复合氧化物催化剂用于乙苯二氧化碳氧化脱氢反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1995年Maier首次应用酸催化溶胶凝胶法合成无定型多孔复合氧化物并用于应用过氧化氢的选择性氧化反应以来,多孔复合氧化物在催化领域的应用引起人们的关注,特别是随着用于制备催化材料的溶胶—凝胶技术的发展,制备不同组分的多孔复合氧化物,研究其制备规律及在非均相催化领域中的应用的报道屡见不鲜。苯乙烯是一种重要的有机化工原料,全世界苯乙烯的年产量约1300万吨,其中90%是由乙苯催化脱氢生产的,但该工艺受热力学的限制,具有能耗大的缺点。目前共氧化法、氧化脱氢法和脱氢—氢选择性氧化法等改进工艺均未实现工业化。近年来,在氧化脱氢工艺反应体系中应用CO_2取代氧气作为氧化剂,是一条利用CO_2资源和降低能耗的“绿色化学”途径.制备高性能的用于乙苯二氧化碳氧化脱氢(CO_2-EBDH)制苯乙烯的催化剂是一具有理论和实际应用价值的研究课题。
    
     太原理工大学硕士学位论文
     本文以酸催化溶胶一凝胶法合成多孔复合氧化物
    MxTi为主线,以TIO:氧化物为基体进行了7种活性组分
    的筛选;详细考察了制备条件对FexTi的织构、结构和二
    氧化碳氧化乙苯脱氢反应活性的影响;对cOZ一EBDH反
    应进行了工艺条件的优化选择;并与浸渍法制备的钦基
    催化剂反应活性进行比较.采用XRD,TPR,SEM,TEM,
    表面吸附,TGA等多种表征手段对FexTi催化剂研究,
    为阐明多孔复合氧化物FexTi的催化剂体相结构,活性组
    分负载量对COZ一EBDH产物选择性的影响和工业应用提
    供有用信息,获得了以下凡点有意义的结果和结论.
     1.活性组分的筛选结果表明,在同样的制备和反应
    条件下,负载Fe的钦基复合氧化物催化剂的COZ一EBDH
    反应活性明显优于负载V,Mg,C。,Ag,Ni,Zn的催
    化剂.
     2.FexTi55O复合氧化物催化剂对COZ一EBDH反应
    具有非常高的活性,其中Fe3Ti55o在T=s23K,
    P=0.IMPa,W/F=40geat·h/mol,COZ/EB=11的反应条件下,
    乙苯转化率和苯乙烯选择性分别39.8%和98.0%.
     5.复合氧化物FexTi55o比表面积为37一loomZzg,孔
    体积0.15一0.25ml/g,Fe3+进入Tio:的晶格中形成
    Fe一O一Ti键,具有高度分散的孤立Fe活性中心.
Porous mixed oxides were prepared in sol-gel process for the first time and applied on the reaction of selective oxidation with organic hydroperoxides by Prof. Maier in 1995. Since then, the application of AMM catalyst has received many concerns. Especially, along with the developing of sol-gel technology, many reports appeared on the preparation of different kinds of composition porous mixed oxides, for the investigation of the rule of preparing and the application of this kind catalyst on heterogeneous catalysis.
    Styrene is one of the most important basic chemicals, about 13 million tons of styrene is annually produced all over the world, and 90% is commercially produced by the
    
    
    
    dehydrogenation of ethylbenzene on Fe-K-based catalysts at 873-973K. However, EBDH is thermodynamically limited and, moreover, it is very energy consuming process because of the required excess of superheated steam. The process was improved in the ways of common oxidation, oxidation dehydrogenation of ethylbenzene,
    dehydrogenation of ethylbenzene and oxidation of hydrogen. However, none of these processes has been commercially produced so far. Recently, the ethylbenzene dehydrogenation was coupled with the reaction of reverse water-gas shift, in which carbon dioxide instead of oxygen in the dehydrogenation. The process could be effective utilization of carbon dioxide resource, energy-saving and environmentally friendly. It is important in theory and practice to study new technology in preparation high capability catalyst of CO2-EBDH.
    In this thesis, MxTi catalyst was prepared by acid-catalyzed sol-gel method and seven active components were screened. The preparation conditions were investigated in details especially their influence on the texture, structure and the CO2-EBDH of FexTi. The processed condition for hydrogenation of CO2-EBDH was optimized. The activity of FexTi was compared with the catalyst prepared with impregnation method. This research
    
    provided useful information for the CO2-EBDH in selectivity and industry application, several significant results and conclusions were obtained as follows:
    1. According to the result of active components screening, titanium-based mixed oxide doped with Fe shows better activity than that of doped with V, Mg, Co, Ag, Ni and Zn.
    2. Mixed oxide FexTi550 revealed a very excellent activity in CO2-EBDH, the EB conversion and ST selectivity reached 39.8 % and 98.0% respectively over Fe3Ti550 with the reaction condition T=823K, P=0.1MPa, W/F=40gcat-h/mol, CO2/EB=11.
    3. Mixed oxide FexTi550 has a specific surface area 37~100m2/g and a pore volume 0.15~0.25ml/g, highly-dispersed and isolated Fe centers embedded in Ti matrix, Fe3+ entered the crystal lattice of TiO2 and caused the formation of Fe-O-Ti bond in bulk structure.
引文
[1] H.L. Emerson. Catal. Rev. Sci. Eng., 1973, 8,285
    [2] F. Cavani, F. Trifiro, Appl. Catal., 1995,133,219
    [3] 魏狄,许峥,张继炎,石油化工,1995,24(3) ,215
    [4] M. Sugino, H. Shimada, T. Turuda, H. Miura, N. Ikenaga, T. Suzuki, Oxidative dehydrogenation of ethylbenzene with carbon dioxide. Applied Catalysis A: General, 1995,121,125-137
    [5] N. Mimura, I. Takahara, M. Saito, T. Hattori, K. Ohkuma, M.Ando, Dehydrogenation of ethylbenzene over iron oxide-based catalyst in the presence of carbon dioxide, Catalysis Today, 1998,45, 61-64
    [6] J.N. Park, J. Noh, J. S. Chang, S. E. Park, Ethylbenzene to styrene in the presence of carbon dioxide over zirconia, Catalysis Letters, 2000,65, 75-78
    [7] T. Badstube, H. Papp, R. Dziembaj, P. Kustrowski, Screening of catalysts in the oxidative dehydrogenation of ethylbenzene with carbon dioxide, Applied Catalysis A: General, 2000,204,153-165
    [8] Y. Sakurai, T. Suzaki, N. Ikenaga, T. Suzuki, Dehydrogenation of ethylbenzene with an activated carbon-supported vanadium catalyst, Appl. Catal. A: General, 2000,192,281-288
    [9] S. Ailing, Q. Zhangfeng, W. Jianguo, Reaction coupling of ethylbenzene dehydrogenation with water-gas shift, Applied Catalysis A: General, 2002,234, 179-189
    [10] T. Hirano, Appl. Catal., 1986,26,65
    [11] D. E. Stobbe, F. R. van Buren, A.J. van Dillen and J. W. Geus, J. Catal., 1992,135, 533-548
    
    
    [12] M. Muhler, J. Schutze, M. Wesemann, T. Rayment, T. Dent, R. Schlogl and G Ertl. J. Catal., 1990,126,339
    [13] O.V. Krylov, A .K. Mamedov, Mirzabekova S R. Catal.Today, 1995, 24: 371
    [14] T. Hirano Appl.Catal., 1986,26,65
    [15] T. Hirano Appl.Catal., 1986,26,81
    [16] J. Matsui, T. Sodesawa, F. Nozaki, Appl.Catal., 1991,67,179
    [17] S.E. Park, J.S. Chang, M.S. Park, Prepr. Pap. Am. Chem. Soc., Div. Fuel Chem., 1996,41 (4) , 1387
    [18] J.S. Chang, S.E. Park, M.S. Park, Chem.Lett, 1997,1123
    [19] M. Sugino, H. Shimada, T. Turuda etc, Appl. Catal., 1995,121,125
    [20] J.S. Chang, J. Noh, S.E. Park etc, Bull. Korean Chem. Soc., 1998, 19 (12) , 1342
    [21] T. Badstube, H. Papp, P. Kustrowski etc, Catal.Lett., 1998, 55,169-172
    [22] 张维光,葛欣,孙磊,王喜章,沈俭一,乙苯脱氢与逆水煤气变换偶 合反应的铁/活性炭催化剂研究,催化学报,2000,12(1) ,27-30
    [23] S. Sato, M. Ohhara, T. Sodesawa etc, Appl.Catal., 1988, 37,207
    [24] S.E. Park, J.S. Chang, M.S. Park, 15th Meeting of the North American Catalysis Society, Chicago, Illinois, May, 18-22,1997,172
    [25] V.P. Vislovskiy, J.S. Chang, M.S. Park, S.E. Park, Ethylbenzene into styrene with carbon dioxide over modified vanadia-alumina catalysts, Catalysis Communications, 2002,3,227-231
    [26] S.Yoshihiro, S. Takamasa, N. Kiyoharu, I. Na-oki, A. Hiroyuki, and S. Toshimitsu, Dehydrogenation of Ethylbenzene over Vanadium Oxide-Loaded MgO Catalyst: Promoting Effect of Carbon Dioxide, Journal of Catalysis, 2002, 209,16-24
    [27] 葛欣,沈俭一,二氧化碳的利用新途径--逆水煤气变换与乙苯脱氢
    
    耦合制备苯乙烯反应的研究,化学通报,2001,3(6),25
    [28]葛欣,王文月,邹琥,沈俭一,乙苯脱氢与二氧化碳转化氧化铝催化剂吸附量热的研究,燃料化学学报,1999,27(4),314-318
    [29]葛欣,陈见强,张惠良,铁酸盐的制备、表征及其催化性能的研究,无机化学学报,1999,15(6),727
    [30]P. Kustrowski, A. Rafalska-£asocha, D. Majda, D. Tomaszewska, R. Dziembaj, Preparation and characterization of new Mg-Al-Fe oxide catalyst precursors for dehydrogenation of ethylbenzene in the presence of carbon dioxide, Solid State Ionics 2001, 141-142, 237-242
    [31]I. Na-oki, T. Tadatoshi, S. Kazuhiro etc., Ind. Eng. Chem. Res., 2000, 39, 1228
    [32]M. Saito, H. Kimura, N. Mimura, W. Jingang, K. Murata, Dehydrogenation of ethylbenzene in the presence of CO_2 over an alumina-supported iron oxide catalyst, Applied Catalysis A: General 2003, 239, 71~77
    [33]N.Mimura and M. Saito, Dehydrogenation of ethylbenzene to styrene over Fe_2O_3/Al_2O_3 catalysts in the presence of carbon dioxide, Catalysis Letters, 1999, 58, 59-62
    [34]N. Mimura and M. Saito, Dehydrogenation of ethylbenzene to styrene in the presence of CO_2 over calcined hydrotalcite-like compounds as catalysts, Catalysis Letters, 2002, 78, 1-4
    [35]I.C. Tilgner, P. Fischer, F. M. Bohnen, H.Rehage and Maier, W. F., Microp. Mat., 1995, 5, 77
    [36]F. Konietzrti, U. Kolb, U. Dingerdissen and W. F. Maier, AMM-Mn_xSicatalyzed selective oxidation of toluene, Journal of catalysis, 1998, 176, 527-535
    [37]S. Bukeikhanova, H. Orzesek,U. Kolb, K. Kühlein and W. F. Maler.
    
    AMM-InxSi, a microporous catalyst for the oxidative dimerization of propene with air, Catalysis Letters 1998, 50, 93-105
    [38]M. Stckmann, F. Konietzni, J.U. Notheis, J. Voss, W. Keune, W. F. Maier; Selective oxidation of benzene to phenol in the liquid phase with amorphous microporous mixed oxides, Applied Catalysis A: General 2001, 208, 343-358
    [39]D. Yi, C. Lettmann, W. F. Maier, Leaching of amorphous V- and Ti-containing porous silica catalysts in liquid phase oxidation reactions Applied Catalysis A: General 2001, 214, 31-45
    [40]S. Klein, S. Thorimbert and W. F.Maier, J. Catal., 1996, 163,477
    [41]S. Klein, J. Martens, R. Parton, K. Vercruysse, P.A.. Jacobs and W.F. Maier, Catal. Lett. 1996, 38, 209
    [42]S. Klein and W. F. Maier, Angew. Chem. 1996, 108, 2376
    [43]W. F. Maier, S. Klein, J. Martens, J. Heilmann, R. Parton, K. Vercruysse and P.A. Jacobs, Angew. Chem., 1996, 108, 222
    [44]L. Wenying, L. Christian and W. F. Maier, Amorphous porous M_xTi mixed oxides as catalysts for the oxidative dehydrogenation of ethylbenzene, Catalysis Letters 2000, 68, 181-188
    [45]张慧,李隽春,李峰,D.G Evans,段雪,第十一届全国催化会议论文集,2002年10月,23
    [46]朱步瑶,赵振国,界面化学基础,化学工业出版社,1996
    [47]陈小泉,古国榜,以钛氧有机物为前驱物制备具有高光催化活性的纳米二氧化钛晶体催化学报,2002,23(4),312—316
    [48]龚茂初,陈豫,张卫东,秦代毅,陈耀强,周建略,添加物对钛基甲烷氧化偶联催化剂性能影响的研究I.添加Li、La对TiO_2晶型转变的影响及其催化行为,化学研究与应用,1994,6(2),99—104