离子液体调控介质的溶解性能及相关性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
室温离子液体被公认为绿色化工领域的新一代介质和“软”功能材料,有望代替传统重污染介质并广泛改变传统的化学工艺。近年来的研究表明,离子液体作为“促沉淀剂”在电解质结晶分离、清洁溶剂等方面已表现出潜在的应用前景,但其研究还处于起步阶段。传统的有机溶剂作为分离介质,例如有机溶剂捕集天然气中的硫,存在一定的缺陷。离子液体能否调控介质的性质继而为开发新的分离介质和分离工艺提供新思路也值得我们关注。本论文围绕离子液体调控介质的溶解性能等开展了如下研究工作:
     1、利用激光浊点法测定了常压、不同温度下氯化物MCl(M=Na,K)在不同浓度的离子液体1-甲基-3-丁基咪唑氯化盐([Bmim]Cl)水溶液中的溶解度,以及溴化物MBr(M=Na,K)分别在不同浓度离子液体1-甲基-3-丁基咪唑溴化盐([Bmim]Br)水溶液中的溶解度,考察了温度和离子液体浓度对溶解度的影响,并采用Pitzer混合电解质溶液模型对实验数据进行了关联,得到了新的离子间相互作用参数、电解质的平均活度系数和溶剂的渗透系数。实验发现,在溶剂水中添加离子液体会降低无机盐的溶解度,离子液体表现出强烈的盐析效应,但对钾盐的盐析作用要高于对钠盐的盐析作用。Pitzer混合电解质溶液模型能满意关联溶解度数据,预测的NaCl(Br)-KCl(Br)-[Bmim]Cl(Br)-H2O四元相图显示,离子液体能改变钾盐和钠盐的结晶区,预示着可通过离子液体调控无机盐的结晶。
     2、在常压和293.15-343.15K温度范围内,利用激光浊点法分别测定了氯化钾(KCl)和硫酸钾(K2SO4)在离子液体1-甲基-3-丁基咪唑四氟硼酸盐([Bmim][BF4])(?)水混合溶剂中的溶解度,考察了温度和溶剂配比对溶解度的影响,分别绘制出不同温度下KCl-[Bmim][BF4]-H2O和K2SO4-[Bmim][BF4]-H2O四元混合系统固-液平衡相图。结果表明,在混合体系中发生了复分解反应。利用得到的溶解度实验数据计算了两种钾盐从纯水中迁移至混合溶剂中的标准迁移热力学函数。钾盐从纯水中到离子液体混合溶剂中的标准迁移自由能计算结果说明,离子液体浓度越大,迁移能越大,越不利于钾盐的溶解。
     3、研究了离子液体的加入对水盐系统热力学性质的影响。测定了常压下不同温度(T=298.15-328.15K)、不同组成的MX+[Bmim]X+H2O三元系统的密度、粘度和折光率。结果表明,相同温度下,MX+[Bmim]X+H2O系统的密度、粘度和折光率都会随离子液体质量分数和无机盐的质量摩尔浓度的增大而增加。在定组成下,系统的密度、折光率和粘度会随温度的升高而逐渐降低。采用经验模型关联系统的密度、粘度和折光率,相关系数R2均在0.98以上。在此基础上,计算了MX在[Bmim]X+水混合溶液中的表观摩尔体积,无限稀释农观摩尔体积,以及MX从纯水中迁移到离子液体水溶液中的标准迁移偏摩尔体积。结果表明,随着无机盐的质量摩尔浓度的增加,其表观摩尔体积也随之增大,但在离子强度较大的范围内,两者并未表现出良好的线性关系。定组成下,溶液中MX的VΦ0。和△trVΦ0都随[Bmim]Br浓度增大而增大
     4、利用激光浊点法测定了常压、不同温度下(293.15-353.15K)硫磺在甲苯、氯苯、对二甲苯、环己烷和正辛烷,以及不同咪唑类离子液体[Cnmim][PF6]和[Cnmim][BF4](n=4,6)与甲苯混合溶剂中的溶解度。实验结果表明,在所选有机溶剂中,硫在甲苯溶剂中的溶解度最大,而离子液体的加入会显著降低硫磺的溶解度。离子液体阴、阳离子的种类,浓度以及温度都会影响硫磺在混合溶剂中的溶解度。在此基础上,采用不同模型关联了实验数据,得到了硫磺从甲苯中迁移到混合溶剂中的迁移自由能、迁移熵和迁移焓。计算发现,离子液体对硫磺溶解度的影响程度要比温度大。在较低温度下,硫磺的溶解为熵驱动过程,较高温度范围为焓驱动过程。
Room temperature ionic liquids (RTILs) considered as novel benign solvent and "soft" functional material in green chemical industry, are expected to replace the traditional solvent that causes a heavy pollution to the environment, and to innovate the traditional chemical techniques. Recently, many researches demonstrated that IL as "drowning-out agent" would have a potential application in the fileds of electrolyte crystallization process and solution separation. It is pity that its rearch and application is still at a beginning step. The traditional organic solvent as a medium of separation in the current chemical engineering industry exists some critical defects, in particular the organic solvent at the industry of the extraction and capture of the sulfur from exhausted gases. Thus, a new thought about the use of IL to mediate the property of solution and then to develop a new separation medium and separation process, comes up and deserves us to focus on it. In this thesis, we have done some basic experimental work and theoretical studies on the solid-liquid equilibrium, thermodynamic properties and thermodynamic models of the mixture system with ionic liquid. The highlights of this thesis are following:
     1. Solubility of potassium chloride (KCl) and sodium chloride (NaCI) in ionic liquid1-butyl-3-methylimidazolium chloride ([Bmim]Cl) aqueous solution and solubility of bromide MBr (M=Na,K) in1-Butyl-3-methylimidazolium bromine [Bmim]Br aqueous solutions were determined by cloud-point method through using the laser beam scattering instrument at different temperatures and standard atmospheric pressures. The effect of temperature and ionic liquid concentration on the solubility of salt was studied. We observed that ionic liquid has "salting-out effect" on salt. The solubility data in our experiments was correlated and calculated with the modified Pitzer electrolyte model. Several interaction parameters of the mixed-electrolyte solution such as θM,[Bmim],ΨM,[Bm,m],Cl, and ΨM,[Bmim].Br, and the average activity coefficient γ±of salts, and osmotic coefficient Φ of solvents, can be obtained on a basis of the experiments. Further, we used these physical parameters to evaluate the solid-liquid phase behavior in a quaternary system KCl-NaCl-[Bmim]Cl-H2O. Finally, we plotted the phase diagram of the quaternary mixture system.
     2. The solubilities of KCl (and K2SO4) in ionic liquid1-Butyl-3-methyl imidazolium tetrafluoroborate ([Bmim][BF4]) aqueous solution were measured at standard atmospheric pressure, but different temperatures by utilizing laser-cloud point method. An empirical expression of the solubility m as a function of the temperature T was produced. Based on the measured solubility data in the quaternary system composed of KCl (or K2SO4) and [Bmim][BF4], we calculated the standard thermodynamic quantities of transfer of KCl (and K2SO4) when moving from water to the mixed solvent.
     3. Thermodynamic properties such as density, viscosity, and refractive index in the MX-[Bmim]X-H2O (M=K, Na; X=Cl, Br) aqueous solution were measured in a temperature range of (T=298.15-328.15K) at standard atmospheric pressure. Our experiments indicate that density, viscosity, and the refractive index arise along with the increase of ionic liquids and salt concentration; wheras they decline along with the increase of temperature. In addition, we also calculated the apparent molar volumes VΦ, the limiting partial molar volumes VΦ0, and transfer partial molar volumes△trVΦ0of MX in mixed solutions. All the thermodynamic quantities can give a good interpretation how the solute molecules and the solvent molecules are interacting with each other in the ternary mixture systerm.
     4. The solubility of the element sulfur in several pure aromatic hydrocarbons, pure aliphatic hydrocarbons as well as their mixtures with ionic liquids were measured by using cloud-point method in a temperature range of (7=293.15to353.15K) at standard atmospheric pressure. Although the measured solubilities of the element sulfur increase as the temperature increases in all cases, the solvent toluene exhibits a best capability to dissolve the element sulfur. Four different imidazolium ionic liquids:1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6]),1-hexyl-3-methy limidazolium hexafluorophosphate ([C6mim][PF6]),1-butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4]), and1-hexyl-3-methylimidazolium tetrafluoroborate ([C6mim][BF4]) were added separately into pure toluene solvent in order to investigate the impact of the addition of IL on the solubility of the element sulfur. The experimental results show that the chemical structure of the IL's cation and the concentration of ionic liquid are critical to the solubility of the element sulfur in the organic solvents. We employed several different empirical equations to correlate the solubility data measured in the toluene+[C6mim][PF6] mixture system, and calculated the free energy of transfer△trG, the entropy of transfer△trS, and the enthalpy of transfer△trH of the element sulfur moving from the pure toluene to the mixture solution.
引文
[I]H. Oosterhof, G. J. Witkamp, G. M. van Rosmalen. Some antisolvents for crystallisation of sodium carbonate. Fluid Phase Equilibria,1999,155(2):219-227
    [2]P. Safaeefar, H. M. Ang, K. Maeda, H. Kuramochi, Y. Asakuma, M. O. Tade, K. Fukui. Solid-liquid phase equilibria in the system water+methanol+MgSO4-7H2O+ MnSO4-4H2O. Fluid Phase Equilibria,2009,277(1):68-72
    [3]K. Maeda, P. Safaeefar, H.-M. Ang, H. Kuramochi, Y. Asakuma, M. O. Tade, K. Fukui. Prediction of Solid-Liquid Phase Equilibrium in the System of Water (1) +Alcohols (2)+MgSO4-7H2O (3)+MnSO4·H2O (4) by the Ion-Specific Electrolyte NRTL Model. J. Chem. Eng. Data,2009,54(2):423-427
    [4]Z.-B. Mao, T.-L. Luo, T.-B. Cui, Y. Wang, G.-J. Liu. Solubilities of 3-Pentadecylphenol in Ethanol,1-Butanol, Toluene, Acetone, Tetrachloromethane, and Ethyl Acetate. J. Chem. Eng. Data,2010,55(1):543-554
    [5]J. A. Lovera, A. P. Padilla, H. R. Galleguillos. Correlation of the solubilities of alkali chlorides in mixed solvents:Polyethylene glycol+H2O and Ethanol+H2O. CALPHAD:Computer Couling of Phase Diagrams and Thermochemistry,2012,38: 35-42
    [6]K. N Marsh, J. A. Boxall, R. Lichtenthaler. Room temperature ionic liquids and their mixtures-a review. Fluid Phase Equilibria,2004,219(1):93-98
    [7]T. L. Greaves, C. J. Drummond. Protic Ionic Liquids:Properties and Applications, Chem. Rev.,2008,108(1):206-237
    [8]P. Wasserscheid, W. Keim. Ionic liquids-New "solutions" for transition metal catalysis, Angew. Chem. Int. Ed.,2000,39(21):3772-3789
    [9]F. Endres, S. Z. E. Abedin. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Phys. Chem. Chem. Phys.2006,8(18):2101-2116
    [10]S. V. Volkov. Chemical Reactions in Molten Salts and their Classification. Chem. Soc. Rev.,1990,19:21-28
    [11]P. Hapiot, C. Lagrost. Electrochemical Reactivity in Room-Temperature Ionic Liquids. Chem. Rev.,2008,108(7):2238-2264
    [12]M. A. P. Martins, C. P. Frizzo, D. N. Moreira, N. Zanatta, H. G. Bonacorso. Ionic Liquids in Heteroeyclic Synthesis. Chem. Rev.,2008,108(6):2015-2050
    [13]E. D. Bates, R. D. Mayton, I. Ntai. J. H. Davis. CO2 Capture by a Task-Specific Ionic Liquid. J. Am. Chem. Soc.,2002,124(6):926-927
    [14]A. E. Visser, R. P. Swatloski, W. M. Reichert, R. Mayton, S. Sheff, A. Wierzbicki, J. H. Davis, R. D. Rogers. Task-Specific Ionic Liquids Incorporating Novel Cations for the Coordination and Extraction of Na4 and Ca2+:Synthesis, Characterization and Extraction Studies. Environ. Sci. Technol.,2002,36(11):2523-2529
    [15]S. Chen, G. Wu, M. Sha, S. Huang. Transition of Ionic Liquid [bmim][PF6] from Liquid to High-Melting-Point Crystal When Confined in Multiwalled Carbon Nanotubes. J. Am. Chem. Soc.,2007,129(9):2416-2417
    [16]A. Heintz. Recent developments in thermodynamics and thermophysics of non-aqueous mixtures containing ionic liquids. A review. J. Chem. Thermodyn.,2005, 37(6):525-535
    [17]Z. Fei, D. Zhao, T. J. Geldbach, R. Scopelliti, P. J. Dyson. A Synthetic Zwitterionic Water Channel:Characterization in the Solid State by X-ray Crystallography and NMR Spectroscopy. Angew. Chem. Int. Ed.,2005,44(35):5720-5725
    [18]J. L. Anderson, R. Ding, A. Ellern, D. W. Armstrong. Structure and properties of high stability germinal dicationic ionic liquids. J. Am. Chem. Soc.,2005,127(2):593-604
    [19]J. G. Huddleston, A. E.Visser, W. M. Reichert, H. D. Willauer, G. A. Broker, R. D. Rogers. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem.,2001, 3(4):156-164
    [20]张锁江,吕兴梅.离子液体—从基础研究到工业应用.科学出版社,2006
    [21]M. J. Earle, K. R. Seddon. Ionic liquid green solvents for the future. Pure Appl. Chem., 2000,72(7):1391-1398
    [22]邓友全.离子液体—性质、制备与应用.中国石化出版社,2006
    [23]H. Ohno. Molten salt type polymer electrolytes. Electrochim. Acta.,2001,46(10-11): 1407-1411
    [24]张青山,刘爱霞,郭炳南等.离子液体相关电解质研究进展。化学世界,2006,47(6):375-377
    [25]T. Welton. Room-temperature ionic liquids solvents for synthesis and catalysis. Chem. Rev.,1999,99(8):2071-2083
    [26]C. Wakai, A. Oleinikova, M. Ott, H. Weingalrtner. How polar are ionic liquids? Determination of the static dielectric constant of an imidazolium-based ionic liquid by microwave dielectric spectroscopy. J. Phys. Chem. B,2005,109(36):17028-17030
    [27]C. P. Fredlake, J. M. Crosthwaite, D. G. Hert, S. N. V. K. Aki, J. F. Brennecke. Thermophysical properties of imidazolium-based ionic liquids. J. Chem. Eng. Data, 2004,49(4):945-964
    [28]L. A. Jared, D. Rongfang, E. Arkady, W. A. Daniel. Structure and properties of high stability geminal dicationic ionic liquids. J. Am. Chem. Soc.,2005,127(2):593-604
    [29]M. T. Zafarani-Moattar, H. Shekaari. Volumetric and Speed of Sound of Ionic Liquid, 1-Butyl-3-methylimidazolium Hexafluorophosphate with Acetonitrile and Methanol at T= (298.15 to 318.15) K. J. Chem. Eng. Data,2005,50(5):1694-1699
    [30]H. T. Xu, D. C. Zhao, P. Xu, F. Q. Liu, G. Gao. Conductivity and Visxosity of 1-Alkyl-3-methyl-imidazolium Chloride+Water and+Ethanol from 293.15 K to 333.15 K. J. Chem. Eng. Data,2005,50(1):133-135
    [31]J. A. Widegren, A. Laesecke, J. W. Magee. The effect of dissolved water on the viscosities of hydrophobic room-temperature ionic liquids. Chem Commun.,2005, 46(12):1610-1612
    [32]D. Chakrabarty, A. Charkraborty, D. Seth, N. Sarkar. Effect of water, methanol, and acetonitrile on solvent relaxation and relaxational relaxation of coumarin 153 in neat 1-hexyl-3-methylimidazolium hexafluorophosphate. J. Phys. Chem. A,2005,109(9): 1764-1769
    [33]K. R. Seddon, A. Stark, M. Torres. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem.,2000,72(12):2275-2287
    [34]Y. F. Geng, S. L. Chen, T. F. Wang, D. H. Yu, C. J. Peng, H. L. Liu, Y. Hu. Volumetric Properties, Viscosity and Electrical Conductivity of 1-Butyl-3-Methylimidazolium Hexafluorophosphate in Monoethanolamine and N, N-Dimethylethanolamine. J. Molec. Liquid,2008,143(2-3):100-108
    [35]Y. F. Geng, T. F. Wang, D. H. Yu, C. J. Peng, H. L. Liu, Y. Hu. Densities and Viscosities of the Ionic Liquid [C4mim][PF6]+DMF Binary mixtures at 293.15K to 318.15K. Chinese J. Chem. Eng.,2008,16(2):256-262
    [36]李洪钟.过程工程—物质.能源.智慧.科学出版社,2010
    [37]X. W. Chen, X. H. Li, H. B. Song, Y. Qian, F. R. Wang. Solvent-free aza-Markovnikov and aza-Michael additions promoted. Tetrahedron Lett.,2011, 52(28):3588-3591
    [38]L. Wang, H. J. Li, P. H. Li. Task-specific ionic liquid as base, ligand and reaction medium for the palladium-catalyzed Heck reaction. Tetrahedron,2009,65(1):364-368
    [39]Z. W. Chen, Q. Zhu, W. K. Su. A novel sulfonic acid functionalized ionic liquid catalyzed multicomponent synthesis of 10,11-dihydrochromeno [4,3-b] chromene-6,8(7H,9H)-dione derivatives in water. Tetrahedron Lett.,2011,52(20):2601-2604
    [40]A. Chrobok. The Baeyer Villiger oxidation of ketones with Oxone in the presence of ionic liquids as solvents. Tetrahedron,2010,66(32):6212-6216
    [41]Y. L. Hu, Q. F. Liu, T. T. Lu, M. Lu. Highly sfficient oxidation of organic halides to aldehydes and ketones with H5IO6 in ionic liquid [C12mim][FeCl4]. Catal. Commun., 2010,11(10):923-927
    [42]M. Iglesias, O. R. Gonzalez, I. C. F. Medina. Br(?)nsted ionic liquids:study of physico-chemical properties and catalytic activity in aldol condensations. J. Chem. Eng.,2010,162(2):802-808
    [43]R. P. Swatloski, S. K. Spear, J. D. Holbrey, R. D. Rogers. Dissolution of cellulose with ionc liquids. J. Am. Chem. Soc.,2002,124(18):4974-4975
    [44]R. D. Rogers, K. R. Seddon. Ionic liquids-Solvents of the future. Science,2003, 302(5646):792-793
    [45]G. B. Appetecehi, G. T. Kim, M. Montanino, F. Alessandrini, S. Passerini. Room temperature lithium polymer batteries baesd on ionic liquids. J. Power Sources,2011, 196(16):6703-6706
    [46]李昌家,李娜,李景印,刘方方,何前国.离子液体在化学电源中的应用研究进展.材料导报A:综述篇,2012,26(6):9-14
    [47]K. K. Denshchikov, M. Y. Izmaylova, A. Z. Zhuk, Y. S. Vygodskii, V. T. Novikov, A. F. Gerasimov.1-Methyl-3-butylimidazolium tetraflouroborate with activated carbon for electrochemical double layer supercapacitors. Electrochim Acta.2010.55(3): 7506-7509
    [48]S. Shiraishi, A. Nishina, Y. Hamano, K. Kano, S. Shiraishi. Electrochemical reaction of fructose dehydrogenase on carbon cryogel electrodes with controlled pore sizes. Electrochem Commun,2010,12(3):446-448
    [49]L. J. Shi, B. X. Shen, G. Q. Wang. Removal of naphthenic acids from Beijiang crude oil by forming ionic liquids. Energy Fuels,2008,22(6):4177-4179
    [50]L. I. N. Tome, V. R. Catambas, A. R. R. Teles, M. G. Freire, I. M. Marrucho, J. A. P. Coutinho. Tryptophan extraction using hydrophobic ionic liquids. Sep. Purif. Techn., 2010,72(3):167-173
    [51]樊静,范云场,王键吉,崔凤灵.室温离子液体对氨基苯磺酸的萃取性能[J].化学学报,2006,64(14):1495-1497
    [52]J. Fan, Y. C. Fan, Y. C. Pei, K. Wu, J. J. Wang, M. H. Fan. Solvent extraction of selected endocrine-disrupting phenols using ionic liquis. Sep. Purif. Techn.,2008, 61(3):324-331
    [53]Y. C. Pei, J. J. Wang, K. Wu, Y. Zhao, J. Fan. Equilibrium partitioning of phenols and phenyl amines between [BF4]-based ionic liquids and aqueous solution. J. Phys. Chem, 2007,221(6):825-835
    [54]A. P. Abbott, P. M. Cullis, M. J. Gibson, R. C. Harris, E. Raven. Extraction of glycerol from biodiesel into a eutectic based ionic liquid. Green Chem,2007,9(8):868-872
    [55]Y. C. Pei, J. J. Wang, X. P. Xuan, J. Fan, M. H. Fan. Factors affecting ionic liquids based removal of anionic dyes from water. Environ. Sci. Techn.,2007,41(14): 5090-5095
    [56]G. R. Yu, X. Li, X. X. Liu, C. Asumana, X. C. Chen. Deep desulfurization of fuel oils using low-viscosity 1-ethyl-3-methylimidazolium dicyanamide ionic liquid. Ind. Eng. Chem. Res.,2011,50(4):2236-2244
    [57]A. Soto, A. Arce, M. K. Khoshkbarchi. Partitioning of antibiotics in a two-liquid phase system formed by water and a loom temperature ionic liquid. Sep. Purif. Techn.,2005, 44(3):242-246
    [58]A. P. Khodadoust, S. Chandrasekaran, D. D. Dionysiou. Preliminary assessment of imidazolium-based room-temperature ionic liquids for extraction of organic contaminants from soils. Environ. Sci. Techn.,2006,40(7):2339-2345
    [59]Y. C. Pei, J. J. Wang, K. Wu, X. P. Xuan, X. J. Lu. Ionic liquid-based aqueous two-phase extraction of selected proteins. Sep. Purif. Techn.,2009,64(3):288-295
    [60]J. H. Wang, D. H. Cheng, X. W. Chen, Z. Du, Z. L. Fang. Direct extraction of double-stranded DNA into ionic liquid 1-butyl-3-methy-limidazolium hexafluorophosphate and its quantification. Anal. Chem.,2007,79(2):620-625
    [61]P. S. Kulkarni, L. C. Branco, J. G. Crespo, C. A. M. Afonso. Capture of dioxins by ionic liquids. Environ. Sci. Techn.,2008,42(7):2570-2574
    [62]H. Lateef, S. M. Grimes, R. Morton, L. Mehta. Extraction of components of composite materials:Ionic liquids in the extraction of flame retardants from plastics. J. Chem. Teehn. Biotechn.,2008,83(4):541-545
    [63]R. Germani, M.V. Mancini, G. Savelli, N. Spreti. Mercury extraction by ionic liquids: Temperature and alkyl chain length effect. Tetrahedron Lett.,2007,48(10):1767-1769
    [64]M. L. Dietz, D. C. Stepinski. Anion concentration-dependent partitioning mechanism in the extraction of uranium into room-temperature ionic liquids. Talanta,2008,75(2): 598-603
    [65]M. H. Mallah, F. Shemirani, M. G. Maragheh. Ionic liquids for simultaneous preconcentration of some Ianthaholds using dispersive liquid-liquid microextraction technique in uranium dioxide powder. Environ. Sei. Teehn.,2009,43(6):1947-1951
    [66]范云场,张社利.离子液体在萃取分离中的应用进展.材料导报A:综述篇.2011,25(9):93-96
    [67]A. E. Jimenez, M. D. Bermudez, P. Iglesias, F. J. Carrion, G. M. Nicolas. l-N-alkyl-3-methylimidazolium ionic liquids as neat lubricants and lubricant additives in steel-aluminium contacts. Wear,2006,260(7-8):766-782
    [68]P. S. Mark, R. Mustafizur, C. S. Brazel. Application of ionic liquids as low-volatility plasticizers for PMMA. Europ. Polym. J.,2003,39(10):1947-1953
    [69]M. C. Uzagare, Y. S. Sanghvi, M. M. Salunkhe. Application of ionic liquid 1-methoxyethyl-3-methyl imidazolium methanesulfonate in nucleoside chemistry. Green Chem.,2003,5(4):370-372
    [70]D. Camper, P. Seovazzo, C. Koval, R. Noble. Gas Solubilities in Room Temperature IonicLiquids. Ind. Eng. Chem. Res.,2004,43(12):3049-3054
    [71]P. Scovazzo, D. Camper, J. Kieft. Regular Solution Treory and CO, Gas Solubility in Room Temperature Ionic Liquids. Ind. Eng. Chem. Res.,2004,43(21):6855-6860
    [72]M. R. Ally, J. Braunstein, R. E. Baltus. Irregular Ionic Lattice Model for Gas Solubilities in Ionic Liquids. Ind. Eng. Chem. Res.,2004,43(5):1296-1301
    [73]E. D. Bates, R. D. Mayton, I. Ntai, J. H. Davis. Jr. CO2 Capture by a Task-Specific Ionic Liquid. J. Am. Chem. Soc.,2002,124 (6):926-927
    [74]B. E. Gurkan, J. C. Fuente, E. M. Mindrup, L. E. Ficke, B. F. Goodrich, E. A. Price, W. F. Schneider, J. F. Brennecke. Equimolar CO2 Absorption by Anion-Functionalized Ionic Liquids. J. Am. Chem. Soc,2010,132 (7):2116-2117
    [75]Y. Q. Zhang, S. J. Zhang, X. M. Lu, Q. Zhou, W. Fan, X. P. Zhang, Dual Amino-Functionalised Phosphonium Ionic Liquids for CO2 Capture. Chem. Eur. J.2009, 15(12):3003-3011
    [76]L. M. G. Sanchez, G. W. Meindersma, A. B. de Haan. Solvent Properties of Functionalized Ionic Liquids for CO2 Absorption. Trans IChemE, Part A, Chem. Eng. Res. Des.,2007,85(1),31-39.
    [77]T. K. Carlisle, J. E. Bara, C. J. Gabriel, R. D. Noble, D. L. Gin. Interpretation of CO2 Solubility and Selectivity in Nitrile-Functionalized Room-Temperature Ionic Liquids Using a Group Contribution Approach. Ind. Eng. Chem. Res.2008,47(18):7005-7012
    [78]C. M. Wang, G. K. Cui, X. Y. Luo, et al. Highly Efficient and Reversible SO2 Capture by Tunable Azole-Based Ionic Liquids through Multiple-Site Chemical Absorption. J. Am. Chem. Soc.2011,133(31):11916-11919
    [79]C. M. Wang, H. M. Luo, D. E. Jiang, H. R. Li, S. Dai. Carbon Dioxide Capture by Superbase-Derived Protic Ionic Liquids. Angew. Chem. Int. Ed.2010,49(34): 5978-5981
    [80]C. M. Wang, X. Y. Luo, H. M. Luo, D. E. Jiang, H. R. Li, S. Dai. Tuning the Basicity of Ionic Liquids for Equimolar CO2 Capture. Angew. Chem. Int. Ed.2011, 50(21):4918-4922
    [81]J. I. Anthony, E. J. Magirin, J. F. Brennecke. Solubilities and Thermodynamic properties of Gases in the Ionic Liquid 1-n-Butyl-3-methylimidazolium Hexafluorophosphate. J. Phys. Chem. B,2002,106(29):7315-7320
    [82]P. Husson-Borg, V. Majer, M. F. Costa Gomes. Solubilities of Oxygen and Carbon Dioxide in Butyl Methylimidazolium Tetrafluoroborate as a Function of Temperature and at Pressures Close to Atmospheric Pressures. J. Chem. Eng. Data,2003,48(3): 480-485
    [83]张虎成,王键吉,轩小朋,赵扬,卓克垒。室温离子液体混合物的相平衡研究进展。化学进展,2006,18(5):670-679
    [84]R. Kato, J. Gmehling. Measurement and correlation of vapor-liquid equilibria of binary systems containing the ionic liquids [EMIM][(CF3SO2)2N], [BMIM][(CF3SO2)2N], [MMIM][(CH3)2PO4] and oxygenated organic compounds respectively water. Fluid Phase Equilibria,2005,231(1):38-43
    [85]J. Zhao, C. C. Dong, C. X. Li, H. Meng, Z. H. Wang. Isobaric vapor-liquid equilibria for ethanol-water system containing different ionic liquids at atmospheric pressure. Fluid Phase Equilibria,2006,242(2):147-153
    [86]Y. Ge, L. Z. Zhang, X. C. Yuan, W. Geng, J. B. Ji. Selection of ionic liquids as entrainers for separation of (wate+ethanol). J. Chem. Thermodyn.,2008,40(8): 1248-1252
    [87]Q. S. Li, J. G. Zhang, Z. G. Lei, J. J. Zhu, F. Y. Xing. Isobaric Vapor-Liquid Equilibrium for Ethyl Acetate+Ethanol+1-Etyl-3-met-hylimidazolium Tetrafluoroborate. J. Chem. Eng. Data,2009,54(2):193-197
    [88]李群生,马各士夫,朱炜,付永泉,李仑.甲醇-苯-离子液体等压汽液平衡数据的测定.北京化工大学学报(自然科学版).2011,38(3):12-16
    [89]J. Li, D. X. Zheng, L. H. Fan, X. H. Wu, L. Dong. Vapor Pressure Measurement of the Ternary Systems H2O+LiBr+[Dmim]Cl, H2O+LiBr+[Dmim]BF4, H2O+LiCl+ [Dmim]Cl, and H2O+LiCl+[Dmim]BF4. J. Chem. Eng. Data.2011,56(1):97-101
    [90]董丽,聂楠,郑丹星H2O+LiBr+[DMIM]DMP和H2O+LiCl+[DMIM]DMP三元体系的气液相平衡测定.北京化工大学学报(自然科学版).2012,39(3):7-11
    [91]K. E. Gutowski, G. A. Broker, H. D. Willauer, J. G. Huddleston. Controlling the Aqueous Miscibility of Ionic Liquids:Aqueous Biphasic Systems of Water-Miscible Ionic Liquids and Water-Structuring Salts for Recycle, Metathesis, and Separations. J. Am. Chem. Soc.,2003,125(22):6632-6633
    [92]A. B. Pereiro, A. Rodriguez. Effective extraction in packed column of ethanol from the azeotropic mixture ethanol+hexane with an ionic liquid as solvent. J. Chem. Eng. 2009,153(1-3):80-85
    [93]J. Garcia, A. Fernandez, J. S. Torrecilla, M. Oliet, F. Rodriguez. Ternary Liquid-Liquid EquilibriaMeasurement for Hexane and Benzene with the Ionic Liquid 1-Butyl-3-methylimidazolium Methylsulfate at 7=(298.2,313.2, and 328.2)K. J. Chem. Eng. Data,2010,55(1):258-261
    [94]U. Domanska, M. Laskowska, A. Pobudkowska. Phase Equilibria Study of the Binary Systems (1-Butyl-3-methylimidazolium Thiocyanate Ionic Liquid+Organic Solvent or Water). J. Phys. Chem. B.2009.113(18):6397-6404
    [95]H. X. Gao, J. C. Li, B. X. Han, W. N. Chen, J. L. Zhang, R. Zhang, D. D. Yan. Microemulsions with ionic liquid polar domains. Phys. Chem. Chem. Phys.,2004, 6(11):2914-2916
    [96]M. Blesic, J. N. C. Lopes, A. A. H. Padua, K. Shimizu, M. F. C. Gomes, L. P. N. Rebelo. Phase Equilibria in Ionic Liquid-Aromatic Compound Mixtures, Including Benzene Fluorination Effects. J. Phys. Chem. B.,2009,113(21):7631-7636
    [97]U. Domanska, M. Krolikowski, K. Paduszynski. Phase equilibria study of the binary systems (N-butyl-3-methylpyridinium tosylate ionic liquid+an alcohol). J. Chem. Thermodyn.2009,41(8):932-938
    [98]U. Domanska, M. Krolikowski, A. Pobudkowska. Phase Equilibria Study of the Binary Systems (N-Butyl-4-methylpyridinium Tosylate Ionic Liquid+Organic Solvent, or Water). J. Chem. Eng. Data.2009,54(5):1435-1441
    [99]I. Samir, A. Eishah, A. M. Dowaidar. Liquid-Liquid Equilibrium of Ternary Systems of Cyclohexane+(Benzene,+Toluene,+Ethylbenzene, or+o-Xylene)+4-Methyl-N-butyl Pyridinium Tetrafluoroborate Ionic Liquid at 303.15 K. J. Chem. Eng. Data. 2008,53(8):1708-1712
    [100]E. J. Gonzalez, N. Calvar, E. Gomez. Separation of benzene from alkanes using 1-ethyl-3-methylpyridinium ethylsulfate ionic liquid at several temperatures and atmospheric pressure:Efrect of the size of the aliphatic hydrocarbons. J. Chem. Thermodyn.2010,42(1):104-109
    [101]J. M. Crosthwaite, S. N. V. K. Aki, E. J. Maginn, J. F. Brennecke. Liquid Phase Behavior of Imidazolium-Based Ionic Liquids with Alcohols. J. Phys. Chem. B,2004, 108(16):5113-5119
    [102]J. M. Crosthwaite, S. N. V. K. Aki, E. J. Maginn, J. F. Brennecke. Liquid phase behavior of imidazolium-based ionic liquids with alcohols:effect of hydrogen bonding and non-polar interactions. Fluid Phase Equili., 2005,228/229:303-309
    [103]J. Lachwa, J. Szydlowski, V. Najdanovic-Visak, L. P. N. Rebelo, K. R. Seddon, M. N. D. Ponte, J. M. S. S. Esperanca, H. J. R. Guedes. Evidence for Lower Critical Solution Behavior in Ionic Liquid Solutions. J. Am. Chem. Soc.,2005,127(18):6542-6543
    [104]U. Domanska, L. Mazurowska. Solubility of 1,3-dialkylimidazolium chloride or hexafluorophate or methylsulfonate in organic solvents:effect of the anions on solubility. Fluid Phase Equilibria.,2004,221(1-2):73-82
    [105]U. Domanska, A. J. Marciniak. Solubility of Ionic Liquid [emim][PF6] in Alcohols. J. Phys. Chem. B,2004,108(7):2376-2382
    [106]J. Dupont, C. S. Consorti, P. A. Z. Suarez, R. F. de Souza. In Organic Syntheses, L. S. Hegedus, Ed. John Wiley:Chichester,2002,79:236
    [107]K. E. Gutowski, G. A. Broker, H. D. Willauer, J. Q. Huddleston, R. P. Swatloski, J. D. Holbrey, R. D. Rogers. Controlling the aqueous miscibility of ionic liquids:aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J. Am. Chem. Soc.,2003,125(22):6632-6633
    [108]N. J. Bridges, K. E. Gutowski, R. D. Rogers. Investigation of Aqueous Biphasic Systems formed from Solutions of Chaotropic Salts with Kosmotropic Salts (Salt-Salt ABS). Green Chem.,2007,9(2):177-183
    [109]H. Rodriguez, M. Francisco, M. Rahman, N. Sun, R. D. Rogers. Biohasic liquid mixtures of ionic liquids and polyethylene glycols. Phys. Chem. Chem. Phys.,2009, 11(46):10916-10922
    [110]C. He, S. Li, H. Liu, K. Li. Extraction of testosterone and epitestosterone in human urine using aqueous two-phase systems of ionic liquid and salt. J Chromatogr A,2005, 1082(2):143-149
    [111]S. Li, C. He, H. Liu, K. Li, F. Liu. Ionic liquids-based aqueous two-phase system, a sample pretreatment procedure prior to high-performance liquid chromatography of opium alkaloids. J. Chromatogr B,2005,826(1-2):58-62
    [112]M. J. Ruiz-Angel, V. Pino, S. Carda-Brock, A. Berthod. Solvent systems for countercurrent chromatography:An aqueous two phase liquid system based on aroom temperature ionic liquid. J Chromatogr. A,2007,1151(1-2):65-73
    [113]M. T. Zafarani-Moattar, S. Hamzehzadeh. Liquid-Liquid Equilibria of Aqueous Two-Phase Systems Containing 1-Butyl-3-methylim.idazolium Bromide and Potassium Phosphate or Dipotassium Hydrogen Phosphate at 298.15 K. J. Chem. Eng. Data.2007, 52(5):1686-1692
    [114]J. R. Trindade, Z. P. Visak, M. Blesic, I. M. Marrucho, J. A. P. Coutinho, J. N. Canongia Lopes. L. P. N. Rebelo. Salting-Out Effects in Aqueous Ionic Liquid Solutions:Cloud-Pomt Temperature Shifts. J Phys. Chem. B,2007,111(18): 4737-4741
    [115]刘庆芬,胡雪生,王玉红,杨屏,夏寒松,余江,刘会洲。离子液体双水相萃取分离青霉素。科学通报,2005,50:756-759
    [116]Y. Jiang, H. Xia, C. Guo, I. Mahmood, H. Liu. Enzymatic Hydrolysis of Penicillin in Mixed Ionic Liquids/Water Two-Phase System. Biotech. Prog.,2007,23(4):829-835
    [117]Y. Jiang, H. Xia, C. Guo, I. Mahmood. Phenomena and Mechanism for Separation and Recovery of Penicillin in Ionic Liquids Aqueous Solution. Ind. Eng. Chem. Res.,2007, 46(19):6303-6312
    [118]张延强,张锁江,陈玉焕,张建敏。离子液体和果糖双水相系统的研究。中国化学会第十三届全国化学热力学和热分析学术会议论文集。新乡,河南师范大学,2006年8月
    [119]Y. Q. Zhang, S. J. Zhang, Y. H. Chen, J. M. Zhang. Aqueous biphasic systems composed of ionic liquid and fructose. Fluid Phase Equilibrium.2007,257(2):173-176
    [120]J. J. Wang, Y. C. Pei, Y. Zhao, Z. G. Hu. Recovery of Amino Acids by Imidazolium Based Ionic Liquids from Aqueous Media. Green Chem.,2005,7(4):196-202
    [121]Y. C. Pei, J. J. Wang, L. Liu, K. Wu, Y. Zhao. Liquid-Liquid Equilibria of Aqueous Biphasic Systems Containing Selected Imidazolium Ionic Liquids and Salts. J. Chem. Eng. Data,2007,52(5):2026-2031
    [122]Z. G. Lei, L. Xiao, C. N. Dai, B. H. Chen. Group contribution lattice fluid equation of state (GCLF EOS) for ionic liquids. Chem. Eng. Sci.,2012,75:1-13
    [123]A. Shariati, C. J. Peters. High-pressure phase behavior of systems with ionic liquids: measurements and modeling of the binary system fluoroform+1-ethyl-3-methylimidazolium hexafluorophosphate. J. Supercrit. Fluids,2003,25(2):109-117
    [124]M. B. Shiflett, A. Yokozeki. Solubilities and diffusivities of carbon dioxide in ionic liquids:[Bmim][PF6] and [Bmim][BF4]. Ind. Eng. Chem. Res.,2005,44(12): 4453-4464
    [125]M. B. Shiflett, A. Yokozeki. Vapor-liquid-liquid equilibria of pentafluoroethane and ionic liquid [Bmim][PF6] mixtures studied with the volumetric method. J. Phys. Chem. B,2006,110(29):14436-14443
    [126]A. Yokozeki, M. B. Shiflett. Global phase behaviors of trifluoromethane in ionic liquid [Bmim][PF6]. AIChE Journal,2006,52(11):3952-3957
    [127]M. B. Shiflett, A. Yokozeki. Solubility of CO2 in room temperature ionic liquid [Hmim][Tf2N]. J. Phys. Chem. B,2007,111(8):2070-2074
    [128]E.A. Muller, K. E. Gubbins. Molecular based equations of state for associating fluids: A review of SAFT and related approaches. Ind. Eng. Chem. Res.,2001,40(10): 2193-2211
    [129]S. P. Tan, H. Adidharma, M. Radosz. Recent Advances and Applications of Statistical Associating Fluid Theory. Ind. Eng. Chem. Res.2008,47(21):8063-8062
    [130]S. Tamouza, J. P. Passarello, P. Tobaly, J. C. Hemptinne. Application to binary mixtures of a group contribution SAFT EOS (GC-SAFT). Fluid Phase Equilib.2005, (228-229):409-419
    [131]A. Tihic, M. Georgios, G. M. Kontogeorgis, N. Solms, M. L. Michelsen, L. Constantinou. A Predictive Group-Contribution Simplified PC-SAFT Equation of State:Application to Polymer Systems. Ind. Eng. Chem. Res.,2008,47(15): 5092-5101
    [132]J. Rozmus, J. C. de Hemptinne, P. Mougin. Application of GC-PPC-SAFT EoS to amine mixtures with a predictive approach. Fluid Phase Equilib.2011,303(1):15-30
    [133]Z.-Y. Zeng, Y.-Y. Xu, X. Hao, Y.-W. Li. Application of the Simplified Perturbed-Chain SAFT to Hydrocarbon Systems with New Group-Contribution Parameters. Ind. Eng. Chem. Res.2009,48(12):5867-5873
    [134]Y. Peng, K. D. Goff, M. C. dos Ramos, C. McCabe. Developing a predictive group-contribution-based SAFT-VR equation of state. Fluid Phase Equilib.2009, 277(2):131-144
    [135]M. C. Ramosa, J. D. Haleya, J. R. Westwooda, C. M. Cabe. Extending the GC-SAFT-VR approach to associating functional groups:Alcohols, aldehydes, amines and carboxylic acids. Fluid Phase Equilib.2011,306(1):97-111
    [136]V. Papaioannou, C. S. Adjiman, G. Jackson, A. Galindo. Simultaneous prediction of vapour-liquid and liquid-liquid equilibria (VLE and LLE) of aqueous mixtures with the SAFT-y group contribution approach. Fluid Phase Equilib.2011,306(1):82-96
    [137]Y. S. Kim, J. H. Jang, B. D. Lim, J. W. Kang, C. S. Lee. Solubility of mixed gases containing carbon dioxide in ionic liquids:Measurements and predictions. Fluid Phase Equilib.2007,256(1-2):70-74
    [138]D. N. Huynh, T. K. S. Tran, S. Tamouza, J. P. Passarello, P. Tobaly, and J. C. de Hemptinne. Modeling Phase Equilibria of Asymmetric Mixtures Using a Group-Contribution SAFT (GC-SAFT) with a kij Correlation Method Based on London's Theory.2. Application to Binary Mixtures Containing Aromatic Hydrocarbons, n-Alkanes, CO2 N2, and H2S. Ind. Eng. Chem. Res.2008,47(22), 8859-8868
    [139]T. K. S. Tran, D. NguyenHuynh, N. Ferrando, J. P. Passarello, J. C. de Hemptinne, P. Tobaly. Modeling VLE of HO2+ Hydrocarbon Mixtures Using a Group Contribution SAFT with a kij Correlation Method Based on London's Theory. Energy Fuels,2009, 23(5):2658-2665
    [140]M. Mouraha, D. NguyenHuynh, J. P. Passarello, P. C. de Hemptinnea, P. Tobaly. Modelling LLE and VLE of methanol+n-alkane series using GC-PC-SAFT with a group contribution kij. Fluid Phase Equilib.2010,298(1):154-168
    [141]B. Breure, S. B. Bottini, G. J. Witkamp, C. J. Peters. Thermodynamic Modeling of the hase Behavior of Binary Systems of Ionic Liquids and Carbon Dioxide with the Group Contribution Equation of State. J. Phys. Chem. B.2007,111(51):14265-14270
    [142]J. L. Li, C. C. He, C. J. Peng, et al. Modeling of the Thermodynamic Properties of Aqueous Ionic Liquid Solutions with an Equation of State for Square-Well Chain Fluid with Variable Range. Ind. Eng. Chem. Res.,2011,50(11):7027-7040
    [143]C. M. Hsieh, S. T. Lin. Determination of Cubic Equation of State Parameters for Pure Fluids from First Principle Solvation Calculations. AIChE J,2008,54(8):2174-2181
    [144]C. Panayiotou. Toward a COSMO equation-of-state model of fluids and their mixtures. Pure Appl. Chem..2011,83(6):1221-1242
    [145]C. M. Hsieh, S. T. Lin. First-Principles Prediction of Vapor-Liquid-Liquid Equilibrium from the PR+COSMOSAC Equation of State. Ind. Eng. Chem. Res.2011,50(3): 1496-1503
    [146]M. Doker, J. Gmehling. Measurement and prediction of vapor-liquid equilibria of ternary systems containing ionic liquids. Fluid Phase Equilibria,2005,227(2):255-266
    [147]D. Camper, C. Becker, C. Koval, R. Noble. Low pressure hydrocarbon solubility in room temperature ionic liquids containing imidazolium rings interpreted using regular solution theory. Ind. Eng. Chem. Res.,2005,44(6):1928-1933
    [148]M. R. Ally, J. Braunstein, R. E. Baltus, S. Dai, D. W. DePaoli, J. M. Simonson. Irregular ionic lattice model for gas solubility in ionic liquids. Ind. Eng. Chem. Res., 2004,43(5):1296-1301
    [149]C. C. Chen, Y. Song. Generalized electrolyte-NRTL model for mixed-solvent electrolyte systems. AIChE J,2004,50(8):1928-1941
    [150]S. Nebig, R. Blts, J. Gemhling. Measurement of avpor-liquid equilibria (VLE) and ecess enthalpies (HE) of binary system with 1-alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide and prediction of these properties and γ∞ using modified UNIFAC (Dortmund). Fluid Phase Equilibria,2007,258(2):168-178
    [151]J. F. Wang, W. Sun, C. X. Li, Z. H. Wang. Correlation of infinite dilution activity coefficient of solute in ionic liquid using UNIFAC model. Fluid Phase Equilibria,2008, 264(1-2):235-241
    [152]L. D. Simoni, Y. D. Lin, J. F. Brennecke, M. A. Stadtherr. Modling liquid-liquid equilibrium of ionic liquid systems with NRTL, electrolyte-NRTL, and UNIQUAC. Ind. Eng. Chem. Res.,2008,47(1):256-272
    [153]黄子卿。电解质溶液理论导论。修订版。科学出版社,1983
    [154]李以圭。金属溶剂萃取热力学。清华大学出版社,1988
    [155]李以圭,陆九芳。电解质溶液理论。清华大学出版社,2005
    [156]R. H. Fowler, E. A. Guggenheim. Statistical Thermodynamics. Cambridge University Press,1956
    [157]R. A. Robinson, R. H. Stokes. Electrolyte Solutions.2nd ed. London:Butterworth, 1959
    [158]W. J. Hamer. The Structure of Electrolytic Solutions. New York:Wiley,1959
    [159]K. S. Pitzer. Thermodynamics of electrolytes. I. Theoretical basis and general equations. J Phys. Chem.,1973,77(2):268-277
    [160]K. S. Pitzer. Activity Coefficients in Electrolyte Solution.2nd Boca Ratom:CRC Press, 1991
    [161]K. S. Pitzer, J. C. Pelper. Activity Coefficient of Aqueous NaHCO3. J. Phys. Chem., 1980,84(19):2396-2398
    [162]K. S. Pitzer, J. M. Simonson. Thermodynamics of Multicomponent, Misclble, Ionic System:Theory and Equations. J. Phys. Chem.,1986,90(13):3005-3009
    [163]C. E. Harvie, N. Moller, J. H. Weare. The Prediction of Mineral Solubilities in Natural Waters:The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O System to High Ionic Strengths at 25℃. Geochim. Cosmochim. Acta.,1984,48(4):723-751
    [164]C. E. Harvie, J. E. Weare. The Predication of Mineral Solubilities in Nature Water: The Na-K-Mg-Cl-SO4-H2O System from Zero to High Concentration at 25℃. Geochim. Cosmochim. Acta.,1980,44(7):981-996
    [165]B. Gonzalez, N. Calvar, A. Dominguez, E. A. Macedo. Osmotic Coefficients of Aqueous Solutions of Four Ionic Liquids at T=(313.15 and 333.15)K. J. Chem. Thermodyn.,2008,40(9):1346-1351
    [166]N. Calvar, B. Gonzalez, A. Dominguez, E. A. Macedo. Osmotic coefficients of binary mixtures of four Ionic Liquids with ethanol or water at T= (313.15 and 333.15) K. J. Chem. Thermodyn.,2009,41(1):11-16
    [167]N. Calvar, B. Gonzalez, A. Dominguez, E. A. Macedo. Osmotic coefficients of binary mixtures of 1-butyl-3-methylimidazolium methylsulfate and 1,3-dimethylimidazolium methylsulfate with ethanol or water at T= 323.15 K. J. Chem. Thermodyn.,2009, 41(5):111-116
    [168]H. Shekaari, S. S. Mousavi. Osmotic Coefficients and Refractive Indices of Aqueous Solutions of Ionic Liquids Containing 1-Butyl-3-methylimidazolium Halide at T (298.15 to 328.15) K. J. Chem. Eng. Data,2009,54(3):823-829
    [169]P. K. Grover, R. L. Ryall. Critical Appraisal of Salting-Out and It Implications for Chemical and Biological Sciences. Chem. Rev.,2005,105(1):1-10
    [170]L. J. A. Fernandez, A. Wint. Double Decomposition of Gypsum and Potassium Chloride Catalysed by Aqueous Ammonia. Chem. Eng. J.,1982,23(1):53-61
    [171]S. I. A. Eishah, A. A. B. Kananeh, M. A. Allawzi. K2SO4 production via the double decomposition reaction of KCl and phosphogypsum. Chem. Eng. J.,2000,76(3): 197-207
    [172]A. Mientka, B. Grzmil, M. Tomaszewska. Production of potassium sulfate from potassium hydrosulfate solutions using alcohols. Chemical papers,2008,62(1): 123-126
    [173]M. E. Taboada. Liquid-liquid and solid-liquid equilibrium of the 1-propanol+lithium sulfate+water system at 25,35 and 45℃. Fluid Phase Equilibria,2003,204(1): 155-165
    [174]P. Safaeefar, H. M. Ang, K. Maeda, H. Kuramochi, Y. Asakuma, M. O. Tade, K. Fukui. Solid-liquid phase equilibria in the system water+methanol+MgSO47H2O+ MnSO4.4H2O. Fluid Phase Equilibria,2009,277(1):68-72
    [175]K. Maeda, P. Safaeefar, H. M. Ang, H. Kuramochi, Y. Asakuma, M. O. Tade, K. Fukui. Prediction of Solid-liquid phase equilibria in the system of Water(1)+ Alcohols(2)+MgSO47H2O (3)+MnSO4.4H2O(4) by the Ion-Specific Electrolyte NRTL Model. J. Chem. Eng. Data,2009,54(2):423-427
    [176]翁延博。五元系统Na+,K+,Mg2+//Cl-,Br-—H2O 313K相平衡研究。天津大学博士毕业论文,2008
    [177]黄雪莉。298.16K下Na+,K+,Mg2+//Cl-,SO42-,NO3-—H2O体系液固相平衡及应用基础研究。大连理工大学博士学位论文,2007
    [178]S. Nozary, H. Modarress, A. Eliassi. Cloud-Point Measurement for Salt+ Poly(ethylene glycol)+Water Systems by Viscometry and Laser Beam Scattering Methods. J. Applied Polymer Science,2003,89(7):1983-1990
    [179]A. Shalmashi, A. Eliassi. Solubility of L-(+)-Ascorbic Acid in Water, Ethanol, Methanol, Propan-2-ol, Acetone, Acetonitrile, Ethyl Acetate, and Tetrahydrofuran from (293 to 323) K. J. Chem. Eng. Data,2008,53(6):1332-1334
    [180]张吕正,桂祈亮,陆小华,王延儒,时均。连续浊点法快速测定含盐水溶液的固液平衡。南京化工大学学报,1997,19(3):19-23
    [181]J. A. Dean. Lange's Chemistry Handbook Version,15th Edition, McGraw-Hill.1999
    [182]S. P. Pinho, E. A. Macedo. Solubility of NaCl, NaBr, and KCl in Water, Methanol, Ethanol, and Their Mixed Solvents. J. Chem. Eng. Data,2005,50(1):29-32
    [183]H. R. Galleguillos, M. E. Taboada, T. A. Graber, S. Bolado. Compositions, Densities, and Refractive Indices of Potassium Chloride+Ethanol+Water and Sodium Chloride +Ethanol+Water Solutions at (298.15 and 313.15) K. J. Chem. Eng. Data,2003, 48(2):405-410
    [184]N. Moller. The Prediction of Mineral Solubilities in Natural Waters:A Chemical Model for the Na-Ca-Cl-SO4-H2O System, to High Temperatures and Concentrations. Geochim. Cosmochim. Acta.,1988,52(4):821-837
    [185]F. Perez-Villasen, G. A. Iglesias-Silva, K. R. Hall. Temperature Dependence of a Modified Pitzer Equation for Strong Electrolytes Systems. Ind. Eng. Chem. Res.,2003, 42(26):6962-6969
    [186]Y. P. Jimenez, M. E. Taboada, H. R. Galleguillos. Solid-liquid equilibrium of K2SO4 in solvent mixtures at different temperatures. Fluid Phase Equilib.,2009,284(2): 114-117
    [187]F. Perez-Villasen, G. A. Iglesias-Silva, K. R. Hall. Osmotic and Activity Coefficients Using a Modified Pitzer Equation for Strong Electrolytes 1:1 and 1:2 at 298.15 K. Ind. Eng. Chem. Res.,2002,41(5):1031-1037
    [188]C. Monnin. A thermodynamic model for the solubility of barite and celestite in electrolyte solutions and seawater to 200℃ and to 1 kbar. Chemical Geology,1999, 153(1-4):187-209
    [189]H. Shekaari, M. T. Zafarani-Moattar. Osmotic coefficients of some imidazolium based ionic liquids in water and acetonitrile at temperature 318.15K. Fluid Phase Equilibria., 2007,254(1-2):198-203
    [190]A. Dinane, M. E. Guendouzi, A. Mounir. Hygrometric Determination of Water Activities, Osmotic and Activity Coefficients of (NaCl+KCl) (aq) at T=298.15K. J. Chem. Thermodyn.,2002,34(4):423-441
    [191]S. P. Pinho, E. A. Macedo. Experimental measurement and modelling of KBr solubility in water, methanol, ethanol, and its binary mixed solvents at different temperatures. J. Chem. Thermodyn.,2002,34(3):337-360
    [192]P. Schindler, R. A. Robinson, R. G. Bates. Solubility of tris(Hydroxymethyl) aminomethane in Water-methanol Solvent Mixtures and Medium Effects in Dissociation of Protonated Base. J. Res. Nat. Bur. Stand. A.1968,72:141-148
    [193]M. T. Zafarani-Moattar, H. Shekaari. Apparent molar volume and isentropic compressibility of ionic liquid 1-butyl-3-methylimidazolium bromide in water, methanol, and ethanol at T=(298.15 to 318.15) K. J. Chem. Thermodynamics.2005, 37(10):1029-1035
    [194]H. Shekaari, F. Jebali. Densities, Viscosities, Electrical Conductances, and Refractive Indices of Amino Acid+Ionic Liquid ([Bmim]Br)+Water Mixtures at 298.15 K. J. Chem. Eng. Data,2010,55(7):2517-2523
    [195]S. Fendt, S. Padmanabhan, H. W. Blanch, J. M. Prausnitz. Viscosities of Acetate or Chloride-Based Ionic Liquids and Some of Their Mixtures with Water or Other Common Solvents. J. Chem. Eng. Data,2010,56(1):31-34
    [196]G. Zhu, J. Dai, S. Zhang. Generation mechanism and distribution characteristics of hydrogen sulfide bearing gas in China. Natural gas geosciences,2004,15:166-170
    [197]D. J. Pack. Elemental Sulphur Formation in Natural Gas Transmission Pipelines. Paper presented at the 14th Biennal Joint Technical Meeting on Pipelines Research; Berlin 2003,31:1-14
    [198]P. Cezac, J. P. Serin, J. M. Reneaume, J. Mercadier, G. Mouton. Elemental Sulfur Deposition in Natural Gas Transmission and Distribution Networks. J. Supercrit. Fluids,2008,44(2):115-122
    [199]B. Meyer, J. M. Austin, D. Jensen. Solubility of Sulfur in liquid Sulfur Dioxide, Carbon Disulfide, and Carbon Tetrachloride. J. Chem. Eng. Data.1971,16 (3): 364-366
    [200]S. F. Sciamanna, S. Lynn. Sulfur Solubility in Pure and Mixed Organic Solvents. Ind. Eng. Chem. Res.1988,27(3):485-491
    [201]欧阳福生,毕玉晓,李波,孙庆,翁惠新.萃取剂分子结构对不溶性硫磺分离效果的影响.华东理工大学学报(自然科学版).2008,3(4):482-486
    [202]S. Jay, P. Cezac, J. P. Serin. Solubility of Elemental Sulfur in Toluene between (267.15 and 313.15) K under Atmospheric Pressure. J. Chem. Eng. Data.2009,54(12): 3238-3241
    [203]X. Z. Yang, J. Wang, G. S. Li, Z. Z. Zhang. Solubilities of 1-Ethylpyridinium Hexafluoro phosphate in Ethanol+Water from (278.15 to 345.15) K. J. Chem. Eng. Data,2009,54(1):75-77
    [204]U. Domanska, A. Marciniak. Solubility of 1-Alkyl-3-methyl imidazolium Hexafluoro phosphate in Hydrocarbons. J. Chem. Eng. Data,2003,48(3):451-456
    [205]C. G. Hanke, A. Johansson, J. B. Harper, R. M. Lynden-Bell. Why are aromatic compounds more soluble than aliphaticcompounds in dimethylimidazolium ionic liquids? A simulation study. Chem. Phys. Lett.,2003,374(1-2):85-90
    [206]U. Domanska, L. M. Casas. Solubility of Phosphonium Ionic Liquid in Alcohols, Benzene, and Alkylbenzenes. J. Phys. Chem. B,2007,111(16):4109-4115
    [207]S. M. Walas.化工相平衡[M],韩世钧等译.北京:中国石化出版社,1992
    [208]J. M. Prausnitz, R. N. Lichtenthaler, E. G. Azevedo. Molecular Thermodynamics of Fluid-phase Equilibria.2nd ed. Englewood Cliffs:Prentice-Hall Inc,1986:230-266
    [209]A. Apelblat, E. Manzurola. Solubilities of o-acetylsalicylic,4-aminosalicylic,3,5-dinitrosalicylic, and p-toluicacid, and magnesium-DL-aspartate in water from T=(278 to 348) K. J. Chem. Them.,1999,31(1):85-91
    [210]J. H. Zhao, L. C. Wang, H. S. Xu, C. Y. Song, F. A. Wang. Solubilities of p-Amino phenol in Sulfuric Acid+Water from (286.15 to 362.8) K. J. Chem. Eng. Data,2005, 50(3):977-979
    [211]S. N. V. K. Aki, J. F. Brennecke, A. Samanta. How Polar are Room-temperature Ionic Liquids? Chem. Commun.,2001,5:413-414