-1494
    47.杜彬,董可辉,徐晓彤,等.椎动脉开口部狭窄的支架成形术及长期随访.中华内科杂志.2007,46(3):204-207
    1. Cui X, Trinh K, Wang YJ. Chinese herbal medicine for chronic neck pain due to cervical degenerative disc disease. Cochrane Database Syst Rev. 2010,20;(1):CD006556
    2. Smith LJ, Fazzalari NL. The elastic fibre network of the human lumbar anulus fibrosus:architecture, mechanical function and potential role in the progression of intervertebral disc degeneration. Eur Spine J. 2009,18 (4):439-448
    3. Cawston TE, Young DA. Proteinases involved in matrix turnover during cartilage and bone breakdown. Cell Tissue Res.2010,339(1):221-235
    4. Kalichman L, Hunter DJ. The genetics of intervertebral disc degeneration. Associated genes. Joint Bone Spine.2008,75(4):388-396
    5. Tow BP, Hsu WK, Wang JC. Disc regeneration:a glimpse of the future. Clin Neurosurg.2007,54:122-128
    6. Mwale F, Iatridis JC, Antoniou J. Quantitative MRI as a diagnostic tool of intervertebral disc matrix composition and integrity. Eur Spine J.2008,17 Suppl 4:432-440
    7. Tow BP, Hsu WK, Wang JC. Disc regeneration:a glimpse of the future. Clin Neurosurg.2007,54:122-128
    8. Richardson SM, Hoyland JA, Mobasheri R, et al. Mesenchymal stem cells in regenerative medicine:opportunities and challenges for articular cartilage and intervertebral disc tissue engineering. J Cell Physiol.2010,222(1):23-32
    9. Adams MA, Dolan P, McNally DS.The internal mechanical functioning of intervertebral discs and articular cartilage, and its relevance to matrix biology. Matrix Biol.2009,28(7):384-389
    10. Le Maitre CL, Pockert A, Buttle DJ, et al. Matrix synthesis and degradation in human intervertebral disc degeneration. Biochem Soc Trans.2007,35(Pt 4):652-655
    11. RajPP. Intervertebral disc:anatomy physiology pathophysiology treatment. Pain Pract.2008,8(1):18-44
    12. Bondeson J, Wainwright S, Hughes C, et al.The regulation of the ADAMTS4 and ADAMTS5 aggrecanases in osteoarthritis:a review. Clin Exp Rheumatol.2008, 26(1):139-145
    13. Le Maitre CL, Pockert A, Buttle DJ, et al. Matrix synthesis and degradation in human intervertebral disc degeneration. Biochem Soc Trans.2007,35(Pt 4):652-655
    14. Roberts S, Evans H, Trivedi J, et al. Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am.2006,88 Suppl 2:10-4
    15.丁悦,吕浩然,刘尚礼.椎间盘退变过程中MMP/TIMP基因表达变化的研究.中国临床解剖学杂志.2005,23(4)405-412
    16.胡峰.基质金属蛋白酶-7在椎间盘组织中的表达和意义医学临究.2006,23(3):311-313
    17.杨圣,史可中,安荣泽.基质金属蛋白酶-3和其组织抑制剂-1在椎间盘中的表达及其意义.中国骨伤.2001,14(4)204-206
    18 Grang L, Gaudin P, Trocme C, et aL. Intervertebral disk degeneration and herniation:the role of metalloproteinases and cytokines. Joint Bone Spine. 2001,68(6):547-553
    19. Podichetty VK. The aging spine:the role of inflammatory mediators in intervertebral disc degeneration. Cell Mol Biol (Noisy-le-grand).2007, 53(5):4-18
    20. Evans C. Potential biologic therapies for the intervertebral disc. J Bone Joint Surg Am.2006,88 Suppl 2:95-98
    21. Podichetty VK. The aging spine:the role of inflammatory mediators in intervertebral disc degeneration. Cell Mol Biol (Noisy-le-grand).2007,53 (5):4-18
    22. Shirasuna K. Nitric oxide and luteal blood flow in the luteolytic cascade in the cow. J Reprod Dev.2010,56(1):9-14
    23.黄涛,付勤,张铁峰.不同退变程度腰椎间盘组织中一氧化氮和超氧化物歧化酶含量的变化及其意义.中国医科大学学报.2005,3(5):473-474
    24.李小川,赵军,李力.白介素-1b转换酶对退变腰椎间盘组织中细胞凋亡的调节.中国临床康复.2003,7(8):1234-1235
    25. Zhao CQ, Wang LM, Jiang LS, et al. The cell biology of intervertebral disc aging and degeneration. Ageing Res Rev.2007,6(3):247-261
    26. Zhao CQ, Jiang LS, Dai LY. Programmed cell death in intervertebral disc degeneration.Apoptosis.2006,11 (12):2079-2088
    27. Anderson DG, Tannoury C. Molecular pathogenic factors in symptomatic disc degeneration.Spine J.2005,5(6 Suppl):260S-266S.
    28. Sitte I, Kathrein A, Pfaller K, et al. Intervertebral disc cell death in the porcine and human injured cervical spine after trauma:a histological and ultrastructural study.Spine (Phila Pa 1976).2009,34(2):131-140
    29. Ambard D, Cherblanc F. Mechanical behavior of annulus fibrosus:a microstructural model of fibers reorientation. Ann Biomed Eng.2009, 37(11):2256-2265
    30. Kalichman L, Guermazi A, Li L, et al. Association between age, sex, BMI and CT-evaluated spinal degeneration features.J Back Musculoskelet Rehabil. 2009,22(4):189-195
    31. Poveda L, Hottiger M, Boos N, et al. Peroxynitrite induces gene expression in intervertebral disc cells. Spine (Phila Pa 1976).2009,34(11):1127-1133
    32. Sitte I, Kathrein A, Pfaller K, et al. Intervertebral disc cell death in the porcine and human injured cervical spine after trauma:a histological and ultrastructural study.Spine (Phila Pa 1976).2009,34(2):131-140
    33. Michalek AJ, Buckley MR, Bonassar LJ, et al. Measurement of local strains in intervertebral disc anulus fibrosus tissue under dynamic shear: contributions of matrix fiber orientation and elastin content. J Biomech. 2009,42(14):2279-2285
    34. Fassett DR, Kurd MF, Vaccaro AR. Biologic solutions for degenerative disk disease. J Spinal Disord Tech.2009,22(4):297-308
    35. Han D, Ding Y, Liu SL, et al. Double role of Fas ligand in the apoptosis of intervertebral disc cells in vitro.Acta Biochim Biophys Sin (Shanghai). 2009,41(11):938-947
    36. Rannou F, Lee TS, Zhou RH, et al. Intervertebral disc degeneration:the role of the mitochondrial pathway in annulus fibrosus cell apoptosis induced by overload. Am J Pathol.2004,164 (3):915-924
    37. Court C, Chin JR, Liebenberg E, et al. Biological and mechanical consequences of transient intervertebral disc bending. Eur Spine J.2007,16 (11):1899-1906
    38. Tschoeke SK, Hellmuth M, Hostmann A, et al. Apoptosis of human intervertebral discs after trauma compares to degenerated discs involving both receptor-mediated and mitochondrial-dependent pathways. J Orthop Res.2008, 26(7):999-1006
    39. Zhang L, Niu T, Yang SY, et al. The occurrence and regional distribution of DR4 on herniated disc cells:a potential apoptosis pathway in lumbar intervertebral disc. Spine (Phila Pa 1976).2008,33(4):422-427
    40. Cui LY, Liu SL, Ding Y, et al. IL-lbeta sensitizes rat intervertebral disc cells to Fas ligand mediated apoptosis in vitro. Acta Pharmacol Sin. 2007,28(10):1671-1676
    41.贾长青,刘洪亮,王俊丰.Bcl2、 Fas在人颈椎间盘软骨终板、纤维环及髓核中的表达及意义.中国组织化学与细胞化学杂志.2007,16(2)169-174
    42.李小川.退变腰椎间盘组织中细胞凋亡及相关基因bc1-2和bax表达的研究。中国医科大学学报.2003,3(2)146-150
    43. Wang J, Tang T, Yang H, et al. The expression of Fas ligand on normal and stabbed-disc cells in a rabbit model of intervertebral disc degeneration:a possible pathogenesis.J Neurosurg Spine.2007,6(5):425-430
    44. Rongfeng Zhang, Dike Ruan, Chao Zhang. Effects of TGF-β1 and IGF-1 on proliferation of human nucleus pulposus cells in medium with different serum concentrations.J Orthop Surg Res.2006,1:9
    45. Peng B, Chen J, Kuang Z, et al. Expression and role of connective tissue growth factor in painful disc fibrosis and degeneration. Spine (Phila Pa 1976). 2009,34(5):E178-182
    46. Takayama B, Sekiguchi M, Yabuki S, et al. Gene expression changes in dorsal root ganglion of rat experimental lumber disc herniation models. Spine (Phila Pa 1976).2008,33(17):1829-1835
    47. Levicoff EA, Kim JS, Sobajima S, et al. Safety assessment of intradiscal gene therapy II:effect'of dosing and vector choice. Spine (Phila Pa 1976).2008,33(14):1509-1516
    48. Henriksson H, Thornemo M, Karlsson C, et al. Identification of cell proliferation zones, progenitor cells and a potential stem cell niche in the intervertebral disc region:a study in four species. Spine (Phila Pa 1976).2009,34(21):2278-2287
    49. Dahia CL, Mahoney EJ, Durrani AA, et al. Postnatal growth, differentiation, and aging of the mouse intervertebral disc. Spine (Phila Pa 1976). 2009,34(5):447-455
    50. Tolonen J. Grnnblad M, Vanharanta H, et al. Growth factor expression in degenerated intervertebral disc tissue. An immunohistochemical analysis of transforming growth factor beta, fibroblast growth factor and platelet derived growth factor. Enr Spine J.2006,15(5):588-596
    51. Chen WH, Liu HY, Lo WC, et al. Intervertebral disc regeneration in an ex vivo culture system using mesenchymal stem cells and platelet-rich plasma. Biomaterials.2009,30 (29):5523-5533
    52. Dahia CL, Mahoney EJ, Durrani AA, et al. Intercellular signaling pathways active during intervertebral disc growth, differentiation, and aging. Spine (Phila Pa 1976).2009,34(5):456-462
    53. Leckie S, Sowa G. Emerging technologies for degenerative disk disease: potential synergy between biochemical signaling and spinal biomechanics. PM R.2009,1(5):466-470
    54. Gruber HE, Chow Y, Hoelscher GL, et al. Micromass culture of human anulus cells:morphology and extracellular matrix production. Spine (Phila Pa 1976). 2010,35(10):1033-1038
    55.徐俊杰,祝乾清.胰岛素样生长因子Ⅰ在正常与退行性变腰椎间盘中表达的差异.中国组织工程研究与临床康复.2007,11(6):1028-1030
    56.龙厚清,李佛保,胡有谷.腰椎间盘中血管内皮生长因子的表达及其意义.中国脊柱脊髓杂志.2002,(4)280-282
    57. Masuda K, Imai Y, Okuma M, et al. Osteogenic protein-1 injection into a degenerated disc induces the restoration of disc height and structural changes in the rabbit anular puncture model. Spine (Phila Pa 1976).2006,31 (7):742-754
    58. Kuh SU, Zhu Y, Li J, et al. Can TGF-betal and rhBMP-2 act in synergy to transform bone marrow stem cells to discogenic-type cells?Acta Neurochir (Wien).2008,150(10):1073-1079
    59. Kalichman L, Hunter DJ. The genetics of intervertebral disc degeneration. Associated genes. Joint Bone Spine.2008,75(4):388-396
    60. Knoeringer M, Reinke A, Trappe AE, et al. Absence of the mutated Trp2 allele but a common polymorphism of the COL9A2 collagen gene is associated with early recurrence after lumbar discectomy in a German population. Eur Spine J. 2008,17(3):463-467
    61. Videman T, Saarela J, Kaprio J, et al. Associations of 25 structural, degradative, and inflammatory candidate genes with lumbar disc desiccation, bulging, and height narrowing. Arthritis Rheum.2009,60(2):470-481
    62. Roughley P, Martens D, Rantakokko J, et al. The involvement of aggrecan polymorphism in degeneration of human intervertebral disc and articular cartilage. Eur Cell Mater.2006,11:1-7
    63. Le Maitre CL, Pockert A, Buttle DJ, et al. Matrix synthesis and degradation in human intervertebral disc degeneration. Biochem Soc Trans.2007,35(Pt 4):652-655
    64. Boyd LM, Richardson WJ, Allen KD, et al. Early-onset degeneration of the intervertebral disc and vertebral end plate in mice deficient in type IX collagen. Arthritis Rheum.2008,58(1):164-171
    65. Zhang Y, Sun Z, Liu J, et al. Advances in susceptibility genetics of intervertebral degenerative disc disease. Int J Biol Sci.2008,4(5):283-290
    66. Solovieva S, Lohiniva J, Leino-Arjas P, et al. Intervertebral disc degeneration in relation to the COL9A3 and the IL-lss gene polymorphisms. Eur Spine J.2006,15 (5):613-619
    67. Jim JJ, Nopon-Hiesnla, Cheung KM, et al. The TRP2 allele of COL9A2 is an age-dependent risk factor for the development and severity of intervertebral disc degeneration. spine.2005,30(24):2735-2742
    68. Oh IS, Ha KY. Matrix metalloproteinase-3 on ligamentum flavum in degenerative lumbar spondylolisthesis. Spine(Phila Pa 1976).2009,34(16):E55 2-7
    69. Wang ZC, Chen XS, Wang da W, et al. The genetic association of vitamin D receptor polymorphisms and cervical spondylotic myelopathy in Chinese subjects. Clin Chim Acta.2010,411(11-12):794-797
    70. Cheung KM, Chan D, Karppinen J, et al. Association of the Taq I allele in vitamin D receptor with degenerative disc disease and disc bulge in a Chinese population. Spine (Phila Pa 1976).2006,31(10):1143-1148
    71. Kalichman L, Hunter DJ. The genetics of intervertebral disc degeneration. Associated genes. Joint Bone Spine.2008,75(4):388-396
    72. Tegeder I.Current evidence for a modulation of low back pain by human genetic variants. J Cell Mol Med.2009,13(8B):1605-1619
    73.唐颖,袁寒艳,王子平.基质金属蛋白酶-3和维生素D受体的基因多态性与腰椎间盘退变的易感性.复旦学报(医学版).2007,34(1):37-41
    74. Hattori T, Muller C, Gebhard S, et al. SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification. Development.2010,137(6):901-911
    75. Oh CD, Maity SN, Lu JF, et al. Identification of SOX9 interaction sites in the genome of chondrocytes. PLoS One.2010,5(4):e10113
    76. Cheng CC, Uchiyama Y, Hiyama A, et al. PI3K/AKT regulates aggrecan gene expression by modulating Sox9 expression and activity in nucleus pulposus cells of the intervertebral disc. J Cell Physiol.2009,221 (3):668-676
    77. Park JS, Nagata K. BMP and LMP-1 for intervertebral disc regeneration. Clin Calcium.2004,14(7):76-8
    78. Yu ZG, Xu N, Wang WB, et al. Interleukin-1 inhibits Sox9 and collagen type II expression via nuclear factor-kappaB in the cultured human intervertebral disc cells. Chin Med J (Engl).2009,122(20):2483-2488
    79. Richardson SM, Hoyland JA, Mobasheri R, et al. Mesenchymal stem cells in regenerative medicine:opportunities and challenges for articular cartilage and intervertebral disc tissue engineering. J Cell Physiol.2010 ,222(1):23-32
    80. Kei Semba, Kimi Araki, Zhengzhe Li. A Novel Murine Gene, Sickle tail, Linked to the Danforth's short tail Locus, Is Required for Normal Development of the Intervertebral Disc.Genetics.2006,172(1):445-456