急性白血病儿童维生素D受体基因多态性和表达及维生素D对白血病细胞的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的研究维生素D受体(VDR)基因FokI、BsmI、ApaI和TaqI位点多态性在广西地区儿童的分布,分析VDR基因多态性与儿童急性白血病(AL)遗传易感性之间的关系,以进一步了解AL的分子生物学机制。方法采用病例-对照的研究方法,在中国广西地区选取无血缘关系的127例AL儿童和268例健康体检儿童(作为对照组)作为研究对象,采集外周血,提取DNA,采用聚合酶链限制性片段长度多态性技术和基因测序技术,对两组儿童FokI、BsmI、ApaI和TaqI位点多态性进行分析。采用二项分布检验,对两组数据进行Hardy-Weinberg遗传平衡分析。组间频率比较采用χ2检验,以比值比(OR)及95%可信区间(CI)表示相对风险度。采用SHEsis软件进行VDR基因多态性位点连锁不平衡的计算。结果样本经遗传平衡检验表明,各基因型的观察值与期望值之间无显著性差异(P>0.05),说明所选的样本具有代表性。268例健康儿童VDR基因FokI位点ff、Ff和FF基因型频率分别为22.02%、48.13%和29.85%;f、F等位基因频率为46.08%和53.92%。BsmI位点bb、Bb和BB基因型频率分别为91.79%、7.84%和0.37%;b、B等位基因频率为95.71%、4.29%。ApaI位点aa、Aa和AA基因型频率分别为52.61%、36.57%和10.82%;a、A等位基因频率为70.90%、29.10%。TaqI位点tt、Tt和TT基因型频率分别为0%、9.70%和90.30%;t、T等位基因频率为4.85%、95.15%。结果显示广西地区健康儿童FokI、BsmI、ApaI和TaqI位点多态性分布情况与国内其它地区分布基本一致。127例AL儿童ff、Ff和FF基因型频率分别为35.43 %、43.31%和21.26%;f、F等位基因频率为57.09%、42.91%。bb、Bb和BB基因型频率分别为92.13%、7.87%和0;b、B等位基因频率为96.06%、3.94%。aa、Aa和AA基因型频率分别为48.82%、37.01%和14.17%;a、A等位基因频率为67.32%、32.68%。tt、Tt和TT基因型频率分别为0、11.81%和88.19%;t、T等位基因频率为5.91%、94.09%。FokI位点ff基因型在AL儿童的分布较健康儿童明显增高。与FF基因型相比,ff基因型患AL的风险性增加(OR=2.260,P<0.05);与F等位基因相比,携带f等位基因的个体更易罹患AL(OR=1.556,P<0.05)。BsmI、ApaI和TaqI位点多态性分布在病例组与对照组之间无显著性差异。FokI和BsmI、ApaI、TaqI位点之间不存在明显的连锁不平衡。结论中国广西地区儿童VDR基因多态性分布频率有其自身的特点。VDR基因FokI位点SNP可能是急性白血病发生的遗传易感因素之一,携带f等位基因的个体更易罹患急性白血病。VDR基因BsmI、ApaI和TaqI酶切位点的多态性可能与儿童白血病的遗传易感性无关。此结论仍需进一步行大样本实验证实。
    
     目的通过检测AL儿童VDR基因和蛋白的表达,从转录和翻译两个水平探讨VDR在AL中表达的意义,揭示VDR的表达与AL分类的可能联系。方法收集未经治疗的30例急性淋巴细胞白血病(ALL)和12例急性髓细胞白血病(AML)儿童、30例非肿瘤性血液病儿童(包括缺铁性贫血、溶血性贫血、特发性血小板减少性紫癜等,作为对照组)的骨髓标本,抽提总RNA,提取得到的RNA采用M-MLV逆转录试剂盒逆转录合成cDNA第一链,以逆转录得到的cDNA为模板,应用SYBR Green I实时荧光定量PCR方法,检测VDR基因mRNA的表达。扩增产物的特异性通过熔解曲线和琼脂糖凝胶电泳双重确认。以管家基因GAPDH基因为内参照,采用2-△△Ct法计算VDR mRNA的相对表达量,得到标化的VDR mRNA的表达。利用超敏S-P免疫细胞化学法检测了其中9例AL儿童和4例对照组骨髓细胞VDR的表达。收集未经治疗的30例ALL、10例AML和30例健康体检儿童(作为对照组)的外周血标本,提取单个核细胞(MNCs),取适量立即涂片应用免疫细胞化学法检测VDR的表达和定位情况;其余的MNCs用细胞裂解液抽提全细胞蛋白样品用于蛋白免疫印迹法检测VDR蛋白的相对表达量。用单因素方差分析比较ff、Ff和FF三种基因型VDR mRNA和蛋白表达的差异。对AL儿童VDR的表达和外周血白细胞、血小板的关系进行一元线性相关分析。结果VDR mRNA在所有检测的AL儿童和对照组儿童的骨髓中均有表达。ALL儿童VDR mRNA的表达(1.06±0.31)和AML的表达(1.13±0.34)明显低于对照组儿童的表达(3.10±0.18),组间有显著性差异(F=1701.00,P<0.01),而ALL和AML之间的表达无统计学差异(P>0.05)。经一元线性相关分析,结果显示42例AL儿童VDR mRNA的表达水平与外周血白细胞数无明显相关性(r=0.045, P=0.078),与外周血血小板数亦无明显相关性(r=0.067, P=0.675)。对42例AL儿童ff、Ff和FF三种基因型进行VDR mRNA表达的比较,VDR mRNA的表达分别为1.25±0.47(n=12),1.12±0.41(n=17),1.09±0.38(n=13),组间比较无统计学差异(F=0.489,P> 0.05)。免疫细胞化学法显示所检测样本的骨髓和外周血MNCs均表达VDR蛋白,VDR蛋白主要分布在细胞核内。被检测的9例AL儿童骨髓VDR蛋白的表达(30.80±1.56%)低于4例对照组儿童的表达(62.45±3.73%),由于样本例数太少,未作统计学分析。30例ALL儿童外周血VDR蛋白的表达(27.82±1.78%)和10例AML的表达(27.10±2.44%)明显低于30例健康儿童(59.02±3.46%),组间有显著差异(F=1150.26,P<0.01),而ALL和AML儿童中VDR蛋白的表达无统计学差异(P>0.05)。蛋白免疫印迹法亦显示相似结果:ALL儿童VDR蛋白的表达(0.299±0.071)和AML的表达(0.290±0.094)明显低于健康儿童(0.710±0.041),组间有显著差异(F=356.434,P< 0.01),而ALL和AML儿童VDR蛋白的表达无统计学差异(P>0.05)。一元线性相关分析显示40例AL儿童VDR蛋白的表达水平与外周血白细胞数无明显相关性(r=-0.133, P=0.413),与外周血血小板数亦无无直线相关关系(r=0.006,P=0.917)。病例组40例AL儿童ff、Ff和FF基因型VDR蛋白的表达分别为0.286±0.061(n=13),0.289±0.079(n=17), 0.324±0.089(n=10),组间比较无统计学意义(F=0.853,P>0.05)。结论所有检测的AL儿童的骨髓和外周血MNCs均表达VDR,考虑白血病细胞是VDR
     作用的靶细胞。AL儿童VDR mRNA和蛋白的表达较健康儿童明显降低,考虑VDR的表达情况可能成为AL诊断的有效指标。VDR的表达可能与AL分类、VDR基因型和初治时外周血象无关。
     目的研究不同浓度的1,25二羟基维生素D3(1,25(OH)2D3)对人白血病细胞株6T-CEM和HL-60生长、分化和凋亡的影响,并观察1,25(OH)2D3处理前后6T-CEM和HL-60细胞VDR mRNA和蛋白表达的变化,探讨其抗白血病的分子机制及用于白血病治疗的可行性。方法在体外培养条件下,用不同浓度(10-9,10-8,10-7,10-6 mol/L)的1,25(OH)2D3作用处于对数生长期的6T-CEM和HL-60。应用台盼蓝拒染法计数活细胞,甲基噻唑基四唑(MTT)比色法分析细胞增殖抑制作用,硝基四氮唑蓝(NBT)还原实验法分析HL-60细胞的分化指标,末端脱氧核糖核酸转移酶介导的dUTP缺口末端标记染色法(TUNEL)检测细胞晚期凋亡的变化,倒置显微镜及赖-吉染色法(Wright-Giemsa)观察细胞形态学改变,运用RT FQ-PCR方法检测VDR mRNA变化,免疫细胞化学法和蛋白免疫印迹技术检测VDR蛋白表达。结果MTT法显示不同浓度的1,25(OH)2D3作用后可抑制6T-CEM及HL-60细胞的生长,呈剂量和时间依赖性。不同浓度的1,25(OH)2D3作用后可诱导HL-60细胞向成熟粒细胞分化,对6T-CEM的分化无影响。TUNEL法显示1,25(OH)2D3作用后对6T-CEM和HL-60细胞有明显的促细胞凋亡作用,凋亡率随药物浓度的增高而增高。细胞形态学观察发现药物作用后细胞表现出凋亡的形态特征。1,25(OH)2D3作用前后6T-CEM和HL-60细胞均表达VDR mRNA和蛋白,药物作用前后VDR mRNA表达改变不明显,而VDR蛋白表达上调。结论1,25(OH)2D3在一定浓度范围内可抑制6T-CEM和HL-60细胞增殖,诱导细胞凋亡。1,25(OH)2D3可诱导HL-60细胞向成熟粒细胞分化。1,25(OH)2D3可使6T-CEM和HL-60细胞VDR蛋白表达上调,但不改变VDR mRNA水平。
Objective To investigate the distribution of vitamin D receptor (VDR) gene FokI, BsmI, ApaI, TaqI site gene polymorphism of children in Guangxi region.To explore the correlation between the VDR gene polymorphism and hereditary susceptibility of leukemic children. We hope it will be useful to the followed study on the relative mechanism of acute leukemia. Methods This study adopted case-control design. 127 children with acute leukemia and 268 healthy medical examination children (as controls) who had unrelated blood relationship in Guangxi region were recruited. DNA was extracted from peripheral blood sample. Polymerase chain reaction-restrictive fragment length polymerphism (PCR-RFLP) analysis technique and DNA sequencing technology were used to detect gene polymorphisms of FokI, BsmI, ApaI, TaqI locus. The Hardy -Weinberg balance of heredity in the two groups was analyzed by binomial distribution test. The difference between the frequency of VDR alleles of the two groups was analyzed by chi square test. Odds ratio (OR) and 95% confidence intervals (CI) were calculated to assess the relative risk. The linkage disequilibrium of VDR gene was analyzed by SHEsis software. Results The result of Hardy-Weinberg balance of heredity showed that there were insignificant difference between the observed value and the expected value of the frequency of FokI, BsmI, ApaI, TaqI alleles in the two groups, P>0.05. It was a declaration that the samples were representation. In the 268 healthy children, we obtained the percentage of genotypes ff, Ff and FF to be 22.02%, 48.13% and 29.85% respectively and the allelic frequencies of 46.08% and 53.92% for f and F allele. The frequency of bb, Bb and BB in the BsmI site were 91.79%, 7.84% and 0.37%. Frequencies of b and B allelic gene were 95.71% and 4.29%. The frequency of aa, Aa and AA in the ApaI site were 52.61%, 36.57% and 10.82% respectively. Frequencies of a and A allelic gene were 70.90% and 29.10%. tt, Tt and TT in the TaqI site were 0, 9.70% and 90.30% respectively. Frequencies of t and T allelic gene were 4.85% and 95.15%. The result displayed that FokI, BsmI, ApaI, TaqI site gene polymorphism of healthy children in Guangxi region was one and all with the other regions in China. In
     the 127 children with acute leukemia, we obtained the percentage of genotypes ff, Ff and FF to be 35.43%, 43.31% and 21.26% respectively and the allelic frequencies of 57.09% and 42.91% for f and F allele. The frequency of bb, Bb and BB in the BsmI site were 92.13%, 7.87% and 0. Frequencies of b and B allelic gene were 96.06% and 3.94%. The frequency of aa, Aa and AA in the ApaI site were 48.82%, 37.01% and 14.17% respectively. Frequencies of a and A allelic gene were 67.32% and 32.68%. tt, Tt and TT were 0, 11.81% and 88.19%. Frequencies of t and T allelic gene were 5.91% and 94.09%. Allele frequencies of the FokI polymorphism showed a significant association (χ2= 8.671, P<0.05) between the two groop. The genotype ff in the acute leukemic children was higher than that in the healthy children. The result of one way analysis showed that the subjects carrying ff genotype had 2.26 fold elevated risk for developing acute leukemia compared with the FF genotype (OR=2.260, P<0.05). Using the F allele as a reference, a significant risk of developing acute leukemia was found between the presence of f allele (OR=1.556, P<0.05). The genotype and allele frequencies of BsmI, ApaI and TaqI site were not significantly different from those in control group (P>0.05). There had no strongly apparent linkage disequilibrium between the FokI locus, BsmI locus, ApaI locus and TaqI locus. Conclusions The polymorphism frequency and distribution of this VDR gene in Guangxi population of China exhibit its own characteristics. There maybe the genetic susceptibility effect of VDR gene FokI
     allele in acute leukemia while the gene polymorphisms of BsmI, ApaI, TaqI enzyme digestion locus may not be related to genetic susceptibility of children acute leukemia. The individual with f allele were more easier to take AL than that with F. The conclusion must confirm by further arge sample arge sample.
     Objective To study the expression of VDR in children of acute leukemia and to approach the significance of VDR in the occurrence of acute leukemia from transcription and translation.To determine whether the expression is related to the classification of acute leukemia. Methods Total RNA was extracted by trizol from bone marrow cells of thirty untreated children with acute lymphoblastic leukemia (ALL), twelve untreated children with acute myeloid leukemia (AML) and thirty cases nontumorous hematologic diseases children(including iron deficiency anemia, hemolytic anemia and idiopathic thrombocytopenic purpura, et al, as controls). The first strand cDNA was acquired by reverse transcription. SYBR Green I Rea1 time fluorescent quantitative PCR (RT FQ-PCR) was used to investigate VDR mRNA expression in the three groups. The specificity of amplification production was measured by melting curves and agarose gel electrophoresis. The VDR mRNA signal was normalized to in accordance with the house-keeping gene GAPDH mRNA signal through the method of 2-△△Ct. Appropriate amount bone marrow cells from nine children with acute leukemia and four cases nontumorous hematologic diseases children were smeared immediately to detect the expression of VDR protein and cell localization by ultrasensitive streptavidin-biotin peroxidase (S-P) method of immunocytochemical staining. Peripheral blood mononuclear cells (PBMCs) were extracted from peripheral blood prepared of thirty untreated children with ALL, ten untreated children with AML and thirty healthy children (as controls). Appropriate amount PBMCs were smeared immediately to detect the expression of VDR protein and cell localization by immunocytochemical staining while all cell albumen extracted from the other PBMCs by cell lysate was used to detect the expression of VDR protein by Western blots analysis. The different expression of VDR mRNA and protein in the three gene types ff, Ff and Ff was compared by one-factor analysis of variance. The relationship of VDR expression and the leukocyte number and the platelet number in children with acute leukemia was analyzed by bivariate linear correlation. Results VDR mRNA was detected in all the acute leukemic children and nontumorous hematologic diseases children. The expression of VDR mRNA in children with ALL (1.06±0.31) and in children with AML
     (1.13±0.34) was lower significantly compared with the expression in the controls (3.10±0.18) (F=1701.00, P<0.01) while there was no significant change between children with ALL and children with AML (P>0.05). The expression lever of VDR mRNA in forty two cases children with acute leukemia had no associativity (r=0.045, P=0.078) with the leukocyte number and the platelet number (r=0.067, P=0.675) by bivariate linear correlation while there was no significant changed at the expression lever of VDR mRNA in the three gene types ff (1.25±0.47, n=12), Ff (1.12±0.41, n=17) and FF (1.09±0.38, n=13) (F=0.489, P>0.05). The results of immunocytochemistry techniques showed VDR protein was expressed in all marrow mononuclear cell and PBMNCs of each group. VDR protein was mainly localized in cell nucleus. The expression of VDR protein in nine children with AL(30.80±1.56%) was lower than that in four control subject (62.45±3.73%) but statistics analysis was not done because the sample is only a few. The expression of VDR protein in the children with ALL (27.82±1.78%) and in the children with AML (27.10±2.44%) were lower significantly compared with the expression in the control subjects (59.02±3.46%) (F=1164.47, P<0.01) while there was no significant different between the children with ALL and the children with AML (P>0.05). The result of Western blots analysis was accordance with immunocytochemistry techniques. The expression of VDR protein in children with ALL (0.299±0.071) and in children with AML (0.290±0.094) were lower significantly compared with the
     expression in the control subjects (0.710±0.041) (F=356.434, P<0.0) while there was no significant different between children with ALL and children with AML (P>0.05). The expression lever of VDR protein in forty cases children with acute leukemia had no associativity with the leukocyte number (r=-0.133, P=0.413) and the platelet number (r=0.006, P=0.917) by bivariate linear correlation while there was no significant changed at the expression lever of VDR protein in the three gene types ff (0.286±0.061, n=13), Ff (0.289±0.079, n=17) and FF (0.324±0.089, n=10) ((F=0.853, P>0.05). Conclusions VDR was expressed in all the acute leukemic children and we get such a conclusion that leukemic cells were one of the target cells of VDR. The expression of VDR mRNA and VDR protein in acute leukemia children was significantly lower than that in control subjects. VDR expression might be a effective monitoring index in diagnosing of leukemia. The expression of VDR may be had no associativity with classification, genotype and peripheral blood index.
    
     Objective To investigate the possible mechanism of inducing apoptosis of 1,25-Dihydroxyvitamin D3 (1,25(OH)2 D3 ) and to determine the therapeutic potential of 1,25(OH)2D3 in leukemia, we observed the effects of inhibition, differentiation, apoptosis and the expression of VDR gene and protein on human leukemia cell lines 6T-CEM and HL-60 induced by 1,25(OH)2D3 at different concentrations. Methods Leukemia cell lines 6T-CEM and HL-60 in exponential growth phase were treated by 1,25(OH)2 D3 with different concentration of 10-9, 10-8, 10-7 and 10-6 mol/L in vitro. Viable cells were counted by Trypan blue exclusion. Methy thiazoly tetrazolium (MTT) assay was used to evaluate the cell proliferation. The differentiation of HL-60 cells was detected by nitro blue tetrazolium (NBT) reduction test. The cells late apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining assays (TUNEL). Cell morphology was observed by inverted microscope and Wright-Giemsa staining method. The expression of VDR mRNA of each group was analyzed by RT FQ-PCR. The expressions of VDR protein were detectied by immunocytochemistry technique and Western blot analysis. Results MTT assay showed that 1, 25(OH)2D3 could significantly inhibit the proliferation of 6T-CEM and HL-60 cells in a dose-dependent and time-dependent manner. 1,25(OH)2 D3 could remarkably induce HL-60 cells to differentiate towards mature granulocyte while there was not change in 6T-CEM cells. The result of TUNEL indicated 1,25(OH)2D3 with different concentration could enhanced cell apoptosis rate in a dose-dependent manner. The observation of cell morphology showed the cells treated by 1,25(OH)2D3 had morphologic characteristics of apoptosis. VDR mRNA and protein were expressed in the all 6T-CEM and HL-60 cells before and after the action of 1,25(OH)2D3. VDR protein expression was up-regulated after drug action while VDR mRNA expression was no change. Conclusions 1,25(OH)2D3 at a certain concentration range can significantly inhibit the proliferation and induce apoptosis in 6T-CEM and HL-60 cells. 1,25(OH)2D3 can induce HL-60 cells to differentiate towards mature granulocyte. 1, 25(OH)2D3 can increase expression of VDR protein in 6T-CEM and HL-60 cells but not VDR mRNA...
引文
[1]Milne E, Royle JA, Klerk NH, et al. Fetal growth and risk of childhood acute lymphoblastic leukemia: results from an Australian case-control study [J]. Am J Epidemiol, 2009, 170(2):221-228.
    [2]Majeti R, Becker MW, Tian Q, et al. Dysregulated gene expression networks in human acute myelogenous leukemia stem cells[J]. Proc Natl Acad Sci USA, 2009, 106(9):3396-3401.
    [3]Jegou T, Chung I, Heuvelman G, et al. Dynamics of telomeres and promyelocytic leukemia nuclear bodies in a telomerase-negative human cell line [J]. Mol Biol Cell, 2009, 20(7):2070-2082.
    [4]Stanulla M, Dynybil C, Bartels DB, et al. The NQO1 C609T polymorphism is associated with risk of secondary malignant neoplasms after treatment for childhood acute lymphoblastic leukemia: a matched-pair analysis from the ALL-BFM study group [J]. Haematologica, 2007, 92 (11): 1581-1582.
    [5]Wen CY, Nakayama T, Wang AP, et al. Expression of pituitary tumor transforming gene in human gastric carcinoma [J].World J Gastroenterol, 2004, 10(2):481-483.
    [6]Pear WS, Aster JC. T cel1 acute lymphoblastic leukemia/lymphoma: a human cancer commonly associated with aberrant NOTCH l signaling [J]. Curr Opin Hematol, 2004, 11(3): 426-433.
    [7]Ferrando AA, Neuberg DS, Dodge RK, et al. Prognostic importance of TLXI(HOX ll) oncogene expression in adults with T-cell acute lymphoblastic leukemia [J]. Lancet, 2004, 363(8):535-536.
    [8]Hubinger G, Sehoid M, Linortner S, et al. Ribozyme-mediated cleavage of wt1 transcripts suppresses growth of leukemia cells [J]. Exp Hematol, 2001, 29(5): 1226-1235.
    [9]Baker AR, Mcdonnell DP, Hughes M, et al.Cloning and expression of full length cDNA encoding human vitamin D receptor [J]. Proc Natl Acad Sci, 1988, 85(10):3294-3298.
    [10]向伟,丁宗一,郑维.维生素D及其受体与临床相关疾病的研究[J].中华儿科杂志,2004,42(7):541-544.
    [11]Norman AW, Ishizuka S, Okamura WH, et al. Ligands for the vitamin D endocrine system: different shapes function as agonists and antagonists forgenomic and rapid response receptors or as a ligand for the plasma vitamin D binding protein [J].J Steroid Biochem Mol Bio, 2001, 76(1): 49-59.
    [12]Smith SJ, Green LN, Hayes ME, et al. Prostaglandin E2 regulates vitamin D receptor expression, vitamin D-24-hydroxylase activity and cell proliferation in an adherent human myeloid leukemia cell line (Ad-HL60)[J]. Prostaglandins Other Lipid Mediat, 1999, 57(2-3): 73-85.
    [13]Garay E, Donnelly R, Wang X, et al. Resistance to 1,25D-induced differentiation in human acute myeloid leukemia HL60-40AF cells isassociated with reduced transcriptional activity and nuclear localization of the vitamin D receptor [J]. J Cell Physiol, 2007, 213(3): 816-825.
    [14]Iwata K, Kouttab N, Ogata H, et al. Differential regulation of vitamin D receptors in clonal populations of a chronic myelogenous leukemia cell line [J]. Exp Cell Res, 1996, 225(1):143-150.
    [15]Song LN. Demonstration of vitamin D receptor expression in a human megakaryoblastic leukemia cell line: regulation of vitamin D receptor mRNA expression and responsiveness by forskolin [J]. J Steroid Biochem Mol Biol, 1996, 57(5-6):265-274.
    [16]Ward JO, Mcconnell MJ, Carlile GW, et al. The acute promyelocytic leukemia-associated protein, promyelocytic leukemia zinc finger, regulates 1,25-dihydroxyvitamin D(3)-induced monocytic differentiation of U937 cells through a physical interaction with vitamin D(3) receptor [J]. Blood, 2001, 98(12):3290-3300.
    [17]Mitchell C, Richards S, Harrison CJ, et al. Long-term follow-up of the United Kingdom medical research council protocols for childhood acute lymphoblastic 1980-2001[J]. Leukemia, 2010, 24(2): 406-418.
    [18] Silverman LB, Stevenson KE, Obrien JE, et al. Long-term results of Dana-Farber Cancer Institute ALL Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1985-2000) [J]. Leukemia, 2010, 24(2):320-334.
    [19]Gaynon PS, Angiolillo AL, Carroll WL, et al. Long-term results of the children's cancer group studies for childhood acute lymphoblastic leukemia 1983-2002: a children's oncology group report [J]. Leukemia, 2010, 24 (2):285-297.
    [20]Pui CH, Pei D, Sandlund JT, et al. Long-term results of St Jude Total Therapy Studies 11,12, 13A, 13B and 14 for childhood acute lymphoblastic leukemia [J]. Leukemia, 2010, 24(2):371-382.
    [21]Moricke A, Reiter A, Zimmermann M, et al. Risk-adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL-BFM 95[J]. Blood, 2008, 111(9): 4477-4489.
    [22]Perez MA, Alonso OA, Ramírez OM, et al. Twenty years of treating childhood acute lymphoblastic leukemia [J]. An Pediatr (Barc), 2006, 65 (3): 198-204.
    [23]Takara K, Sakaeda T, Okumura K. An update on overcoming MDR1 -mediated multidrug resistance in cancer chemotherapy [J]. Curr Pham Des, 2006, 12(3): 273-286.
    [24]Mejstrikova E, Volejnikova J, Fronkova E, et al. Prognosis of children with mixed phenotype acute leukemia treated on the basis of consistent immunophenotypic criteria [J]. Haematologica, 2010, 95(6): 928-935.
    [25]Park SH, Chi HS, Park SJ, et al. Clinical importance of morphological multilineage dysplasia in acute myeloid leukemia with myelodysplasia relatedchanges [J]. Korean J Lab Med, 2010, 30(3):231-238.
    [26]朱亮,陈红专.维生素D及其类似物抗肿瘤作用及机制[J].国外医学肿瘤学分册,2001,28(5):333-336.
    [27]姚天明,杨靖,张晓辉.维生素D及其衍生物在肿瘤发生与治疗研究中的应用[J].临床军医杂志,2002,30(4):76-78.
    [28]曾芍,苏玉文,严开林.维生素D受体与肿瘤的研究进展[J].实用预防医学,2007,14(3):957-959.
    [29]Xu H, Tepper C, Jones J, et al. 1,25-Dihydroxyvitamin D3 protects HL60 cells against apoptosis but down-regulates the expression of the bcl-2 gene[J].Exp Cell Res, 1993, 209(2):367-374.
    [30]左文丽,张翼,何玉玲,等.1,25-二羟基维生素D3诱导HL-60细胞向成熟单核细胞的分化[J].中国临床康复,2006,29(10):38-40.
    [31]张翼,左文丽,何玉玲,等.1,25-二羟基维生素D3抑制K562细胞增殖及其机制[J].中国药理学通报,2006,22(10):1215-1218.
    [32]古庆利,张翼军.1α,25-(OH)2维生素D3联合转化生长因子β1体对U937细胞作用及其机理[J].西北国防医学杂志,2000,21(1):15-17.
    [33]Beer TM, Myrthue A. Calcitriol in cancer treatment: from the lab to the clinic [J]. Mol Cancer Ther, 2004, 3(3):373-381.
    [34]吴弘英,王文营,王彼得,等.1,25二羟基维生素D3在恶性血液病治疗中的作用[J].国外医学输血及血液学分册,2000,23(2):124-126.
    [35]Mellibovsky Y, Diez A, Vila E, et al. Vitamin D treatment in myelo-dysplastic syndromes[J]. Br J Haematol, 1998, 100(3): 516-520.
    [36]Nagpal S, Na S, Rathnachalam R. Noncalcemic actions of vitamin D receptor ligands[J]. Endocr, 2005, 26(5):662-687.
    [37]尹贻贞,刘兆鹏.活性维生素D的抗肿瘤信号转导作用[J].生命的化学,2009,29(4):552-556.
    [38]刘国栋,刘晓.维生素D3防治泌尿系肿瘤[J].现代泌尿外科杂志, 2004,9(2):63-65.
    [39]段娥,王芳,李英勇.维生素D及其受体与妇科肿瘤[J].国外医学妇产科学分册,2005,32(4):213-216.
    [40]俞银芳,刘兆鹏.活性维生素D3类药物研究概况[J].中国药物化学杂志,2006,16(5)311-315.
    [41]毕向军,李亚南.维生素D在前列腺癌防治中的作用[J].中国男科学杂志,2007,21(11):64-66.
    [42]顾龙君,吕善根,孙桂香等.儿童急性淋巴细胞白血病诊疗建议(第三次修订草案)[J].中华儿科杂志,2006,44(5):392-395.
    [43]顾龙君,吕善根,孙桂香等.儿童急性髓细胞白血病诊疗建议(第三次修订草案)[J].中华儿科杂志,2006,44(11):877-878.
    [44]陈竺.医学遗传学[M].第1版.北京:人民卫生出版社,2005: 122-128.
    [45]Uitterlinden AG, Fang Y, Vanmeurs JB, et al. Genetics and biology of vitamin D receptor polymorphisms[J]. Gene, 2004, 338(2):143-156.
    [46]曾朝阳,李桂源.单核苷酸多态性[J].国外医学分子生物学分册,2001,23(3):149-151.
    [47]邢少姬,周立社,许秀举.蒙古族人群维生素D受体基因FokⅠ多态性[J].中华医学遗传学杂志,2006,23(2):236-237.
    [48]卢华君,李海林,郝萍,等.维生素D受体基因多态性与维生素D缺乏性佝偻病易感性的研究[J].中华儿科杂志,2003,41(7):493-496.
    [49]BidH K, Mittal RD. Study of vitamin-D receptor (VDR) gene start codon polymorphism (Fok1) in healthy individuals from north India [J].Indian J Hum Genet, 2003, 37(9):51-54.
    [50]Bustamante M, Nogues X, Enjuanes A, et al. COL1A1, ESR1, VDR and TGFB1 polymorphisms and haplotypes in relation to BMD in Spanish postmenopausal women [J]. Osteoporos Int, 2007, 18(2): 235- 243.
    [51]Saadi A, Gao G, Li H, et al. Association study between vitamin D receptor gene polymorphisms and asthma in the Chinese Han population: a case-control study[J].BMC Med Genet, 2009, 21(5) 10-71.
    [52]Ukaji M, Saito Y, Fukushima-Uesaka H, et al. Genetic variations of VDR/NR1I1 encoding vitamin D receptor in a Japanese population [J]. Drug Metab Pharmacokinet, 2007, 22(6): 462-467.
    [53]Mocellin S, Nitti D. Vitamin D receptor polymorphisms and the risk of cutaneous melanoma: a systematic review and meta-analysis [J]. Cancer, 2008, 113(9):2398-2407.
    [54]刘建河,李鸿伟,佟明,等.北方汉族人群易感基因多态性与前列腺癌危险关系及对发病种族差异的分析[J].中华医学杂志,2004,84(4):364-368.
    [55]何进卫,黄琪仁,章振林,等.雌激素α受体和维生素D受体基因多态性与上海市妇女峰值骨量的关系[J].中华内分泌代谢杂志,2004,20(3):140-142.
    [56]胡明月,包其郁,李嫱,等.绍兴地区汉族青少年维生素D受体基因BsmI, Tru9I,ApaI位点多态性分布研究[J].温州医学院学报,2008,38 (1):37-40.
    [57]Tamez S, Norizoe C, Ochiai K, et al. Vitamin D receptor polymer- phisms and prognosis of patients with epithelial ovarian cancer[J]. British Journal of Cancer, 2009, 14(2):1-4.
    [58]Remes T, Vaisanen SB, Mahonen A, et al. Bone mineral density, body height, and vitamin D receptor gene polymorphism in middle-aged men [J]. Ann Med, 2005, 37(5): 383-392.
    [59]John EM, Schwartz GG, Koo J, et al. Sun exposure, vitamin D receptor gene polymorphisms, and breast cancer risk in a multiethnic population [J]. Am J Epidemiol, 2007, 166(12):1409-1419.
    [60]Daly MJ, Rioux JD, Schaffner SF, et al. High-resolution haplotype structure in the human genome. Nat Genet, 2001, 29(2): 229-232.
    [61]Morrison NA, Qi JC, Tokita A, et al. Prediction of bone density from vitamin D receptor alleles[J]. Nature, 1994, 367(6460): 216-217.
    [62]Uitterlinden AG, Fang Y, Vanmeurs JB, et al. Vitami D receptor gene polymorphisms in relation to Vitamin D related disease states[J]. Steroid Biochem Mol Biol, 2004, 89-90(1-5):187-193.
    [63]Bustamante M, Nogues X, Enjuanes A, et al. COL1A1, ESR1, VDR and TGFB1 polymorphisms and haplotypes in relation to BMD in Spanish postmenopausal women[J]. Osteoporos Int, 2007, 18(2): 235- 243.
    [64]Mcclean E, Archbold GP, Taggart HM, et al. Do the COL1A1 and Taq1 vitamin D receptor polymorphisms have a role in identifying individuals at risk of developing osteoporosis? [J]. Ulster Med J, 2003, 72(1):26-33.
    [65]Van Etten E, Verlinden L, Giulietti A, et al. The vitamin D receptor gene FokI polymorphism: functional impact on the immune system [J]. Eur J Immunol, 2007, 37(2):395-405.
    [66]Arai H, Miyamoto K, Taketani Y, et al. A vitamin D receptor gene polymorphism in the translation initiation codon: effect on protein activity and relation to bone mineral density in Japanese women [J]. J Bone Miner Res, 1997, 12(6):915-921.
    [67]Bandrés E, Pombo I, Gonzalez-Huarriz M, et al. Association between bone mineral density and polymorphisms of the VDR, ERalpha, COL1A1 and CTR genes in Spanish postmenopausal women [J]. Endocrinol Invest, 2005, 28(4):312-321.
    [68]Sosa M, Jodar E, Arbelo E, et al. Bone mass, bone turnover, vitamin D, and estrogen receptor gene polymorphisms in male to female transsexuals: effects of estrogenic treatment on bone metabolism of the male [J]. J Clin Densitom, 2003, 6(3):297-304.
    [69]Dong LM, Ulrich CM, Hsu L, et al. Vitamin D related genes, CYP24A1 and CYP27B1, and colon cancer risk[J]. Cancer Epidemiol Biomarkers Prev, 2009, 18(9):2540-2548.
    [70]Purdue MP, Lan Q, Kricker A, et al. Vitamin D receptor gene polymer- phisms and risk of non-Hodgkin's lymphoma [J]. Haematologica, 2007, 92(8):1145-1146.
    [71]Verbeek W, Gombart AF, Shiohara M, et al. Vitamin D receptor: no evidence for allele-specific mRNA stability in cells which are heterozygous for the Taq I restriction enzyme polymorphism [J]. Biochem Biophys Res Commun, 1997, 238(1):77-80.
    [72]Ogunkolade WB, Boucher BJ, Bustin SA, et al. Vitamin D metabolism in peripheral blood mononuclear cells is influenced by chewing "betel nut" (Areca catechu) and vitamin D status [J]. J Clin Endocrinol Metab, 2006, 91(7): 2612-2617.
    [73]张维铭.现代分子生物学实验手册[M].第2版.北京:科学出版社,2005:92.
    [74]Livak K, Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (delta delta ct) method[J]. Methods, 200l, 25(4): 402-408.
    [75]关爱华,姜伟栋,关文曾.VDR与乳腺癌临床病理因素的关系[J].中国妇幼保健,2006,21(5):692-694.
    [76]胡宗涛,孟刚.乳腺癌组织中维生素D受体表达的研究[J].中国肿瘤临床与康复,2008,15(5):414-416.
    [77]Christakos S, Dhawan P, Liu Y, et al.New insights into the mechanisms of vitamin D action [J]. J Cell Biochem, 2003, 88(4): 695-705.
    [78]Mccullough ML, Stevens VL, Diver WR, et al. Vitamin D pathway gene polymorphisms, diet, and risk of postmenopausal breast cancer: a nested case-control study[J].Breast Cancer Res, 2007, 9(1):121-129.
    [79]Chung I, Han G, Seshadri M, et al. Role of vitamin D receptor in the antiproliferative effects of calcitriol in tumor-derived endothelial cells and tumor angiogenesis in vivo [J]. Cancer Res, 2009, 69(3): 967-975.
    [80]Mccullough ML, Bostick RM, Mayo TL, et al. Vitamin D gene pathway polymorphisms and risk of colorectal, breast and prostate cancer[J]. Annu Rev Nutr, 2009, 29(1):111-132.
    [81]冯觉平,谢燕,陈济民,等.维生素D受体mRNA在骨髓增生异常综合征患者外周血细胞中的表达[J].中国实验血液学杂志,1999,7 (3):213-215.
    [82]冯觉平,谢燕,李秀珍,等.维生素D受体mRNA在白血病患者外周血细胞中的表达[J].湖北医科大学学报,2000,21(1):34-36.
    [83] Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays [J]. J Mol Endocri- nol, 2000, 25(2): l69-193.
    [84]Giulietti A, Overbergh L, Valckx D, et al. An overview of real-timequantitative PCR: applications to quantify cytokine gene expression [J]. Methods, 200l, 25(4): 386-40l.
    [85]陈凤花,王琳,胡丽华.实时荧光定量RT-PCR内参基因的选择[J].临床检验杂志,2005,23(5):393-395.
    [86]吴耀生.新编生物化学实验[M].第1版.北京:人民卫生出版社,2002:51.
    [87]宋今丹,章静波.组织和细胞培养技术[M].第1版.北京:人民卫生出版社,2004:111.
    [88]Li L, Hamilton RF, Kirichenko A, et al. 4-Hydroxynonenal-induced cell death in murine alveolar macrophages [J]. Txicol Appl Pharmaco, 1996, 139(1): 135-143.
    [89]廖清奎.小儿血液病基础与临床[M].第1版.北京:人民卫生出版社,2001:496-508.
    [90]Szocinski JL, Khaled AR, Hixon J, et al. Activation-induced cell death of aggressive histology lymphomas by CD40 stimulation: induction of bax [J]. Blood, 2002, 100(1): 217-223.
    [91]Reddy CD, Patti R, Guttapalli A, et al. Anticancer effects of the novel 1 alpha, 25-dihydroxyvitamin D3 hybrid analog QW1624F2-2 in human neuroblastoma [J]. J Cell Biochem, 2006, 97(1):198-206.
    [92]Christakos S, Dhawan P, Liu Y, et al.New insights into the mechanisms of vitamin D action [J]. J Cell Biochem, 2003, 88(4): 695- 705.
    [93]Niitsu N, Umeda M, Honma Y. Myeloid and monocytoid leukemia cells have different sensitivity to differentiation-inducing activity of deoxyadenosine analogs [J]. Leuk Res, 2000, 24(1):1-9.
    [94]Long E, Ilie M, Hofman V, et al. LANA-1, Bcl-2, Mcl-1 and HIF-1 alpha protein expression in HIV-associated Kaposi sarcoma[J]. Virchows Arch, 2009, 45(2): 159-170.
    [95]Abdolkhaleg D, Shokooh D. Secreted tumor necrosis factor-alpha by human myeloid cells: a valuable parameter for evaluation of endotoxin contamination in vitro [J]. Immunopharmacol Immunotoxicol, 2009, 31(3): 405-413.
    [96]Blutt SE, McDonnell TJ, Polek TC, et al. Calcitriol-induced apoptosis in LNCaP cells is blocked by overexpression of Bcl-2 [J]. Endocrinology, 2000, 141(1): 10-17
    [97]Berdal A. VitaminD: biosynlhesis, metabolism and mechanism of action at the cellular level [J]. J Biol Buceale, 1992, 20(2):71-83.
    [98]Jensen SS, Madsen MW, Lukas J, et al. Inhibitory effects of 1 alpha, 25-dihydroxyvitamin D3 on the G(1)-S phase-controlling machinery [J]. Mol Endocrinol, 2001, 15(8):1370-1380.
    [99]Wietzke JA, Welsh J. Phytoestrogen regulation of a VitaminD3 receptor promoter and 1, 25-Dihydroxyvitamin D3 actions in human breast cancer cells [J]. J Steroid Biochem Mol Biol, 2003, 84(2-3): 149-157.
    [100]Halforan BP, DeLuea HF. Appearance of the intestinal cytosolic receptorfor 1,25-diliydroxyvitamin D3 during neonatal development in the rat [J]. J Biol Chem, 1981, 256(14):7338-7342.
    [101]Healy KD, Frahm MA, Deluea HF, et al. l, 25-Diliydroxyvitamin D3 up-regulates the renal vitamin D receptor through indirect gene activation and receptor stabilization [J]. Arch Biochem Biophys, 2005, 43(2):466-473.
    [102]Norman AV. Minireview: vitamin D receptor: new assignments for already busy receptor [J]. Endocrinology, 2006, 147(12):5542-5548.
    [103]Ellison Tl, Eekert RL, Maedonald PN, et al. Evidence for 1,25- dihydroxyvitaminD3 independent transactivation by the vitaminD receptor: uncoupling the receptor and ligand in keratinocytes[J]. J Biol Chem, 2007, 282(15):10953-10962.
    [104]Kim S, Shevde NK, Pike JW, et al. 1,25-dihydroxyvitaminD3 stimulates cyclic vitaminD3 receptor/retinoid X reeeptor DNA-binding, coactivetor recruitment, and histone acetylation in intact osteoblasts [J]. J Bone Miner Res, 2005, 20(2): 305-317.
    [105]Zella LA, Kim S, Shevde NK, et al. Enhancers located in the vitamin D receptor gene mediate transcriptional autoregulation by 1,25- dihydroxyvitamin D3 [J]. J Steroid Biochem Mol Biol, 2007, 103 (3-5): 435-439.
    [1]Zmuda JM, Cauley JA, Ferrell RE. Molecular epidemiology of vitamin D receptor gene variants[J]. Epidemiol Rev, 2000, 22(2):203-217.
    [2]Toell A, Polly P, Carlberg C. All natural DR3-type vitamin D response elements show a similar functionality in vitro [J]. Biochem J, 2000, 352(2): 301-309.
    [3]Pike JW, Meyer MB, Watanuki M, et al. Perspectives on mechanisms of gene regulation by 1,25-dihydroxyvitamin D3 and its receptor[J].J Steroid Biochem Mol Biol, 2007, 103(3-5):389-395.
    [4]Malloy PJ, Peng L, Wang J, et al. Interaction of the vitamin D receptor with a vitamin D response element in the Mullerian-inhibiting substance (MIS) promoter: regulation of MIS expression by calcitriol in prostate cancer cells [J]. Endocrinology, 2009, 150(4):1580-1587.
    [5]Carlberg C, Dunlop TW, Saramaki A, et al. Controlling the chromatin organization of vitamin D target genes by multiple vitamin D receptor binding sites[J].J Steroid Biochem Mol Biol, 2007, 103(3-5):338-343.
    [6]Fretz JA, Zella LA, Kim S, et al. 1,25-Dihydroxyvitamin D3 induces expression of the Wnt signaling co-regulator LRP5 via regulatory elements located significantly downstream of the gene's transcrip- tional start site [J]. J Steroid Biochem Mol Biol, 2007, 103(3-5):440 -445.
    [7]Sicinska W, Rotkiewicz P. Structural changes of vitamin D receptor induced by20-epi-1 alpha,25-(OH)2D3: an insight from a computational analysis [J]. J Steroid Biochem Mol Biol, 2009, 113(3-5):253-258.
    [8]Kaya T, Swamy N, Persons KS, et al. Covalent labeling of nuclear vitamin D receptor with affinity labeling reagents containing a cross-linking probe at three different positions of the parent ligand: structural and biochemical implications [J]. Blood Chem, 2009, 37 (2):57-63.
    [9]Szeles L, Keresztes G, Torocsik D, et al. 1,25-dihydroxyvitamin D3 is an autonomous regulator of the transcriptional changes leading to a tolerogenic dendritic cell phenotype [J]. J Immunol, 2009, 182(4): 2074-2283.
    [10]Perakyla M. Ligand unbinding pathways from the vitamin D receptor studied by molecular dynamics simulations[J]. Eur Biophys J, 2009, 38 (2):185-198.
    [11]Inaba Y, Yamamoto K, Yoshimoto N, et al. Vitamin D3 derivatives with adamantane or lactone ring side chains are cell type-selective vitamin D receptor modulators [J]. Mol Pharmacol, 2007, 71(5): 1298 -1311.
    [12]Oda Y, Uchida Y, Moradian S, et al. Vitamin D receptor and coactivators SRC2 and 3 regulate epidermis-specific sphingolipid production and permeability barrier formation [J].J Invest Dermatol, 2009, 129(6): 1367-1378.
    [13]Carvallo L, Henríquez B, Paredes R, et al. 1 alpha,25-dihydroxy vitamin D3 enhanced expression of the osteocalcin gene involves increased promoteroccupancy of basal transcription regulators and gradual recruitment of the 1 alpha,25-dihydroxy vitamin D3 receptor-SRC-1 coactivator complex[J]. J Cell Physiol, 2008, 214(3): 740-749.
    [14]Zhang C, Baudino A, Dowd DR, et al. Ternary complexes and cooperative interplay between NCoA-62/Ski-interacting protein and steroid receptor coactivators in vitamin D receptor-mediated trans- cription [J]. Biol che, 2001, 276(44):40614-40620.
    [15]MSeifert B, Diesel E, Meese W, et al. Expression of 25 hydroxy- vitamin D3 1αhydroxylase in malignant melanoma: implications for growth control via local synthesis of 1,25(OH)2D3 and detection of multiple splice variants [J] .Exp Dermatol, 2005, 14(2):153-154 .
    [16]Deluca HF, Cantorna MT. Vitamin D: its role and uses in immunology [J]. FASEB J, 2001, 15(14):2579-2585.
    [17]Liu PT, Stenger S, Li H, et al. Toll-like: receptor triggering of a vitamin D mediated human antimicrobial response[J].Science, 2006, 311(1): 1770-1773.
    [18]Carlberg C, Dunlop TW, Saramaki A, et al. Controlling the chromatin organization of vitamin D target genes by multiple vitamin D receptor binding sites[J].J Steroid Biochem Mol Biol, 2007, 103 (3-5): 338- 343.
    [19] Baker AR, Medonnel D, Hugnes M, et al. Cloning and expression of full-length DNA encoding human vitamin D receptor [J]. Proc Natl AcadSci USA, 1988, 5(10):3294.
    [20]Ahn J, Yu K, Stolzenberg-Solomon R, et al. Genome-wide association study of circulating vitamin D levels [J]. Hum Mol Genet, 2010, 19(13): 2739-2745.
    [21] Ramagopalan SV, Heger A, Berlanga AJ, et al. A Chip-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution [J]. Genome Res, 2010, 20(10):1352-1360.
    [22]Jones N, Ougham H, Thomas H, et al. Markers and mapping revisited: finding your gene [J]. New Phytol, 2009, 183(4):935-966.
    [23]刘建河,李鸿伟,佟明,等.北方汉族人群易感基因多态性与前列腺癌危险关系及对发病种族差异的分析[J].中华医学杂志,2004, 84(4):364-368.
    [24]何进卫,黄琪仁,章振林,等.雌激素受体α和维生素D受体基因多态性与上海市妇女峰值骨量的关系[J].中华内分泌代谢杂志,2004, 20(3):140-142.
    [25]Lin WY, Wan L, Tsai CH, et al. Vitamin D receptor gene polymer- phisms are associated with risk of Hashimoto's thyroiditis in Chinese patients in Taiwan [J]. Clin Lab Anal, 2006, 20(3):109-112.
    [26]Ukaji M, Saito Y, Fukushima-Uesaka H, et al. Genetic variations of VDR/NR1I1 encoding vitamin D receptor in a Japanese population [J]. Drug Metab Pharmacokinet, 2007, 22(6):462-467.
    [27] Remes T, Vaisanen SB, Mahonen A, et al. Bone mineral density, body height, and vitamin D receptor gene polymorphism in middle-aged men [J]. Ann Med, 2005, 37(5):383-392.
    [28]John EM, Schwartz GG, Koo J, et al. Sun exposure, vitamin D receptor gene polymorphisms, and breast cancer risk in a multiethnic population [J]. Am J Epidemiol, 2007, 166(12):1409-1419.
    [29]Bustamante M, Nogues X, Enjuanes A, et al. COL1A1, ESR1, VDR and TGFB1 polymorphisms and haplotypes in relation to BMD in Spanish postmenopausal women[J]. Osteoporos Int, 2007, 18(2):235 -243.
    [30]Morrison NA, Qi JC, Tokita A, et al. Prediction of bone density from vitamin D receptor alleles [J]. Nature, 1994, 367(6):284-287.
    [31]Taverna MJ, Selam JL, Slama G. Association between a protein polymorphism in the start codon of the vitamin D receptor gene and severe diabetic retinopathy in C-peptide-negative type 1 diabetes[J]. Clin Endocrinol Metab, 2005, 90(8):4803-4808.
    [32]Fang Y, van Meurs JB, Rivadeneira F, et al. Vitamin D receptor gene haplotype is associated with body height and bone size[J]. J Clin Endocrinol Metab, 2007, 92(4):1491-501.
    [33]Ohtera K, Ishii S, Matsuyama T. Influence of the vitamin D receptor alleles on human osteoblast-like cells[J]. J Bone Joint Surg Br, 2001, 83(1):134-138.
    [34]Dong LM, Ulrich CM, Hsu L, et al. Vitamin D related genes, CYP24A1 and CYP27B1 and colon cancer risk [J]. Cancer Epidemiol Biomarkers Prev, 2009, 18(9):2540-2548.
    [35]Purdue MP, Lan Q, Kricker A, et al. Vitamin D receptor gene polymerphisms and risk of non-Hodgkin's lymphoma [J]. Haematologica, 2007, 92(8): 1145-1146.
    [36]Verbeek W, Gombart AF, Shiohara M, et al. Vitamin D receptor: no evidence for allele-specific mRNA stability in cells which are heterozygous for the Taq I restriction enzyme polymorphism [J]. Biochem Biophys Res Commun, 1997, 238(1):77-80.
    [37]Kang HJ, Oh Y, Chun SM, et al. Totalplex gene amplification using bulging primers for pharmacogenetic analysis of acute lympho- blastic leukemia [J]. Mol Cell Probes, 2008, 22(3):193-200.
    [38]Kishi S, Yang W, Boureau B, et al. Effects of prednisone and genetic polymorphisms on etoposide disposition in children with acute lymphoblastic leukemia[J]. Blood, 2004, 103(1):67-72.
    [39]Kishi S, Cheng C, French D, et al. Ancestry and pharmacogenetics of antileukemic drug toxicity[J]. Blood, 2007, 109(10):4151-4157.
    [40]Rocha JC, Cheng C, Liu W, et al. Pharmacogenetics of outcome in children with acute lymphoblastic leukemia[J]. Blood, 2005, 105(12): 4752-4758.
    [41]Rocha V, Porcher R, Fernandes JF, et al. Association of drug metabolism genepolymorphisms with toxicities, graft-versus-host disease and survival after HLA-identical sibling hematopoietic stem cell transplantation for patients with leukemia [J]. Leukemia, 2009, 23(3): 545-556.
    [42]Norman AW, Ishizuka S, Okamura WH, et al. Ligands for the vitamin D endocrine system: different shapes function as agonists and antagonists forgenomic and rapid response receptors or as a ligand for the plasma vitamin D binding protein [J]. J Ster-oid Biochem Mol Bio, 2001, 76(1-5): 49-59.
    [43]Mccullough ML, Stevens VL, Diver WR, et al. Vitamin D pathway gene polymorphisms, diet, and risk of postmenopausal breast cancer: a nested case-control study [J]. Breast Cancer Res, 2007, 9(1): 121- 129.
    [44]Chung I, Han G, Seshadri M, et al. Role of vitamin D receptor in the antiproliferative effects of calcitriol in tumor-derived endothelial cells and tumor angiogenesis in vivo [J]. Cancer Res, 2009, 69 (3): 967-975.
    [45]Mccullough ML, Bostick RM, Mayo TL, et al. Vitamin D gene pathway polymorphisms and risk of colorectal, breast, and prostate cancer [J]. Annu Rev Nutr, 2009, 29(1):111-132.
    [46]Dabrowski M, Robinson E, Hughes SV, et al. Differential RNA display identifies novel genes associated with decreased vitamin D receptor expression [J]. Mol Cell Endocrinol, 1998, 142(1-2):131- 139.
    [47]Smith SJ, Green LN, Hayes ME, et al. Prostaglandin E2 regulates vitamin Dreceptor expression, vitamin D-24-hydroxylase activity and cell proliferation in an adherent human myeloid leukemia cell line (Ad-HL60) [J]. Prostaglandins Other Lipid Mediat, 1999, 57(2-3):73-85.
    [48]Garay E, Donnelly R, Wang X, et al. Resistance to 1, 25D-induced differentiation in human acute myeloid leukemia HL60-40AF cells is associated with reduced transcriptional activity and nuclear localization of the vitamin D receptor [J]. J Cell Physiol, 2007, 213 (3): 816-825.
    [49]Iwata K, Kouttab N, Ogata H, et al. Differential regulation of vitamin D receptors in clonal populations of a chronic myelogenous leukemia cell line [J]. Exp Cell Res, 1996, 225(1):143-150.
    [50]Song LN. Demonstration of vitamin D receptor expression in a human megakaryoblastic leukemia cell line: regulation of vitamin D receptor mRNA expression and responsiveness by forskolin [J]. J Steroid Biochem Mol Biol, 1996, 57(5-6):265-274.
    [51]Ward JO, McConnell MJ, Carlile GW,et al. The acute promyelo- cytic leukemia-associated protein, promyelocytic leukemia zinc finger, regulates 1, 25-dihydroxyvitaminD (3)-induced monocytic different- tiation of U937 cells through a physical interaction with vitamin D (3) receptor [J]. Blood, 2001, 98(12):3290-3300.
    [52]Gocek E, Kielbinski M, Marcinkowska E. Activation of intracellular signaling pathways is necessary for an increase in VDR expression and itsnuclear translocation [J].FFBS Lett, 2007, 581(9):1751-1757.
    [53]Shao A, Wood RJ, Fleet JC. Increased vitamin D receptor level enhances 1,25-dihydroxyvitamin D3-mediated gene expression and calcium transport in Caco-2 cells [J]. J bone Miner Res, 2001, 16(4): 615-624.
    [54]Miyauchi Y, Sakaguchi N, Okada T, et al. Oncogenic nucleoporin CAN/Nup214 interacts with vitamin D receptor and modulates its function [J]. J Cell Biochem, 2009, 106(6): 1090-1101.
    [55] Pan Q, Simpson RU. Antisense knockout of HOXB4 blocks 1,25- dihydroxyvitamin D3 inhibition of c-myc expression[J]. J Endocrinol, 2001, 169(1): 153-9.
    [56] Pan Q, Simpson RU. C-myc intron element-binding proteins are required for 1, 25-dihydroxyvitamin D3 regulation of c-myc during HL-60 cell differentiation and the involvement of HOXB4[J]. Biol Chem, 1999, 274(13): 8437-8444.
    [57]Ozpolat B, Akar U, Steiner M,et al. Programmed cell death-4 tumor suppressor protein contributes to retinoic acid-induced terminal granulocytic differentiation of human myeloid leukemia cells[J]. Mol Cancer Res, 2007, 5(1): 95-108.
    [58]Hughes PJ, Twist LE, Durham J, et al. Up-regulation of steroid sulphatase activity in HL60 promyelocytic cells by retinoids and 1 alpha,25-dihydroxyvitamin D3[J]. Biochem J, 2001, 355(2):361- 371.
    [59]Morosetti R, Park DJ, Chumakov AM, et al. A novel, myeloid transcription factor, C/EBP epsilon, is upregulated during granulocytic, but not monocytic, differentiation [J]. Blood,, 1997, 90(7): 2591-2600.
    [60]Zimber A, Chedeville A, Abita JP, et al. Functional interactions between bile acids, all-trans retinoic acid, and 1,25-dihydroxy-vitamin D3 on monocytic differentiation and myeloblastin gene down- regulation in HL60 and THP-1 human leukemia cells [J]. Cancer Res, 2000, 60(3): 672-678.
    [1]Randerson-Moor JA, Taylor JC, Elliott F, et al. Vitamin D receptor gene polymorphisms, serum 25-hydroxyvitamin D levels, and melanoma: UK case-control comparisons and a meta-analysis of published VDR data [J]. Eur J Cancer, 2009, 45(18): 3271-3281.
    [2]Reichrath J. Sunlight, skin cancer and vitamin D: What are the conclusions of recent findings that protection against solar ultraviolet (UV) radiation causes 25-hydroxyvitamin D deficiency in solid organ-transplant recipients, xeroderma pigmentosum and other risk groups [J]? J Steroid Biochem Mol Biol, 2007, 103(3-5):664-667.
    [3]Holick MF, Chen TC, Lu Z, et al. Vitamin D and skin physiology: AD-lightful story[J]. J Bone Miner Res, 2007, 22(l2):28-33.
    [4]William B, Ogunkolade J, Barbara J, et al. Vitamin D metabolism in peripheral blood mononuclear cells is influenced by chewing“Betel Nut”(Areca catechu) and vitamin D status[J]. J Clin Endocrinol Metab, 2006, 91(7):2612–2617.
    [5]Kogawa M, Findlay DM, Anderson PH, et al. Osteoclastic metabolism of 25(OH)-vitamin D3: a potential mechanism for optimization of bone resorption[J]. Endocrinology, 2010, 151(10):4613-4625.
    [6]Lane NE. Vitamin D and systemic lupus erythematosus: bones, muscles and joints [J]. Curr Rheumatol Rep, 2010, 12(4):259-263.
    [7]Querales MI, Cruces ME, Rojas S, et al. Association between vitamin D deficiency and metabolic syndrome[J]. Rev Med Chil, 2010, 138 (10):1312-1318.
    [8]Aquila S, Guido C, Middea E, et al. Human male gamete endocrinology: 1 alpha,25-dihydroxyvitamin D3(1,25(OH)2D3) regulates different aspects ofhuman sperm biology and metabolism [J]. Reprod Biol Endocrinol, 2009, 30(7):140-143.
    [9]Nagpal S, Na S, Rathnachalam R, et al. Noncalcemic actions of vitamin D receptor ligands [J]. Endocr Rev, 2005, 26(5):662-687.
    [10]Ishizawa M, Matsunawa M, Adachi R, et al. Lithocholic acid derivatives act as selective vitamin D receptor modulators without inducing hypercalcemia [J]. Lipid Res, 2008, 49(4):763-772.
    [11]Beer TM, Myrthue A. Calcitriol in cancer treatment: from the lab to the clinic [J]. MolCancerTher, 2004, 3(3): 373-381.
    [12]Norman AW, Ishizuka S, Okamura WH. Ligands for the vitamin D endocrine system: different shapes function as agonists and antagonists forgenomic and rapid response receptors or as a ligand for the plasma vitamin D binding protein [J]. J Ster-oid Biochem Mol Bio, 2001, 76(1-5): 49-59.
    [13]Belkacemi L, Züegel U, Steinmeyer A, et al. Calbindin-D28k (CaBP 28k) identification and regulation by 1,25-dihydroxyvitamin D3 in human choriocarcinoma cell line JEG-3[J].Mol Cell Endocrino, 2005, 236(1-2): 31-41.
    [14]Dixon KM,Deo SS, Norman AW, et al. In vivo relevance for photo- protection by the vitamin D rapid response pathway[J]. J Steroid Biochem Mol Biol, 2007, 103(3-5):451-456.
    [15]Hughes PJ, Lee JS, Reiner NE, et al. The vitamin D receptor mediated activation of phosphatidylinositol 3-kinase (PI3Kalpha) plays a role in the 1 alpha,25-dihydroxyvitamin D3-stimulated increase in steroid sulphatase activity in myeloid leukemic cell lines [J].J Cell Biochem, 2008, 103(5):1551-1572.
    [16]Yang ES,Burnstein KL. Vitamin D inhibits G1 to S progression in LNCaP prostate cancer cells through p27 Kip1 stabilization and Cdk2 mislocalization to the cytoplasm [J]. J Biol Chem, 2003, 278 (47): 46862 -46868.
    [17]Guzey M, Luo J, Getzenberg RH, et al. Vitamin D3 modulated gene expression patterns in human primary normal and cancer prostate cells [J]. J Cell Biochem, 2004, 93(2):271-285.
    [18]Fernandez-Garcia NI, Painer HG, Garcia M, et al. 1 alpha, 25-Dihy- droxyvitamin D3 regulates the expression of Id1 and Id2 genes and the angiogenic phenotype of human colon carcinoma cells. Oncogene, 2005, 24(2):6533-6544.
    [19]Weyts FA, Dhawan P, Zhang X, et al. Novel Gemini analogs of 1 alpha,25-dihydroxyvitamin D(3) with enhanced transcriptional activity [J]. Biochem Pharmacol, 2004, 67(7):1327-1336.
    [20]Gocek E, Studzinski GP. Vitamin D and differentiation in cancer [J]. Crit Rev Clin Lab Sci, 2009, 46(4):190-209.
    [21]Bouillon R, Carmeliet G, Verlinden L, et al. Vitamin D and human health: lessons from vitamin D receptor null mice [J]. Endocr Rev, 2008, 29(6): 726-736.
    [22]Blutt SE, McDonnell TJ, Polek TC, et al. Calcitriol induced apoptosis in LNCaP cells is blocked by overexpression of Bcl-2[J]. Endocri- nology, 2000, 141(1):10-17.
    [23]Sakurai R, Shin E, Fonseca S, et al. 1alpha,25(OH)2D3 and its 3-epimer promote rat lung alveolar epithelial-mesenchymal interactions and inhibit lipofibroblast apoptosis[J]. Am J Physiol Lung Cell Mol Physiol, 2009, 297(3): 496-505.
    [24]Pepper C, Thomas A, Hoy T, et al. The vitamin D3 analog EB1089 induces apoptosis via a p53-independent mechanism involving p38 MAP kinase activation and suppression of ERK activity in B-cell chronic lymphocytic leukemia cells in vitro [J]. Blood, 2003, 101 (7): 2454-2460.
    [25]Kawata H, Kamiakito T, Takayashiki N, et al. Vitamin D3 suppresses the androgen-stimulated growth of mouse mammary carcinoma SC-3 cells by transcriptional repression of fibroblast growth factor 8[J]. J Cell Physiol, 2006, 207(3): 793-799.
    [26]Guzey M, Luo J, Getzenberg RH, et al. Vitamin D3 modulated gene expression patterns in human primary normal and cancer prostate cells [J]. J Cell Biochem, 2004, 93(2):271-285.
    [27]Long E, Ilie M, Hofman V, et al. LANA-1, Bcl-2, Mcl-1 and HIF-1 alpha protein expression in HIV-associated Kaposi sarcoma[J]. Virchows Arch, 2009, 455(2):159-170.
    [28]Lu J, Yang JH, Burns AR, et al. Mediation of electronegative low density lipoprotein signaling by LOX-1:a possible mechanism of endothelial apoptosis[J]. Circ Res, 2009, 104(5): 619-627.
    [29]Crescioli C, Ferruzzi P, Caporali A, et al. Inhibition of spontaneous and androgen-induced prostate growth by a nonhypercalcemic calcitriol analog[J]. Endocrinology, 2003, 144(7):3046-3057.
    [30]Thill M, Fischer D, Becker S, et al. Prostaglandin metabolizing enzymes in correlation with vitamin D receptor in benign and malignant breast cell lines [J]. Anticancer Res, 2009, 29(9):3619- 3625.
    [31]Mohri T, Nakajima M, Takagi S, et al. MicroRNA regulates human vitamin D receptor [J]. Int J Cancer, 2009, 125(6): 1328-1333.
    [32]Dhawan P, Wieder R, Christakos S, et al. CCAAT enhancer-binding protein alpha is a molecular target of 1, 25-dihydroxyvitamin D3 in MCF-7 breast cancer cells[J]. J Biol Chem, 2009, 284(5): 3086-3095.
    [33]Vienonen A, Miettinen S, Manninen T, et al. Regulation of nuclear receptor and cofactor expression in breast cancer cell lines[J]. Nucleic Acids Res, 2005, 33(8): 2440-2451.
    [34]Towsend K, Trevino V, Falciani F, et al. Identification of VDR responsive gene signatures in breast cancer cells[J].Oncology, 2006, 71(1-2): 111-123.
    [35]Mason RS, Sequeira VB, Dixon KM, et al. Photoprotection by 1 alpha,25-dihydroxyvitamin D and analogs: further studies on mechanismsand implications for UV-damage [J]. J Steroid Biochem Mol Biol, 2010, 121(1-2): 164-168.
    [36]Boissy P, Andersen TL, Abdallah BM, et al. Resveratrol inhibits myeloma cell growth, prevents osteoclast formation, and promotes osteoblast differentiation [J]. Cancer Res, 2005, 65(21):9943-9952.
    [37]Verlinden L, Verstuyf A, Van M, et al. Two novel 14-epianalogues of 1, 25-dihydroxyvitamin D3 inhibit the growth of human breast cancer cells in vitro and in vivo [J]. Cancer Res, 2000, 60(10): 2673-2679.
    [38]Lopez T, García D, Angel B, et al. Association between Fok I vitamin D receptor (VDR) gene polymorphism and plasmatic concentrations of transforming growth factor-beta1 and interferon gamma in type 1 diabetes mellitus[J]. Med Clin (Barc), 2008, 130(3): 81-84.
    [39]Zhang Z, Sun L, Wang Y, et al. Renoprotective role of the vitamin D receptor in diabetic nephropathy[J].Kidney Int, 2008, 73(2):163-171.
    [40]Rohan JN, Weigel NL. 1 Alpha, 25-dihydroxyvitamin D3 reduces c-myc expression, inhibiting proliferation and causing G1 accumulation in C4-2 prostate cancer cells [J]. Endocrinology, 2009, 150(5): 2046-2054.
    [41]Koli K, Keski OJ. 1,25-dihydorxy vitamin D3 and its analogues down regulate cell invasion-associated protease in cultured malignant cells [J]. Cell Growth Differ, 2000, 11(4): 221-229.
    [42]Yoon JS, Kim JY, Park HK, et al. Antileukemic effect of a synthetic vitaminD3 analog, HY-11, with low potential to cause hypercalcemia [J]. Int J Oncol, 2008, 32(2): 387-396.
    [43]Stio M, Martinesi M, Bruni S, et al. The Vitamin D analogue TX 527 blocks NF-kappa B activation in peripheral blood mononuclear cells of patients with Crohn's disease [J]. J Steroid Biochem Mol Biol, 2007, 103(1): 51-60.
    [44]Stio M, Martinesi M, Bruni S, et al. Interaction among vitamin D(3) analogue KH 1060, TNF-alpha, and vitamin D receptor protein in peripheral blood mononuclear cells of inflammatory bowel disease patients[J].Int Immunopharmacol,2006, 6(7):1083-1092.
    [45]Ramey K, Eko FO, Thompson WE, et al. Immunolocalization and challenge studies using a recombinant vibrio cholerae ghost expressing trypanosoma brucei Ca(2+) ATPase (TBCA2) antigen [J]. Am J Trop Med Hyg, 2009, 81(3):407-415.
    [46]Li Q, Teitz-Tennenbaum S, Donald EJ, et al. In vivo sensitized and in vitro activated B cells mediate tumor regression in cancer adoptive immunotherapy [J]. J Immunol, 2009, 183(5): 3195-3203.
    [47]Shanker A, Brooks AD, Jacobsen KM, et al. Antigen presented by tumors in vivo determines the nature of CD8+ T-cell cytotoxicity [J]. Cancer, 2009, 69(16): 6615-6623.
    [48]Khazaie K, Yon BH. The impact of CD4+CD25+Treg on tumor specificCD8+T cell cytotoxicity and cancer[J]. Semin Cancer Biol, 2006, 16(2): 124-136.
    [49]Royal W, Mia Y, Li H, et al. Peripheral blood regulatory T cell measurements correlate with serum vitamin D levels in patients with multiple sclerosis[J]. J Neuroimmunol, 2009, 213(1-2): 135-141.
    [50]Boonstra A, Barrat FJ, Crain C, et al. 1,25-dihydroxyvitamin D3 has a direct effect on naive CD4+T cells to enhance the development of Th2 cells[J]. J Immunol, 2001, 167(9): 4974-4980.
    [51]Borgogni E, Sarchielli E, Sottili M, et al. Elocalcitol inhibits inflammatory responses in human thyroid cells and T cells[J]. Endocrinology, 2008, 149(7):3626-3634.
    [52]Chen TC, Holick MF, Lokeshwar BL, et al. Evaluation of vitamin D analogs as therapeutic agents for prostate cancer [J]. Recent Results Cancer, 2003, 164(3): 273-288.
    [53]Maetani M, Maskarinec G, Franke A, et al. Association of l eptin, 25-hydroxyvitamin D and parathyroid hormone in women [J]. Nutr Cancer, 2009, 61(2): 225-231.
    [54]Adorini L. Immunomodulatory effects of vitamin D receptor ligands in autoimmune diseases[J]. Int Immunopharmacol, 2002, 12(7): 1017-1028.
    [55]Szeles L, Keresztes G, Toroscik D, et al. 1,25-dihydroxyvitamin D3 is an autonomous regulator of the transcriptional changes leading to atolerogenic dendritic cell phenotype [J]. J Immunol, 2009, 182(4): 2074-2083.
    [56]Zhang J, Lu Y, Dai J, et al. In vivo real-time imaging of TGF-beta- induced transcriptional activation of the RANK ligand gene promoter in intraosseous prostate cancer [J]. Prostate, 2004, 59 (4): 360-369.
    [57]Gobel F, Taschner S, Jurkin J,et al. Reciprocal role of GATA-1 and vitamin D receptor in human myeloid dendritic cell differentiation [J]. Blood, 2009 , 114(18): 3813-3821.
    [58] Zittermann A. Vitamin D in preventive medicine: are we ignoring the Evidence [J] ? Br J Nutr, 2003, 89(7): 552-572.
    [59]Lathers DM, Clark JI, Achille NJ, et al. Phase 1B study to improve immune responses in head and neck cancer patients using escalating doses of 25-hydroxyvitamin D3 [J]. Cancer Immunol Immunoth, 2004, 53(5): 422-430.
    [60]Chen S, Sims GP, Chen XX, et al. Modulatory effects of 1,25- dihydroxyvitamin D3 on human B cell differentiation[J]. J Immunol, 2007, 179(3): 1634-1647.
    [61]Matsunawa M, Amano Y, Endo K, et al. The aryl hydrocarbon receptor activator benzoapyrene enhances vitamin D3 catabolism in macrophages [J]. Toxicol Sci, 2009, 109(1): 50-58.
    [62]Gruber HE, Hoelscher G, Ingram JA, et al. 1,25(OH)2-vitamin D3 inhibitsproliferation and decreases production of monocyte chemoattractant protein-1, thrombopoietin, VEGF, and angiogenin by human annulus cells in vitro[J]. Spine, 2008, 33(7): 755-765.
    [63]Froicu M, Cantorna MT. Vitamin D and the vitamin D receptor are critical for control of the innate immune response to colonic injury [J]. BMC Immunol, 2007, 30(8)5-6.
    [64]Asgari MM, Tang J, Warton ME, et al. Association of prediagnostic serum vitamin D levels with the development of basal cell carcinoma [J]. J Invest Dermatol, 2010, 130(5): 1438-1443.
    [65]Campbell FC, Xu H, El-Tanani M, et al. The yin and yang of vitamin D receptor (VDR) signaling in neoplastic progression: operational networks and tissue-specific growth control [J]. Biochem Pharmacol, 2010, 79(1): 1-9.
    [66]Moan J, Porojnicu AC, Dahlback A, et al. Addressing the health benefits and risks, involving vitamin D or skin cancer of increased sun exposure [J]. Proc Natl Acad Sci USA, 2008, 105(2): 668-673.
    [67]Perez-Lopez FR, Chedraui P, Haya J, et al. Vitamin D acquisition and breast cancer risk [J]. Reproductive Sci, 2009, 16(1): 7-19.
    [68]Zheng W, Danforth KN, Tworoger SS, et al. Circulating 25-hydroxy- vitamin D and risk of epithelial ovarian cancer: Cohort Consortium Vitamin D Pooling Project of Rarer Cancers[J]. Am J Epidemiol, 2010, 172(1):70-80.
    [69]Kilkkinen A, Knekt P, Heliovaara M, et al. Vitamin D status and the risk of lung cancer: a cohort study in Finland [J]. Cancer Epidemiol Biomarkers Prev, 2008, 17(11): 3274-3278.
    [70]Niitsu N, Umeda M, Honma Y, et al. Myeloid and monocytoid leukemia cells have different sensitivity to differentiation-inducing activity of deoxyadenosine analogs [J]. Leuk Res, 2000, 24(1): 1-9.
    [71]Gorin NC, Estey E, Jones RJ, et al. New Developments in the Therapy of acute myelocytic leukemia [J]. Hematology, 2000, 45(2): 69-89.
    [72]Garay E, Donnelly R, Wang X, et al. Resistance to 1, 25D-induced differentiation in human acute myeloid leukemia HL60-40AF cells is associated with reduced transcriptional activity and nuclear localization of the vitamin D receptor [J]. J Cell Physiol, 2007, 213(3): 816-825.
    [73]Callens C,Coulon S, Naudin J, et al. Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia[J]. J Exp Med, 2010, 207(4): 731-750.
    [74]Chen-Deutsch X, Garay E, Zhang J, et al. C-Jun N-terminal kinase 2 (JNK2) antagonizes the signaling of differentiation by JNK1 in human myeloid leukemia cells resistant to vitamin D [J]. Leuk Res, 2009, 33(10): 1298- 1300.
    [75]Shabtay A, Sharabani H, Barvish Z, et al. Synergistic antileukemic activityof carnosic acid-rich rosemary extract and the 19-nor gemini vitamin D analogue in a mouse model of systemic acute myeloid leukemia [J]. Oncology, 75(3-4): 203-214.
    [76]Winkel ML, Beek RD, Muinck SM, et al. Pharmacogenetic risk factors for altered bone mineral density and body composition in pediatric acute lymphoblastic leukemia[J]. Haematologica, 2010, 95(5): 752-759.
    [77]Siitonen T, Timonen T, Juvonen E, et al. Valproic acid combined with 13-cis retinoic acid and 1, 25-dihydroxyvitamin D3 in the treatment of patients with myelodysplastic syndromes[J]. Haematologica, 2007, 92(8): 1119-1122.
    [78]Ma Y. 1α, 25-dihydroxyvitamin D3 potentiates cisplatin antitumor activity by p73 induction in a squamous cell carcinoma model [J]. Mol Cancer Ther, 2008, 7(9):3047-3055.
    [79]Chaudhry M, Sundaram S, Gennings C, et al. The vitamin D3 analog, ILX -23-7553, enhances the response to adriamycin and irradiation in MCF-7 breast tumor cells[J]. Cancer Chemother Pharmacol, 2001, 47(5): 429-436.
    [80]Hershberger PA, Yu WD, Modzelewski RA, et al. Calcitriol (1α, 25- dihydroxycholecalciferol) enhances paclitaxel antitumor activity in vitro and in vivo and accelerates paclitaxel-induced apoptosis [J]. Clin Cancer Res, 2001, 7(4):1043-1051.
    [81]Krishnan AV, Moreno J, Nonn L, et al. Novel pathways that contribute tothe anti proliferative and chemopreventive activities of calcitriolin prostate cancer[J]. J Steroid Biochem Mol Biol, 2007, 103(3-5): 694-702.
    [82]Arabi A, Khoury N, Zahed L, et al. Regression of skeletal manifest- tations of hyperparathyroidism with oral vitamin D[J]. J Clin Endocrinol Metab, 2006, 91(7): 2480-2483.
    [83]Slatopolsky E, Cozzolino M, Lu Y, et al. Efficacy of 19-nor-1,25-(OH)2 D3 in the prevention and treatment of hyperparathyroid bone disease in experimental uremia[J]. Kidney Int, 2003, 63(6): 2020-2027.
    [84]Takahashi H, Ibe M, Kinouchi M, et al. Similarly potent action of 1, 25-hydroxyvitamin D3 and its analogues, tacalcital, calcipotriol, and maxacalcitol on normal human keratinocyte proliferation and differentiation[J]. J Dermatol Sci, 2003, 31(1): 21-28.
    [85]Milliken EL, Zhang XX, Flask C, et al. EB 1089, a vitamin D receptor agonist,reduces proliferation and decreases tumor growth rate in a mouse model of hormone-induced mammarr cancer [J]. Cancer Lett, 2005, 29(2):205-215.
    [86]Jang HR, Lee JW, Kim S, et al. High dose vitamin D3 attenuates the hypocalciuric effect of thiazide in hypercalciuric rats[J]. J Korean Med Sci, 2010, 5(9): 1305-1312.