金属卟啉催化氧化邻/对甲酚制邻/对羟基苯甲醛的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芳醛是重要的有机合成中间体,广泛应用于合成医药、农药、染料、香精香料、香水等。芳醛的制备方法很多,其中以邻/对甲酚最为廉价易得,但目前以邻/对甲酚为原料的方法存在环境污染严重、能耗高、合成效率低的问题。而且,由于甲酚中的-CH_3受到取代基的影响,使其氧化条件的选择尤为关键,若采用剧烈的氧化条件则会导致深度氧化,进而使产物的选择性变差;若选择过于缓和的条件又不能将其氧化或导致原料的转化率过低。氧气作为价廉易得、清洁无污染的氧化剂,如能用其直接氧化烷基芳烃,高收率地得到芳醛,无疑将成为前景光明的绿色化工新技术。但在温和条件下,氧分子的基态为三线态,与基态为单线态的烷基芳烃之间反应在能量和自旋上是禁阻的,需要采用高效催化剂活化分子氧,才能最大限度地发挥氧气的氧化作用。金属卟啉类化合物能够从结构和功能上模拟细胞色素P-450,可在温和条件下活化分子氧,从而有效地解决上述反应自旋禁阻的问题。因此,本文致力于研究金属卟啉催化氧气氧化邻/对甲酚制备邻/对羟基苯甲醛的新方法及作用机制。
     首先设计合成了一系列轴向无氯配体和轴向带氯配体的对称(A_4型)及不对称(A_3B型)金属卟啉,并对其催化氧化邻/对甲酚的催化活性和选择性进行了系统深入的研究。同时,考察了金属卟啉-金属盐复合催化剂在对甲酚催化氧化反应中的催化活性和选择性。具体研究内容及结果如下:
     1、探讨了金属卟啉在对甲酚催化氧化反应中的性能和规律。通过研究具有不同结构的金属卟啉在上述反应中的催化作用,发现金属卟啉的催化活性大小顺序为铁卟啉>锰卟啉>钴卟啉;选择性顺序依次为铁卟啉>锰卟啉>钴卟啉;不同取代基的铁卟啉的活性和选择性顺序均为-CH_3O>-CH_3> H>-Cl>-NO_2;轴向无氯配体的金属卟啉和轴向带氯的金属卟啉对对甲酚转化率影响较小,而对对羟基苯甲醛选择性影响较大,其中以轴向带氯的金属卟啉为优。其中T(p-CH_3O)PPFeCl在对甲酚催化氧化反应中的活性最高,对甲酚的转化率可达78.7%,且对羟基苯甲醛选择性和收率分别为63.9%和50.3%。。
     2、探讨了金属卟啉-金属盐复合催化剂在对甲酚催化氧化制备对羟基苯甲醛反应中的规律。通过研究不同金属卟啉与金属盐复合体系在上述反应中的催化作用,发现金属卟啉与金属盐之间存在明显的协同效应,即少量金属卟啉与金属盐组成的复合催化剂可在更低的催化剂浓度和反应压力条件下进行,同时还可显著提高对甲酚的转化率及对羟基苯甲醛选择性和收率。其中T(p-CH_3O)PPFeCl-Co(OAc)2.4H2O的复合催化效果最好,与无催化剂(空白)相比,对甲酚的转化率可从8.0%提高到99.9%,对羟基苯甲醛的选择性可从17.4%提高到82.6%。而与单独使用金属卟啉相比,对甲酚的转化率提高了21.2%,对羟基苯甲醛的选择性提高了18.7%,且催化剂用量从之前的1.110mmol/L降低到0.279mmol/L。
     3、通过研究不同金属卟啉在邻甲酚催化氧化反应中的催化作用,发现该反应中金属卟啉的催化活性大小顺序为铁卟啉>锰卟啉>钴卟啉;选择性顺序依次为铁卟啉>钴卟啉>锰卟啉;不同取代基的铁卟啉中活性和选择性顺序均为-CH_3O>-CH_3> H>-Cl>-NO_2。其中T(p-CH_3O)PPFeCl在邻甲酚催化氧化反应的活性最高,得到邻甲酚的转化率为50.4%,且邻羟基苯甲醛选择性和收率分别为26.6%和13.4%。
     4、通过研究具有不同对称性的金属卟啉在催化氧化邻甲酚反应中的催化活性,发现A3B型金属卟啉较A_4型金属卟啉具有更高的催化活性,特别是不易变价的A3B型锌卟啉较相应的A_4型锌卟啉使得邻甲酚转化率提高了21.9%。通过量子化学计算A3B型金属卟啉和A_4型金属卟啉的微观结构和轨道能级,得到A3B型锌卟啉的ΔEH-L值小于相应的A_4型锌卟啉,使其在理论上更有利于轴向吸附及活化氧气,且具有更高的催化活性,计算得到的规律与实验结果规律相符。
     5、研究了邻/对甲酚氧化制备对羟基苯甲醛过程中各步反应的热力学,发现邻/对甲酚氧化反应中各步反应的△H均小于零,说明各步反应均为放热反应;各步反应的△G均为负值,说明各步反应在理论上均可自发进行;除邻羟基苯甲醚和对羟基苄甲醚生成反应外,其他各步反应△G均随温度的升高而升高,说明降低反应温度均有利于上述各步反应的进行。
     6、反应机理研究结果表明:金属卟啉催化氧气氧化对甲酚的反应为自由基反应。第一步由金属卟啉经过催化循环引发对甲酚产生烷基芳烃苄基自由基。第二步该自由基与分子氧结合生成过氧化物再进一步分解为醛;同时该自由基还可与三价金属-羟基络合物反应形成醌式结构。第三步该醌式结构分别与甲醇和水反应,形成对羟基苄甲醚和对羟基苯甲醇。第四步对羟基苯甲醇进一步氧化生成对羟基苯甲醛,对羟基苯甲醛可进一步深度氧化为对羟基苯甲酸。
Aromatic aldehydes are important chemical intermediates for the synthesis ofvarious pharmaceuticals, pesticides, dyes, flavors, perfumes and chiral intermediates.There are many preparation methods for aromatic aldehydes, and directoxyfunctionalization of cresols at their benzylic positions provides an effectivemethod for synthesizing hydroxybenzaldehyde. However, conventional methods forpreparing o/p-hydrocybenzaldehydes have several disadvantages such as involvinglarge investment and high energy. In addition,-CH_3substituent of cresol can beinfluenced by other substituent to carry out deep oxidation under radical oxidationconditions, which cause the reduction of main product selectivity. While under mildconditions, cresols oxidation reactions might not carry out which influent the cresolconversion. Therefore, no doubt there will be a huge market if the aromatic aldehydescould be prepared from the direct catalytic oxidation of alkyl aromatics at highconversions and selectivities under mild conditions with dioxygen as economical andgreen oxidant. However, dioxygen exists in triplet state and hydrocarbons exist insinglet state, so the development and application of the above reaction are restrained,because the oxidation of hydrocarbons with molecular oxygen is spin-forbidden.Fortunately, metalloporphyrins can catalytically activate molecular oxygen even atmild temperature, so the spin-restrained problem of hydrocarbon oxidation is solved.Accordingly, this dissertation was focused on the study of the new method andoxidation mechenismof alkyl aromatics to aldehyde catalyzed by metalloporphyrinswith oxygen.
     A series of metalloporphyrins with or without axial ligand chloride weredesigned and synthesized firstly. Then, the conversions and selectivities of the abovemetalloporphyrins were studied systematically. Meawhile, the effect of the componentcatalysts between metalloporphyrins and metal salts on p-cresol oxidation reactionwere also studied. The main results are summarized as follows:
     1. Catalytic performance and rule of metalloporphyrins were investigated.Through the study of the catalytic effect of metalloporphyrins with different structuresin the above reaction, it was found that the catalytic activity order ofmetalloporphyrins in the reaction was iron porphyrin> manganese porphyrin> cobaltporphyrin; the order of selectivity of p-hydroxybenaldehyde was iron porphyrin>manganese porphyrin> cobalt porphyrin; the sequence of activity and selectivity ofiron porphyrins with different substitutes was-CH_3O>-CH_3>-H>-Cl>-NO_2; theaxial chlorine free ligand of metalloporphyrins did not effect the conversion ofp-cresol much, but for the selectivity of p-hydroxybenzaldehyde was influenced muchby the metalloporphyrins with and without axial chlorine, and the former oneperformed better on p-cresol conversion. Among the catalyst studied, T(p-CH_3O)PPFeCl performed the best, and78.7%conversion of p-cresol,63.9%selectivity and50.3%yield of p-hydroxybenzaldehyde were reached.
     2. The metalloporphyrins and metal salts co-catalysts were studied in thecatalytic oxidation of p-cresol to prepare p-hydroxybenzaldehyde. Through the studyof different metalloporphyrins and metal salts, it was found that there were obvioussynergistic effects between metalloporphyrins and metal salts. The oxidation ofp-cresol could carry out under lower reaction pressure with lower composite catalystsconcentration, meanwhile the p-cresol conversion and p-hydroxybenzaldehydeselectivity could be significantly improved. Among the composite catalysts studied,T(p-CH_3O)PPFeCl-Co(OAc).4H2O performed best. The p-cresol conversion could beimproved from8.0%to99.9%, and the p-hydroxybenzaldehyde selectivity could beimproved from17.4%to82.6%, comparing with the reaction without catalyst.Comparing with the reaction results obtained by single metalloporphyrins, those usingcomposite catalysts could increase the conversion by21.2%andp-hydroxybenzaldehyde selectivity by18.7%. And also, the catalyst dosage wasreduced from1.110mmol/L to0.279mmol/L.
     3. Through the effect of different metalloporphyrins on the catalytic oxidationreaction of o-cresol, it was found that the catalytic activity order of metalloporphyrinsin the reaction was iron porphyrin> manganese porphyrin> cobalt porphyrin; the orderof selectivity of o-hydroxybenaldehyde was iron porphyrin> cobalt porphyrin>manganese porphyrin; the sequence of activity and selectivity of iron porphyrins withdifferent substitutes was-CH_3O>-CH_3>-H>-Cl>-NO_2. Among the catalyst studied,T(p-CH_3O)PPFeCl performed the best, and50.4%conversion of o-cresol,26.6%selectivity and13.4%yield of o-hydroxybenzaldehyde were reached.
     4. Through the studies on the catalytic activities of metalloporphyrins withdifferent symmetry on the o-cresol oxidation reaction, it was found that A_3B typemetalloporphyrins had better performances than A_4type metalloporphyrins, especiallyA_3B type zinc porphyrin which could increase the o-cresol conversion by21.9%. TheEHOMO, ELUMOand ΔEH-Lof A_3B type and A_4type metalloporphyrins were observedby the quantum chemistry calculation simulation, and the ΔEH-Lvalue of A_3B typezinc porphyrin was lower than that of A_4type zinc porphyrin, which explained thereason for the higher activity of A_3B type metalloporphyrins.
     5. The thermodynamics of preparation reaction of o/p-hydroxybenzaldehydefrom o/p-cresol were studied. It was found that, ΔH of all the steps of o/p-cresoloxidation reactions were below zero, indicating that the reactions were exothermicreaction; the ΔG of each step of o/p-cresol oxidation reactions was negative,indicating the reactions could be carried out spontaneously in theory; in addition,except for the ether formation reaction steps, ΔG of other steps of o/p-cresol oxidation reaction were increased with temperature rising, which indicated that lowertemperature was favorable to the steps above.
     6. The reaction mechanism study showed that the p-cresol oxidation reactioncatalyzed by metalloporphyrin was a free radical reaction. Firstly, the free radical ofalkyl aromatics was produced by the metalloporphyrin catalytic cycle. Secondly, thefree radicals reacted with molecular oxygen and formed peroxides, then furtherdecomposed into aldehydes; at the same time, the free radicals could also react withtrivalent metal hydroxy complexes to form quinoid structure. Thirdly, the quinoidstructure reacted with methanol or water to form p-hydroxylbenzylether orp-hydroxybenzylalcohol. Fourthly, p-hydroxybenzylalcohol further oxidized top-hydroxybenzaldehyde, and the aldehyde could be further oxidized top-hydroxybenzoic acid.
引文
[1] Jones W D, Feher F J. Comparative reactivities of hydrocarbon carbon-hydrogen bonds with atransition-metal complex[J]. Accounts of Chemical Research.1989,22(3):91-100.
    [2] Labinger J A, Bercaw J E. Understanding and exploiting C–H bond activation[J]. Nature.2002,417(6888):507-514.
    [3] Dyker G. Handbook of C-H Transformations:Applications in organic synthesis[J]. Wiley–VCH.2005,446:391-393.
    [4] Godula K, Sames D. C-H bond functionalization in complex organic synthesis[J]. Science.2006,312(5770):67-72.
    [5] Bergman R G. Organometallic chemistry: C–H activation [J]. Nature.2007,446(7134):391-393.
    [6] Sawyer D T, Sobkowiak A, Matsushita T. Metal [ML x; M=Fe, Cu, Co, Mn]/Hydroperoxide-InducedActivation of Dioxygen for the Oxygenation of Hydrocarbons: Oxygenated Fenton Chemistry[J].Accounts of Chemical Research.1996,29(9):409-416.
    [7] Walling C. Intermediates in the Reactions of Fenton Type Reagents[J]. Accounts of Chemical Research.1998,31(4):155-157.
    [8] Macfaul P A, Wayner D, Ingold K U. A Radical Account of “Oxygenated Fenton Chemistry”[J]. Accountsof Chemical Research.1998,31(4):159-162.
    [9] Goldstein S, Meyerstein D. Comments on the Mechanism of the “Fenton-Like” Reaction[J]. Accounts ofChemical Research.1999,32(7):547-550.
    [10]张辉等.间羟基苯甲醛合成工艺的改进[J].沈阳医学院学报.2002,(2):107-108.
    [11]赵玉英.间羟基苯甲醛的合成[J].河北化工.2003,(4):22-23.
    [12]汪多仁.对羟基苯甲醛合成与应用开发[J].江苏农药.2000,(4):34-35.
    [13]陶金海,裴文.对羟基苯甲醛合成技术研究及应用进展(续完)[J].化工生产与技术.2008,(1):35-37.
    [14]袁履冰,张田林.卟啉化合物的共振能[J].有机化学.1986,(4):259-290.
    [15] Bushler J, Kevin W, Smit M. Poprhyrins and metalloporphyrins [M]. Elsevier Scientific PubslihingCompany, Amsterdma, The Netherlnads,1975.
    [16]姜建壮,李册.三明治型稀土金属卟啉络合物的研究进展[J].化学通报.1994,(8):19-25.
    [17] Kuebler S M, Denning R G, Anderson H L. Large third-order electronic polarizability of a conjugatedporphyrin polymer[J]. Journal of the American Chemical Society.2000,122(2):339-347.
    [18] Ogawa K, Zhang T, Yoshihara K, et al. Large third-order optical nonlinearity of self-assembled porphyrinoligomers[J]. Journal of the American Chemical Society.2002,124(1):22-23.
    [19] Jia J, Xiao X, Xu J, et al. Photoelectric behaviours of covalently linked porphyrin derivatives[J]. SolarEnergy Materials And Solar Cells.1995,37(1):25-31.
    [20] Scolaro L M, Romeo A, Castriciano M A, et al. Porphyrin deposition induced by UV irradiation[J]. Journalof the American Chemical Society.2003,125(8):2040-2041.
    [21] Segawa H, Wu F, Nakayama N, et al. Approaches to conducting polymer devices with nano-structure:Electrochemical construction of one-dimensional and two-dimensional porphyrin-oligothiopheneco-polymers[J]. Synthetic Metals.1995,71(1):2151-2154.
    [22] Rajesh C S, Capitosti G J, Cramer S J, et al. Photoinduced electron-transfer within free base and zincporphyrin containing poly (amide) dendrimers[J]. The Journal of Physical Chemistry B.2001,105(42):10175-10188.
    [24] Capitosti G J, Guerrero C D, Binkley Jr D E, et al. Efficient synthesis of porphyrin-containing,benzoquinone-terminated, rigid polyphenylene dendrimers[J]. The Journal of Organic Chemistry.2003,68(2):247-261.
    [25]纪云,蔡显荣,霍二福,等.卟啉衍生物敏化纳米TiO2多孔膜电极的光电性质研究[J].化学研究与应用.2006,18(6):685-687.
    [26] Forshey P A, Kuwana T. Electrochemistry of oxygen reduction.4. Oxygen to water conversion by iron(II)(tetrakis (N-methyl-4-pyridyl) porphyrin) via hydrogen peroxide[J]. Inorganic Chemistry.1983,22(5):699-707.
    [27] Khorasani-Motlagh M, Noroozifar M, Ghaemi A, et al. Iron (III) octaethylporphyrin chloride supported onglassy carbon as an electrocatalyst for oxygen reduction[J]. Journal of Electroanalytical Chemistry.2004,565(1):115-120.
    [28] Song E, Shi C, Anson F C. Comparison of the behavior of several cobalt porphyrins as electrocatalysts forthe reduction of O2at graphite electrodes[J]. Langmuir.1998,14(15):4315-4321.
    [29] Faubert G, Lalande G, Cote R, et al. Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbonblack: Physical characterization and catalytic properties of these materials for the reduction of oxygen inpolymer electrolyte fuel cells[J]. Electrochimica Acta.1996,41(10):1689-1701.
    [30] Takahashi K, Kuraya N, Yamaguchi T, et al. Three-layer organic solar cell with high-power conversionefficiency of3.5%[J]. Solar Energy Materials and Solar Cells.2000,61(4):403-416.
    [31]李富友,余军华,张宝文,等.含不同链长的三个卟啉LB膜修饰电极的光电响应研究[J].化学学报.2006,64(4):301-305.
    [32] Dudi M, Lhoták P, Stibor I, et al. Calix [4] arene-porphyrin conjugates as versatile molecular receptors foranions[J]. Organic Letters.2003,5(2):149-152.
    [33] Sun D, Tham F S, Reed C A, et al. Supramolecular fullerene-porphyrin chemistry. Fullerene complexationby metalated “jaws porphyrin” hosts[J]. Journal of the American Chemical Society.2002,124(23):6604-6612.
    [34] Huang X, Nakanishi K, Berova N. Porphyrins and metalloporphyrins: versatile circular dichroic reportergroups for structural studies[J]. Chirality.2000,12(4):237-255.
    [35] Rosenthal J, Pistorio B J, Chng L L, et al. Aerobic catalytic photooxidation of olefins by anelectron-deficient pacman bisiron (III) μ-oxo porphyrin[J]. The Journal of Organic Chemistry.2005,70(5):1885-1888.
    [36] Yagi S, Ezoe M, Yonekura I, et al. Diarylurea-linked zinc porphyrin dimer as a dual-mode artificial receptor:Supramolecular control of complexation-facilitated photoinduced electron transfer[J]. Journal of theAmerican Chemical Society.2003,125(14):4068-4069.
    [37]张华山,王红,赵媛媛.分子探针与检测试剂[M].科学出版社,2002.
    [38]王运宏,夏华. meso—四(2—磺酸萘基)卟啉与锰(Ⅱ)显色反应研究[J].地质实验室.1997,13(2):79-81.
    [39]吴菊英,王东进.卟啉试剂与贵金属高灵敏度显色反应的研究[J].分析试验室.1998,17:69-72.
    [40]张环华,张克立.四(5,6—二氯—1,4—二硫杂环己烯)四氢杂卟啉的金属配合物的电化学行为[J].化学研究与应用.1999,11(2):193-195.
    [41]王小萍,王君文. meso—四—(对甲氧基)苯基卟啉和meso—四—(对甲氧基)苯基锌卟啉的电化学性质[J].应用化学.2001,18(9):713-716.
    [42]王小萍,张勇.镉(Ⅱ)—meso (4—磺基苯)卟啉络合物的极谱伏安行为[J].分析化学.2001,29(3):290-292.
    [43]汤福隆,许峰. T(3-BrP) PS4卟啉用高效液相色谱法测定痕量钴、锌、铜[J].分析测试学报.1995,14(1):46-49.
    [44]郭明,孔亮,历欣,等.微波衍生-离子对高效液相色谱-磺化四苯基卟啉光度法同时测定痕量镍,铜,锰和锌[J].色谱.2002,20(2):137-139.
    [45]尹江伟,王光建,肖志芳.反相高效液相色谱法同时测定镉,铅,铜和锌[J].色谱.2000,18(5):436-438.
    [46]吴惠霞,金利通. C60—卟啉类包合物pH传感器的研究[J].化学传感器.1996,3:14.
    [47] Atunasov P, Gamburzev S, Wilkins E. Needle-type glucose biosensors based on a pyrolyzedcobalt-tetramethoxy-phenlporphyrin catalytic electrode[J]. Electroanalysis.1996,8(2):158-164.
    [48] Deng Q, Dong S. Acetylcholinesterase amperometric detection system based on a cobalt (II)tetraphenylporphyrin-modified electrode[J]. Analyst.1996,121(8):1123-1126.
    [49] Xiao J, Meyerhoff M E. Retention behavior of amino acids and peptides on protoporphyrin-silica stationaryphases with varying metal ion centers[J]. Analytical Chemistry.1996,68(17):2818-2825.
    [50] Biesaga M, Orska J, Fiertek D, et al. Immobilized metal-ion affinity chromatography of peptides onmetalloporphyrin stationary phases[J]. Fresenius' Journal of Analytical Chemistry.1999,364(1):160-164.
    [51]刘育,尤长城,张衡益.超分子化学[J].2001:428-429.
    [52] Youngblood W J, Gryko D T, Lammi R K, et al. Glaser-mediated synthesis and photophysicalcharacterization of diphenylbutadiyne-linked porphyrin dyads[J]. The Journal of Organic Chemistry.2002,67(7):2111-2117.
    [53] Fukuzumi S, Imahori H, Yamada H, et al. Catalytic effects of dioxygen on intramolecular electron transferin radical ion pairs of zinc porphyrin-linked fullerenes[J]. Journal of the American Chemical Society.2001,123(11):2571-2575.
    [54] Michelsen U, Hunter C A. Self‐Assembled Porphyrin Polymers[J]. Angewandte Chemie InternationalEdition.2000,39(4):764-767.
    [55] Chang C J, Chng L L, Nocera D G. Proton-coupled O-O activation on a redox platform bearing ahydrogen-bonding scaffold[J]. Journal of the American Chemical Society.2003,125(7):1866-1876.
    [56] Campbell K, Mcdonald R, Tykwinski R R. Functionalized macrocyclic ligands for use in supramolecularchemistry[J]. The Journal of Organic Chemistry.2002,67(4):1133-1140.
    [57] Visser S P, Shaik S. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation bycytochrome P450enzymes[J]. Journal of the American Chemical Society.2003,125(24):7413-7424.
    [58] Rismayani S, Fukushima M, Sawada A, et al. Effects of peat humic acids on the catalytic oxidation ofpentachlorophenol using metalloporphyrins and metallophthalocyanines[J]. Journal of Molecular CatalysisA: Chemical.2004,217(1):13-19.
    [59] H ger M, Holmberg K, Rocha Gonsalves A M D, et al. Oxidation of azo dyes in oil-in-watermicroemulsions catalyzed by metalloporphyrins in presence of lipophilic acids[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2001,183:247-257.
    [60] Serra A C, Docal C, Rocha Gonsalves A D A. Efficient azo dye degradation by hydrogen peroxideoxidation with metalloporphyrins as catalysts[J]. Journal of Molecular Catalysis A: Chemical.2005,238(1):192-198.
    [61] Oae S, Watanabe Y, Fujimori K. Biomimetic oxidation of organic sulfides with TPPFe (III)Cl/imidazole/hydrogen peroxide[J]. Tetrahedron Letters.1982,23(11):1189-1192.
    [62] Marques A, Marin M, Ruasse M. Hydrogen Peroxide Oxidation of Mustard-Model Sulfides Catalyzed byIron and Manganese Tetraarylporphyrines. Oxygen Transfer To Sulfides versus H2O2Dismutation andCatalyst Breakdown[J]. The Journal of Organic Chemistry.2001,66(23):7588-7595.
    [63] Nyman E S, Hynninen P H. Research advances in the use of tetrapyrrolic photosensitizers for photodynamictherapy[J]. Journal of Photochemistry and Photobiology B: Biology.2004,73(1):1-28.
    [64] Bourre L, Simonneaux G, Ferrand Y, et al. Synthesis, and in vitro and in vivo evaluation of adiphenylchlorin sensitizer for photodynamic therapy.[J]. Journal Of Photochemistry And Photobiology. B,Biology.2003,69(3):179.
    [65] Vicente M, Nurco D J, Shetty S J, et al. Synthesis, dark toxicity and induction of in vitro DNAphotodamage by a tetra(4-nido-carboranylphenyl) porphyrin[J]. Journal of Photochemistry andPhotobiology B: Biology.2002,68(2):123-132.
    [66]马金石.卟啉类第二代光敏剂的发展[J].感光科学与光化学.2002,20(2):131-148.
    [67] Gibson S L, Nguyen M L, Havens J J, et al. Relationship of δ-aminolevulinic acid-induced protoporphyrinIX levels to mitochondrial content in neoplastic cells in vitro[J]. Biochemical And Biophysical ResearchCommunications.1999,265(2):315-321.
    [68] Sol V, Blais J C, Bolbach G, et al. Toward glycosylated peptidic porphyrins: a new strategy for PDT[J].Tetrahedron Letters.1997,38(36):6391-6394.
    [69] Sol V, Blais J C, Carre V, et al. Synthesis, spectroscopy, and photocytotoxicity of glycosylated amino acidporphyrin derivatives as promising molecules for cancer phototherapy[J]. The Journal of OrganicChemistry.1999,64(12):4431-4444.
    [70] Cornia M, Menozzi M, Ragg E, et al. Synthesis and utility of C-meso-glycosylated metalloporphyrins[J].Tetrahedron.2000,56(24):3977-3983.
    [71] Matile S, Berova N, Nakanishi K, et al. Structural Studies by Exciton Coupled Circular Dichroism over aLarge Distance: Porphyrin Derivatives of Steroids, Dimeric Steroids, and Brevetoxin B[J]. Journal of theAmerican Chemical Society.1996,118(22):5198-5206.
    [72] Bonnett R. Photodynamic therapy in historical perspective[J]. Reviews in Contemporary Pharmacotherapy.1999,10:1-18.
    [73] Dixon D W, Schinazi R, Marzilli L G. Porphyrins as Agents against the Human Immunodeficiency Virus[J].Annals of the New York Academy of Sciences.1990,616:511-513.
    [74] Praseuth D, Gaudemer A, Verlhac J B, et al. Photocleavage of DNA in the presence of syntheticwater-soluble porphyrins.[J]. Photochemistry and Photobiology.1986,44(6):717.
    [75] Fiel R J, Howard J C, Mark E H, et al. Interaction of DNA with a porphyrin ligand: evidence forintercalation[J]. Nucleic Acids Research.1979,6(9):3093-3118.
    [76] Strickland J A, Marzilli L G, Gay K M, et al. Porphyrin and metalloporphyrin binding to DNA polymers:rate and equilibrium binding studies[J]. Biochemistry.1988,27(24):8870-8878.
    [77]黄承志,李克安. meso—四(对—羟基苯基)卟啉与脱氧核糖核酸的作用及其分析应用[J].分析化学.1997,25(9):1052-1056.
    [78]刘森,周柏玲,刘力宏,等.种阳离子卟啉与DNA荧光猝灭体系的研究[J].现代科学仪器.2001(5):44-46.
    [79]彭小彬,梁世强.卟啉化合物与核酸的相互作用研究[J].化学进展.2001,13(5):360-367.
    [80]罗毅,梅二文,卓仁禧.水溶性金属卟啉肿瘤靶向磁共振成像造影剂的研究[J].高等学校化学学报.1995,16(10):1629-1632.
    [81] Kunai A, Wani T, Uehara Y, et al. Catalytic oxygenation of benzene. Catalyst design and its performance[J].Bulletin of the Chemical Society of Japan.1989,62(8):2613-2617.
    [82] Tatsumi T, Yuasa K, Tominaga H. Hydroxylation of benzene and hexane by oxygen and hydrogen overPalladium-eontaining titanium siliealites[J]. Journal of the Chemical Society, Chemical Communications.1992(19):1446-1447.
    [83] Murahashi S, Oda Y, Naota T. Iron-and ruthenium-catalyzed oxidations of alkanes with molecular oxygenin the presence of aldehydes and acids[J]. Journal of the American Chemical Society.1992,114(20):7913-7914.
    [84] Vargaftik M N, Stolarov I P, Moiseev I I. Highly selective partial oxidation of methane to methyltrifluoroacetate[M].1990:1049-1050.
    [85] Sugou K, Sasaki K, Kiatjima K. Lihgt-hvaresting heptadecmaerie porphyrin assemblies[J]. Journal of theAmerican Chemical Society (Communication).2002,124(7):1182-1183.
    [86] Ellis P E, Lyons J E. Selective air oxidation of light alkanes catalyzed by activated metalloporphyrins-thesearch for a suprabiotic system[J]. Coordination Chemistry Reviews.1990,105(2):181-193.
    [87] Lyons J E, Ellis P E, Myers H K. Halogenated metalloporphyrin complexes as catalysts for selectivereactions of acyclic alkanes with molecular oxygen[J]. Journal of Catalysis.1995,155(1):59-73.
    [88] Ellis P E, Lyons J E. Effect of iluorination of the meso-phenyl groups of selective tetraphenylporphyrinatometal (III)-catalysed reactions of isobutene with molecular oxygen[J]. Journal of the Chemical Society,Chemical Communications.1989(10):1187-1188.
    [89] Lyons J E, Ellis P E, Shaikh S N. Azide promotion of alkane oxidations catalyzed by metal complexes insolution[J]. Inorganica Chimica Acta.1998,270(1):162-168.
    [90] Ellis P E, Lyons J E. Process and ionic iron coordination complex catalysts containing halogenated ligandsfor hydrocarbon oxidation[P].1988-04-22.
    [91] Ellis P E, Lyons J E. Hydrocarbon oxidation catalyzed by azide-or nitride-activated metal coordinationcomplexes[P].1988-12-25.
    [92] Nenoff T M, Showalter M C, Salaz K A. Supported metalloporphyrins catalyze the oxidation of isobutaneby dioxygen[J]. Journal of Molecular Catalysis A: Chemical.1997,121(2):123-129.
    [93] Sheldon R A. Metalloporphyrins in catalytic oxidations[M]. CRC,1994.
    [94] Moore K T, Horváth I T, Therien M J. Mechanistic studies of (porphinato) iron-catalyzed isobutaneoxidation. Comparative studies of three classes of electron-deficient porphyrin catalysts[J]. InorganicChemistry.2000,39(15):3125-3139.
    [95] Haber J, Matachowski L, Pamin K, et al. Manganese porphyrins as catalysts for oxidation of cyclooctane inLyons system[J]. Journal of Molecular Catalysis A: Chemical.2000,162(1):105-109.
    [96] Tang H, Shen C, Lin M, et al. Cobalt porphyrin-catalyzed alkane oxidations using dioxygen as oxidant[J].Inorganica Chimica Acta.2000,300:1109-1111.
    [97] Groves J T, Kruper Jr W J, Haushalter R C. Hydrocarbon oxidations with oxometalloporphinates. Isolationand reactions of a (porphinato) manganese (V) complex[J]. Journal of the American Chemical Society.1980,102(20):6375-6377.
    [98]李静,靳海波,佟泽民.环己烷氧化反应新工艺的研究进展[J].化学工业与工程.2006,23(4):345-350.
    [99] Groves J T, Nemo T E, Myers R S. Hydroxylation and epoxidation catalyzed by iron-porphine complexes.Oxygen transfer from iodosylbenzene[J]. Journal of the American Chemical Society.1979,101(4):1032-1033.
    [100] Paulson D R, Ullman R, Sloane R B, et al. Catalysis of autoxidation by metalloporphyrins[J]. Journal ofthe Chemical Society, Chemical Communications.1974(5):186-187.
    [101] Bartoli J F, Battioni P, De Foor W R, et al. Synthesis and remarkable properties of ironβ-polynitroporphyrins as catalysts for monooxygenation reactions[J]. Journal of the Chemical Society,Chemical Communications.1994(1):23-24.
    [102] de Freitas Silva G, Da Silva D C, Guimar es A S, et al. Cyclohexane hydroxylation by iodosylbenzene andiodobenzene diacetate catalyzed by a new β-octahalogenated Mn–porphyrin complex: The effect ofmeso-3-pyridyl substituents[J]. Journal of Molecular Catalysis A: Chemical.2007,266(1):274-283.
    [103] Po towicz J, Pamin K, Matachowski L, et al. Oxidation of cyclooctane over Mn (TMPyP)porphyrin-exchanged Al, Si-mesoporous molecular sieves of MCM-41and SBA-15type[J]. CatalysisToday.2006,114(2):287-292.
    [104] Vinhado F S, Gandini M E, Iamamoto Y, et al. Novel Mn (III) chlorins as versatile catalysts foroxyfunctionalisation of hydrocarbons under homogeneous conditions[J]. Journal of Molecular Catalysis A:Chemical.2005,239(1):138-143.
    [105] Nam W, Kim I, Kim Y, et al. Biomimetic alkane hydroxylation by cobalt(III)porphyrin complex andm-chloroperbenzoic acid[J]. Chemical Communications.2001,(14):1262-1263.
    [106] In J, Park S, Song R, et al. Iodobenzene diacetate as an efficient terminal oxidant in iron (III) porphyrincomplex-catalyzed oxygenation reactions[J]. Inorganica Chimica Acta.2003,343:373-376.
    [107] Olsen M, Salom o G C, Drago V, et al. Oxidation of cyclohexane in supercritical carbon dioxide catalyzedby iron tetraphenylporphyrin[J]. The Journal of Supercritical Fluids.2005,34(2):119-124.
    [108] Faria A L, Mac Leod T O, Barros V P, et al. Hydrocarbon oxidation catalyzed by iron and manganeseporphyrins anchored on aminofunctionalized supports[J]. Journal of the Brazilian Chemical Society,2009,20(5):895-906.
    [109]刘展良,黄锦汪,计亮年,等.键合于聚苯乙烯的铁(Ⅲ)卟啉的合成,表征及其模拟细胞色素P450催化环己烷的羟化作用[J].离子交换与吸附.1996,12(3):217-222.
    [110] Ratnasamy P, Raja R. A process for the preparation of adipic acid[P].1997-1-13.
    [111] Hu B, Zhou W, Ma D, et al. Metallo-deuteroporphyrins as catalysts for the oxidation of cyclohexane withair in the absence of additives and solvents[J]. Catalysis Communications.2008,10(1):83-85.
    [112] Ma D, Hu B, Lu C. Selective aerobic oxidation of cyclohexane catalyzed bymetallodeuteroporphyrin-IX-dimethylester[J]. Catalysis Communications.2009,10(6):781-783.
    [113] Zhou W Y, Hu B C, Xu S C. Catalysis of metallo-deuteroporphyrins for cyclohexane oxidation with air[J].Chemical Journal of Chinese Universities-Chinese.2010,31(4):723-726.
    [114] Guo C, Chu M, Liu Q, et al. Effective catalysis of simple metalloporphyrins for cyclohexane oxidationwith air in the absence of additives and solvents[J]. Applied Catalysis A: General.2003,246(2):303-309.
    [115] Guo C, Huang G, Zhang X, et al. Catalysis of chitosan-supported iron tetraphenylporphyrin for aerobicoxidation of cyclohexane in absence of reductants and solvents[J]. Applied Catalysis A: General.2003,247(2):261-267.
    [116] Zhang X, Guo C, Xu J, et al. Synthesis of acetylglycosylated metalloporphyrins and their catalysis forcyclohexane oxidation with PhIO under mild conditions[J]. Journal of Molecular Catalysis A: Chemical.2000,154(1):31-38.
    [117] Guo C, Liu X, Liu Y, et al. Studies of simple μ-oxo-bisiron (III) porphyrin as catalyst of cyclohexaneoxidation with air in absence of cocatalysts or coreductants[J]. Journal of Molecular Catalysis A: Chemical.2003,192(1):289-294.
    [118]刘洋,褚明福,郭灿城. μ-氧-双铁(III)卟啉催化分子氧氧化环己烷反应的研究[J].湖南大学学报(自然科学版).2002,29(3):16-19.
    [119]郭灿城,郝旭东.磁场对铁卟仿生催化性能的影响[J].高等学校化学学报.1997,18(6):906-907.
    [120]郭灿城,桂明德.铁卟啉化合物的合成及其催化环己烷羟基化反应的研究[J].有机化学.1994,14(2):163-170.
    [121] Guo C, Liu X, Liu Q, et al. First industrial-scale biomimetic oxidation of hydrocarbon with air overmetalloporphyrins as cytochrome P-450monooxygenase model and its mechanistic studies[J]. Journal ofPorphyrins and Phthalocyanines.2009,13(12):1250-1254.
    [122] Yuan Y, Ji H, Chen Y, et al. Oxidation of cyclohexane to adipic acid using Fe-porphyrin as a biomimeticcatalyst[J]. Organic Process Research&Development.2004,8(3):418-420.
    [123] Chen Y, She Y, Xu J, et al. Studies on QSAR of metalloporphyrin catalysts in the oxidation ofcyclohexane to adipic acid[J]. Frontiers of Chemical Engineering in China.2007,1(2):155-161.
    [124] Traylor T G, Tsuchiya S, Byun Y S, et al. High-yield epoxidations with hydrogen peroxide and tert-butylhydroperoxide catalyzed by iron (III) porphyrins: heterolytic cleavage of hydroperoxides[J]. Journal of theAmerican Chemical Society.1993,115(7):2775-2781.
    [125] Nam W, Goh Y M, Lee Y J, et al. Biomimetic alkane hydroxylations by an iron (III) porphyrin complexwith H2O2and by a high-valent iron (IV) oxo porphyrin cation radical complex[J]. Inorganic Chemistry.1999,38(13):3238-3240.
    [126] Thellend A, Battioni P, Mansuy D. Ammonium acetate as a very simple and efficient cocatalyst formanganese porphyrin-catalyzed oxygenation of hydrocarbons by hydrogen-peroxide [J]. Journal of theChemical Society, Chemical Communications.1994,(9):1035-1036.
    [127]肖友发,游劲松,余孝其.长链烷氧基取代金属卟啉/H2O2体系催化烯烃环氧化反应研究[J].化学研究与应用.1990,8(2):270-271.
    [128] de Sousa A N, de Carvalho M E M D, Idemori Y M. Manganeseporphyrin catalyzed cyclohexeneepoxidation by iodosylbenzene-The remarkable effect of the meso-phenyl ortho-OH substituent [J].Journal of Molecular Catalysis A: Chemical.2001,169(1):1-10.
    [129] Liu C, Yu W, Che C, et al. A mechanistic investigation of alkene epoxidation by sterically encumberedtrans-dioxoruthenium (VI) porphyrins[J]. The Journal of Organic Chemistry.1999,64(20):7365-7374.
    [130] Tabushi I, Koga N. P-450type oxygen activation by porphyrin-manganese complex[J]. Journal of theAmerican Chemical Society.1979,101(21):6456-6458.
    [131] Haber J, Mlodnicka T, Poltowicz J. Metal-dependent reactivity of some metallophyrins in oxidation withdioxygen [J]. Journal of Catalysis.1989,54(3):451-461.
    [132] Zhou X, Tang Q, Ji H. Remarkable enhancement of aerobic epoxidation reactivity for olefins catalyzed byμ-oxo-bisiron (III) porphyrins under ambient conditions[J]. Tetrahedron Letters.2009,50(47):6601-6605.
    [133] Zhou X, Ji H. Biomimetic kinetics and mechanism of cyclohexene epoxidation catalyzed bymetalloporphyrins[J]. Chemical Engineering Journal.2010,156(2):411-417.
    [134] Bruyneel F, Letondor C, Bastürk B, et al. Catalytic Epoxidation of Alkenes by the Manganese Complex ofa Reduced Porphyrinogen Macrocycle[J]. Advanced Synthesis&Catalysis.2012,354(2-3):428-440.
    [135] Lente G, Espenson J H. A kinetic study of the early steps in the oxidation of chlorophenols by hydrogenperoxide catalyzed by a water-soluble iron (III) porphyrin[J]. New Journal of Chemistry.2004,28(7):847-852.
    [136]钟儒刚,佘远斌,王云海,等.仿生催化氧气氧化苯酚制备邻苯二酚的方法:中国,200310110347[P].2003-12-31.
    [137] Hu Q L, Lin W, Guo C. Catalysis of metalloporphyrins for selective hydroxylation of phenol by H2O2[J].Journal of Porphyrins Phthalocyanines.2006,10:96-103.
    [138] Rebelo S L, Sim es M M, Neves M, et al. Oxidation of alkylaromatics with hydrogen peroxide catalysedby manganese (III) porphyrins in the presence of ammonium acetate[J]. Journal of Molecular Catalysis A:Chemical.2003,201(1):9-22.
    [139] Nakano T, Agatsuma N, Kodama S, et al. A biomimetic study of cytochrome P450related oxidations oftoluenes using synthetic hemin.[J]. Bulletin of the Chemical Society of Japan.1996,69(12):3513-3521.
    [140] Guo C, Liu Q, Wang X, et al. Selective liquid phase oxidation of toluene with air[J]. Applied Catalysis A:General.2005,282(1):55-59.
    [141] Meyer H. Process for the preparation of2-nitrobenzaldehyde. US. P4297519[P].1980-2-28.
    [142] Comninellis C, Plattner E, Javel P. The oxidation of o-nitrotoluene to o-nitrobenzaldehyde withEletrogenerated Cobaltic Sulphate[J]. Journal of Applied Electrochemistry.1979,9(6):753-755.
    [143] Lozar J J, Savall A J. Oxidation of o-nitrotoluene by cerium (IV) methanesulfonate[J]. Industrial&Engineering Chemistry Research.1995,34(9):3149-3153.
    [144] Foa M, Gatti N. Process for the manufacture of o-nitrobenzaldehyde. US. P4689433[P].1986-6-10.
    [145] Zhang S. Selective Indirect Electrooxidation of the Side Chain of Aromatic Compounds[J]. ChineseChemical Letters.1992,3(8):595.
    [146] Constantini M, Krumenacker L. Oxidation of toluenes by molecular oxygen catalytic routes to aromaticaldehydes [J]. Successful Design of Catalysts: Future Requirements and Development1988,44:159-166.
    [147] Borgaonkar H V, Chandalia S B. Liquid phase oxidation of substituted toluenes by air for the productionof pharmaceutical intermediates[J]. Journal of Chemical Technology and Biotechnology. ChemicalTechnology.1984,34(3):107-112.
    [148] Chandalia S B, Mukhopadhyay S. Kinetics of Catalyzed Liquid-Phase Oxidation of p-Nitrotoluene by Airin Basic Medium[J]. Organic Process Research&Development.1999,3(2):109-113.
    [149] Preiss M, Gau W, Behre H. Preparation of o-nitrobenzaldehyde. US. P4450297[P].1983-3-17.
    [150] Wei Y, Cai M, Lu C. Studies on catalytic side-chain oxidation of nitroaromatics to aldehydes withoxygen[J]. Catalysis Letters.2003,90(1):81-84.
    [151] Bayer A G. Verfahren zur herstellung von2-nitrobenzaldehyden. EP-0671381A1[P].1995-09-13.
    [152] Bigelow L A. A study of side chain oxidations with potassium permanganate [J]. Journal of the AmericanChemical Society.1919,41(10):1559-1581.
    [153]戴姆洛夫E.V,戴姆洛,胡振民,等.相转移催化作用[M].北京:化学工业出版社,1988:340-348.
    [154]攀延能.有机合成事典[M].1992,655.
    [155]化工部情报所.化工产品手册,有机化工原料[M].下册.北京:化学工业出版社,1985:249.
    [156]化工部情报所.世界精细化工手册[M].续编.北京:煤炭工业出版社,1986:1089-1090.
    [157] Sasson Y, Zappi G D, Neumann R. Liquid-phase oxidation of deactivated methylbenzenes by aqueoussodium hypochlorite catalyzed by ruthenium salts under phase-transfer catalytic conditions[J]. The Journalof Organic Chemistry.1986,51(15):2880-2883.
    [158] Sagae H, Fujihira M, Lund H, et al. Oxidation of nitrotoluenes with electro-generated superoxide ion.[J].Bulletin of the Chemical Society of Japan.1980,53(6):1537-1541.
    [159] Dolmatov V Y, Zubarev P S, Veretennikova M E, et al. Preparation of2,6-dinitro-p-toluic acid fromp-toluic acid[J]. Pharmaceutical Chemistry Journal.1990,24(12):931-936.
    [160] Srinivasan B, Chandalia S B. Oxidation of p-nitrotoluene to p-nitrobenzoic acid by nitric acid [J]. IndianJournal of Technology.1971,9:274-275.
    [161] Starchak V G, Kosukhina L D, Krasovskii A N, et al. Correlation Analysis in an Investigation of Inhibitionof Hydrogen-Sulphide Corrosion of Steel[J]. Zhurnal Prikladnoi Khimii.1988,61(3):507-512.
    [162] Titov A I. The free radical mechanism of nitration[J]. Tetrahedron.1963,19(4):557-580.
    [163] Hasegawa R, Kamiya Y. Studies on the liquid phase oxidation of nitro-alkylbenzenes catalyzed bytransition metal [J]. Bulletin of the Chemical Society of Japan.1978,51(5):1490-1494.
    [164] Saffer A, Barker R S. Preparation of aromatic polycar-boxylic acids.US2833816[P].1958-5-6.
    [165]祁辉,阎观生,张恩承,等.空气氧化法生产对硝基苯甲酸的研制[J].河南化工.1992,(10):13-19.
    [166]尤进茂,丁养军,谢元栋.对硝基苯甲酸的合成工艺研究[J].化学工程师.1994,(5):17-19.
    [167] Hirai N, Sawatari N, Nakamura N, et al. Oxidation of substituted toluenes with molecular oxygen in thepresence of N, N', N''-trihydroxyisocyanuric acid as a key catalyst[J]. The Journal of Organic Chemistry.2003,68(17):6587-6590.
    [168] Hirai N, Sawatari N, Nakamura N, et al. Oxidation of substituted toluenes with molecular oxygen in thepresence of N, N', N''-trihydroxyisocyanuric acid as a key catalyst[J]. The Journal of Organic Chemistry.2003,68(17):6587-6590.
    [169] Song X, She Y, Ji H, et al. Highly efficient, mild, bromide-free and acetic acid-free dioxygen oxidation ofp-nitrotoluene to p-nitrobenzoic acid with metal phthalocyanine catalysts[J]. Organic Process Research&Development.2005,9(3):297-301.
    [170] Wang L, She Y, Zhong R, et al. A green process for oxidation of p-nitrotoluene catalyzed bymetalloporphyrins under mild conditions[J]. Organic Process Research&Development.2006,10(4):757-761.
    [171]佘远斌,罗振华,宋旭锋,等.金属卟啉仿生催化氧化邻硝基甲苯绿色合成邻硝基苯甲醛[J].化工学报.2007,58(11).
    [172]佘远斌,段立丽,纪红兵,等.取代铁卟啉催化氧化邻硝基甲苯绿色合成邻硝基苯甲酸[J].化工学报.2007,58(12).
    [173] Rebelo S L, Sim es M M, Neves M, et al. Oxidation of alkylaromatics with hydrogen peroxide catalysedby manganese (III) porphyrins in the presence of ammonium acetate[J]. Journal of Molecular Catalysis A:Chemical.2003,201(1):9-22.
    [174]李小港,冯秀娟,何仁.过渡金属卟啉/高价盐体系催化分子氧对芳烃侧链氧化的研究[J].分子催化.2008,22(3):209-213.
    [175]韩晓详,姜恒,宫红.金属酞菁与高价金属盐或氧化物在乙苯液相催化氧化反应中的协同效应[J].高等学校化学学报.1998,20(8):1295-1297.
    [176] Wang R M, Li S B, Wang Y P, et al. Sheet polymer and its complexes. II. Preparation and catalyticactivity of polymeric tetrakisphenylporphyrin films crosslinked by4,4′-biphenylene-bisulfoate[J]. Journalof Applied Polymer Science.1998,67(12):2027-2034.
    [177] Li S J, Wang Y G. A novel and selective catalytic oxidation of hydrocarbons to ketones usingchloramine-T/O2/Fe(TPP)Cl system[J]. Tetrahedron Letters.2005,46(3):8013-8015.
    [178] Punniyamurthy T, Velusamy S, Iqbal J. Recent advances in transition metal catalyzed oxidation of organicsubstrates with molecular oxygen[J]. Chemical Reviews.2005,36(40):2329-2363.
    [179] Evans S, Smith J R L. The oxidation of ethylbenzene and other alkylaromatics by dioxygen catalysed byiron (III) tetrakis (pentafluorophenyl) porphyrin and related iron porphyrins[J]. Journal of the ChemicalSociety, Perkin Transactions2.2000(7):1541-1552.
    [180]傅伟昌,彭清静. TPPMnCl催化空气直接氧化乙苯的研究[J].化学研究与应用.2002,14(2):237-238.
    [181]彭清静,段友构,欧阳玉祝. μ-氧代双锰卟啉催化下空气高选择氧化乙苯[J].物理化学学报.2001,17(4):292-294.
    [182]佘远斌,赵文伯,孙志成,等.仿生催化氧气氧化对硝基乙苯制备对硝基苯乙酮的方法[P].中国发明专利,申请号:2010101034505,申请日:20100129.
    [183]佘远斌,赵文伯,王磐,等.仿生催化氧气氧化邻硝基乙苯制备邻硝基苯乙酮的方法.中国发明专利2010101034261[P].中国发明专利,申请号:2010101034261,申请日:20100129.
    [184]佘远斌,赵文伯,王磐,等.仿生催化氧气氧化对溴乙苯制备对溴苯乙酮的方法.中国发明专利,申请号:2010101034492,申请日:20100129.
    [185]佘远斌,赵文伯,王磐,等.仿生催化氧气氧化邻溴乙苯制备邻溴苯乙酮的方法.中国发明专利,申请号:2010101034238,申请日:20100129.
    [186]佘远斌,赵文伯,王磐,等.仿生催化氧气氧化乙苯制备苯乙酮的方法.中国发明专利,申请号:2010101034149,申请日:20100129.
    [187]佘远斌,赵文伯,孙志成,等.仿生催化氧气氧化正丙苯制备苯丙酮的方法.中国发明专利,申请号:2010101034115,申请日:20100129.
    [188]佘远斌,赵文伯,李林莎,等.仿生催化氧气氧化对二乙苯制备对二乙酰基苯的方法.中国发明专利,申请号:2010101034577,申请日:20100129.
    [189]佘远斌,赵文伯,李林莎,等.仿生催化氧气氧化对二乙苯制备间乙基苯乙酮的方法中国发明专利,申请号:2010101034469,申请日:20100129.
    [190]佘远斌,李林莎,赵文伯,等.金属卟啉催化氧气或空气选择氧化对二乙苯制备对乙基苯乙酮的方法.中国发明专利,申请号:201110158074.4,申请日:20110614.
    [191]赵文伯,佘远斌,王磐,等.金属卟啉及复合催化体系催化氧气氧化对硝基乙苯制备对硝基苯乙酮的研究[J].北京工业大学学报.2012,38(5):773-777.
    [192]李林莎,佘远斌,赵文伯,等.4-乙基-α-甲基苯甲醇和α, α′-二甲基-1,4-苯二甲醇的合成[J].化学试剂.2012,34(5):393-394;404.
    [193] Xie Z K, Liu Z C, Wang Y D, et al. An overview of recent development in composite catalysts fromporous materials for various reactions and processes[J]. International Journal of Molecular Sciences.2010,11(5):2152-2187.
    [194] Quici S, Banfi S, Pozzi G. Simple synthetic modes of cytochrome P-450: efficient catalysts in hydrocarbonoxidations[J]. Gazzetta Chimica Italiana.1993,123:597-612.
    [195]姜权.金属卟啉醋酸钴对空气氧化对二甲苯反应的复合催化作用研究[D].湖南大学,2008.
    [196] Jiang Q, Xiao Y, Tan Z, et al. Aerobic oxidation of p-xylene over metalloporphyrin and cobalt acetate:Their synergyand mechanism[J]. Journal of Molecular Catalysis A: Chemical.2008,285(1-2):162-168.
    [197] Li Y, Zhou X T, Ji H B. Cocatalytic effect of cobalt acetate on aerobic cyclohexene oxidation catalyzed bymanganese porphyrin[J]. Catalysis Communications,2012:169-173.
    [198] Grinstaff M W, Hill M G, Labinger J A. Mechanism of catalyticoxygenation of alkanes by halogenatediron porphyrins [J]. Science.1994,264(5163):1311-1313.
    [199] Hansen C B, Drenth W. Metalloporphyrins as catalysts in the decomposition of cyclohexylhydroperoxide[J]. Catalysis Letters.1993,20(3-4):359-364.
    [200] Karin J, Beate P. Acid-base catalytic mechanism of dihydrop yrimidinase from pH studies[J].Biochemistry.1993,32:5160-5165.
    [201]柳翠英,葛蔚颖,钱俊.卤代水杨醛N4-取代缩氨基硫脲衍生物的合成和生物活性研究[J].化学试剂.2003,25(3):160-162.
    [202] Keller W, Kober W. Possibities of the use of etheroal oils for room disinfection[J]. Arzneimittel-forsch.1955:224-229.
    [203] Mazza M, Montanari L, Pavanetto F. Phytotoxicity of hydrazones of aromatic aldehydes[J].Farmaco-edizione Scientifica.1976,31(5):334-344.
    [204] Rotmistrov M N, Roi A A. Variability of Bacillus mesentericus under the effect of p-nitroaniline[J].Mikrobiologicheskii Zhurnal.1973,35(6):688-690.
    [205]江森明,龚启孙,姚巍.嘧啶氧苄胺类除草剂的合成研究[J].浙江化工.2005,36(10):11-15.
    [206]党元林,包晓玉,祝心德.水杨醛缩精胺及其配合物的合成与生物活性[J].化学研究与应用.2002,14(4):430-432.
    [207] Ouellette R P, King J A. Chemical Week Pesticices Register[M]. New York:1976.
    [208] Popescu F. Zinc electroplating baths[P]. US Pat, US3778359,1973.
    [209] Ltd N B C. Zinc plating with sodium zincate solns-contg aromatic aldehyde and polyamino-sulphone,giving high gloss[P].GR Pat, DE2608644,1976.
    [210] Polss P. What additives do for gasoline[J]. Hydrocarbon Process.1973,61:52-56.
    [211] Co P P. Lubricants and fuels contg. prod. from petroleum sulphonic acid-and amine-aldehyde adduct, asashless dispersant[P]. US Pat, US3919094,1975.
    [212] Csokan L S. New antioxidant for fine mechanical lubricants[J]. Magyar Kem,951:123-127.
    [213] Mobil O C. Hydrocarbon fuel or lubricant-stabilised with an aromatic aminealdehyde condensationproduct[P]. US Pat, US3634248,1972.
    [214] Assaf F H, Abou-El-Wafa M H M. Retarding effect of some benzaldehyde derivatives on the dissolutionof brass alloy in nitric acid solution[J]. Collection of Czechoslovak Chemical Communications.1991,56(12):2800-2806.
    [215] Abou E W, Moustafa H M. Effects of some2-arylhydrazonobenzothiazole compounds on the inhabitionof corrison of aluminum-maganese alloy in acidic medium[J]. Saest.1991,20:153-157.
    [216] Nuno A P, Charles H. Anticoagulant effect of derivatives of hydroxycoumarin[J]. Rev. Brasil. Farm.1949,31:213-218.
    [217] Buuhoi N P, Denise L. Some synthesis from p-fluoroanisole[J]. Journal of Organic Chemistry.1954,19:1617-1621.
    [218] Salman M, Ray S. Studies in antifertility agents: part XXXVI-synthesis of N-(substitutedbenzylidene)aminophthalimides,-dihydroisoindoles and-1,2,3,4-tetrahydroisoquinolines[J]. IndianJournal of Chemistry.1981,20:477-479.
    [219] Ltd I. Chelate complexes of Ni Co or Cr and aromatic oximes[P]. NL Pat, NL6614765.
    [220] Inst P R. Heat-stabilities of polyolefins[P]. SU Pat, SU253349.
    [221] Furomo M, Hoshino S. Acetalizing Vinal blend fibers[P]. JP Pat, JP7348429,1973.
    [222]阮丽琴.水杨醛合成方法[J].福建化工.2004,(2):33-35.
    [223]丁德润,陈燕青,刘鸿志.降解壳聚糖与水杨醛改性衍生物对Ca2+, Fe3+的螯合性质[J].精细化工.2003,20(4):18.
    [224] Moore R H. US Office Saline Water Research and Development Progress Report[R].1971,765.
    [225]李小红,胡天觉.以邻甲酚为原料生产水杨醛的工艺改进研究[J].广西化工.1996,25(3):1-5.
    [226] Shuttleworth R, Fielden J M, Levin D. Prepn. of2-hydroxy:mandelic acids and2-hydroxy benzaldehyde(s)-by reacting glyoxylic acid with phenol under acid conditions and opt. oxidising the prod. useful asintermediates in pharmaceuticals and dye mfr[P]. US Pat, US5248816,1993.
    [227]颜桂炀,郑柳萍,林深,等.相转移催化法合成水杨醛[J].石油化工.2000,29(5):354-355.
    [228]姚宏亮,李方实.水杨醛的应用及合成方法述评[J].江苏化工.2007,35(3):7.
    [229] Le Ledec J. Process for the preparation of hydroxybenzaldehyde[P]. US Pat, US4026950,1981.
    [230] Matsuda T, Murata T. Salicylaldehyde cpds. prodn.by formylation of phenol cpds.–with formaldehyde inpresence of chromium or iron catalyst[P]. US Pat, US2864748,1979.
    [231] Com S C. Preparation of hydroxybenzaldehyde and derivates thereof[P]. JP Pat, JP5561,1955.
    [232] Schuster L, Harreus A, Eichen K. Salicylaldehyde prodn.-by ozonisation of o-propenylphenol, followedby redn. of the ozonisation prod[P]. GR Pat, DE4104835-A,1991.
    [233]奚祖威,刘维桢,张铭俊.贵重金属络合物催化氧化水杨醇制水杨醛[P].中国专利,ZL891050256,1989.
    [234] Milone C, Ingoglia R, Neri G, et al. Gold catalysts for the liquid phase oxidation of o-hydroxybenzylalcohol[J]. Applied Catalysis A: General.2001,211(2):251-257.
    [235] Milone C, Ingoglia R, Pistone A, et al. Activity of gold catalysts in the liquid-phase oxidation ofo-hydroxybenzyl alcohol[J]. Catalysis Letters.2003,87(3):201-209.
    [236]谢维跃.水杨醇液相催化氧化制水杨醛的研究[J].常德师范学院学报:自然科学版.1999,11(3):54-56.
    [237] Comninellis C, Plattner E. Current efficiency losses in indirect electrochemical processing[J]. Journal ofApplied Electrochemistry.1987,17(6):1315-1318.
    [238]刘伟,王文英,丁克强,等.间接电氧化法合成对氯苯甲醛[J].河北化工.1996,3:1-3.
    [239]于伯章,李毅.相转移催化下双媒质体系对醇类的选择性间接电氧化[J].合成化学.1996,4(1):93-95.
    [240]朴明福.芳族羧酸加氢制芳族醛的技术开发及工业化[J].石油化工译丛.1992,13(1):25-30.
    [241]吴锡尊,张文智,金世勋.水杨酸的电解还原[J].河北师范大学学报(自然科学版).1988,1.
    [242]李永常,王万得.水杨酸阴极还原为水杨醛的研究[J].天津化工.1994(1):14-17.
    [243]吴育飞,王洪敏.电化学法合成水杨醛[J].河北师范大学学报:自然科学版.2002,26(1):51-52.
    [244]覃海错,陈献东.无隔膜电解合成水杨醛[J].广西师范大学学报:自然科学版.1994,12(4):62-66.
    [245]张功成,谭镇,赵占奎.水杨醛的电合成法[J].应用化学.1989,6(2):67-68.
    [246]李永常,王万得.电合成水杨醛工艺改进[J].天津化工.1995,(3):16-17.
    [247]焦丽芳,王瑞芝.用电化学法研制水杨醛[J].精细化工.2001,18(12):693-695.
    [248]史真,顾焕.羧酸经苯并咪唑还原为醛的新合成方法研究[J].化学通报.1997,(10):55-58.
    [249] Heinemann U, Tiemann R, Dehne H W. Preparation of3-pyridyl-5-arylmethylsulfonyl-1,2,4-thiadiazolesas agrochemical fungicides[P]. Ger4239727, Ger Ofen. De,1994.
    [250] Ikeda H, Hiraishi S. Thermal recording materials[P]. JP,61263794, Jpn. Kokai Tokkyo Koho JP,1986-09-21.
    [251] Bowman R M, Steele R E, Browne L J. Preparation and testing of heterocyclyltolunitriles as aromataseinhibitors[P]. US, EP236940, Pat. A ppl,1987-09-16.
    [252] Andrews D R, Gaeta F C A. Preparation and formulation of sulfonamidodipeptides as antihypertensives[P].US Pat, US4826816,1989-05-02.
    [253] Pierce R B, Maeseigne I, Charpentier B. Preparation of amino acids and turosinecontaining peptides asdrugs and pharmaceutical compositions containing them[P]. Eur. Pat. Appl, EP354108,1990-02-07.
    [254]化工百科全书编辑委员会.化工百科全书[M].北京:化学工业出版社,1997:1-13.
    [255]易佑华,马文伟.用相转移催化剂由苯酚制备水杨醛[J].化学世界.1988,29(8):4.
    [256] Neumann R, Sasson Y. Increased para selectivity in the Reimer-Tiemann reaction by use of polyethyleneglycol as complexing agent[J]. Synthesis.1986,(7):569-570.
    [257]强敏,汪拥军,陶武扬,等.由苯酚制备水杨醛的实验研究[J].武汉钢铁学院学报.1995,18(2):186-189.
    [258]王启会,周建平,刘慧娟.苯酚相转移催化合成水杨醛-瑞默尔-蒂曼醛合成方法的再研究[J].襄樊学院学报.2004,25(5):36-38.
    [259]邓仁兴.混合相转移催化剂法合成水杨醛[J].湖南轻工业高等专科学校学报.2000,2(1):22-24.
    [260]张伟东,陈玫,成秀俊,等.相转移催化合成水杨醛[J].安徽化工.1996,82(1):32-33.
    [261]杨祝华,肖首信.对Reimer-Tiemann反应的改进[J].湖南大学学报(自然科学版).1988,15(3):74-78.
    [262] Niyazi F F, Budko E E, Dubrovina E A. Solvents effect on the Reimer-Tiemann reaction[J]. Izv VysshUchebn Zaved Khim Khim Tekhnol.1999,42(5):122-123.
    [263]张维庆,卢周,周诗彪,等.水杨醛合成工艺的改进[J].湖南文理学院学报:自然科学版.2006,18(3):40-41.
    [264] Tanimoto F, Kitano H. Solid disodium para-hydroxybenzoate prepn. using reimer-tiemann reaction withcontrolled ratio of phenol carbon tetra:chloride and sodium hydroxide with transition metal powder[P]. EPPat, EP243957-A,1987.
    [265] Co D C. Hydroxybenzaldehyde process[P]. US Pat, US3365500-A,1966.
    [266]刘云,张军.超声波催化和相转移催化合成羟基苯甲醛[J].化学世界.1998,39(10):529-533.
    [267] Smith W E. Aromatic hydroxy-aldehyde prodn.from phenol(s) by improved Reimer-Tiemann reactionusing higher temperature and pressure[P]. US Pat, US4324922-A,1982.
    [268] Marchard P R, Grenet J B. Process for the production of hydroxybenzaldehyde[P]. US Pat, US3321526,1967.
    [269] Peer H G. The reaction of phenol with formaldehyde III Selective hydroxymethylation of phenol at theorthoposition[J]. Recueil des Travaux Chimiqves des Pays-Bas.1960,79(8):825-835.
    [270]汪元博,田松江,李淑芬.酯化氧化法合成水杨醛工艺[J].化学工业与工程.2007,24(1):32-35.
    [271]朱红星,陈海群.硼酸酯化法合成水杨醇制备水杨醛的工艺研究[J].江苏石油化工学院学报.2000,12(4):15-17.
    [272] Gradeff P F, Ville P S. Process for preparation of hydroxybenzenecarboxy aldehydes[P]. US Pat, US4351962,1982-09-28.
    [273] Aldred R, Johnston R, Levin L, et al. Magnesium-mediated ortho-specific formylation andformaldoximation of phenol[J]. Journal of the Chemical Society, Perkin Transactions1.1994:1823-1831.
    [274] Casiraghi G, Casnati G, Puglia G, et al. Selective reactions between phenols and formaldehyde. A novelroute to salicylaldehydes[J]. Journal of the Chemical Society, Perkin Transactions1.1980:1862-1865.
    [275]薛蒙伟,李小华,马美华,等.羟基苯甲醛合成研究进展[J].南京晓庄学院学报.2002,18(4):23-27.
    [276] Hofsl Kken N U, Skatteb L L. Convenient Method for the orfho-Formylation of Phenols[J]. Acta ChemicaScandinavia.1999,53:258-262.
    [277]朱美香,张克勤.由苯酚和甲醛一步法合成水杨醛的研究[J].湖南化工.1996,26(1):20-23.
    [278]罗方明.水杨醛生产工艺路线分析[J].辽宁化工.1992(2):50-53.
    [279]唐有根,成本诚.应用Sommelet反应制备水杨醛[J].中南工业大学学报.1995,26(4):527-531.
    [280] Inc T C. Hydroxybenzaldehydes esp salicylaldehyde-by hydrolysis of p-chloro-dichlorocresylphosphates[P]. US Pat, US3641158-A,1969.
    [281] Schnatterer A, Fiege H, Neumann K H. Method for the production of o-hydroxy benzaldehyde[P]. Eur PatAppl, EP451650,1991-10-01.
    [282] Karel F. o-Hydroxybenzaldehydes[P]. JP58072536,1983.
    [283] Wang F, Xu J, Liao S J. One-step heterogeneously catalytic oxidation of o-cresol by oxygen tosalicylaldehyde[J]. Chemical Communication.2002,6:626-627.
    [284]王峰,徐杰.一种用于直接选择氧化邻甲酚的催化剂[P]. CN1475307A,2004.
    [285]乔艳辉,滕俊江.液相催化氧化法制备邻羟基苯甲醛[J].茂名学院学报.2005,15(4):26-29.
    [286]王浩俨,顾小航,高永建,等.对羟基苯甲醛的合成[J].化学研究.2005,9(4):50-52.
    [287]王景明.对羟基苯甲醛及其衍生物[J].天津化工.1998,3:16.
    [288]汪多仁.对羟基苯甲醛的合成与应用开发[J].江苏农药.2000(4):34-35.
    [289]丁彩峰.对羟基苯甲醛的合成路线及应用[J].广东化工.1990(4):7-11.
    [290]宇晨.对羟基苯甲醛的生产工艺及下游产品的开发[J].医药化工.2007(4):13-17.
    [291]钱方.对羟基苯甲醛的生产与市场[J].精细化工原料及中间体.2006(10):33-34.
    [292]陶金海,裴文.对羟基苯甲醛合成技术研究及应用进展(续完)[J].化工生产与技术.2008,15(1):35-37.
    [293]汪多仁.对羟基苯甲醛的生产与应用[J].化工中间体.2003(1):18-21.
    [294]吕心阳,任学军,赵志林,等.对羟基苯甲醛的生产方法及其应用[J].化工中间体:科技.产业版.2004,1(5):52-55.
    [295]张万宏,李财林等.对羟基苯甲醛的合成方法概述[J].化学生产与技术.2006,13(1):45-47.
    [296] Fompeyrine, Patricia. Process for the Preparation of Hydroxybenzaldehydes by Hydro-carbonylation[P].EP0351336,1990-01-17.
    [297]何建玲,孙德胜,王遵尧.用Mn2O3法合成对羟基苯甲醛[J].当代化工.2004,33(1):4-6.
    [298] Hiroshi K. Production of p-hydroxybenzaldehyde[P]. JP62132836,1987-06-16.
    [299]殷钢,吴秉讷.对甲酚催化氧化反应及分离工艺研究进展[J].精细化工.1998,15(1):40-43.
    [300]朱宇君,李静等. Gas-Phase Selective oxidation of p-cresol in the Presence of Acetic Acid over IronPhosphate Catalyst[J].催化学报.2005,26(4):261-262.
    [301]徐彩霞.选择性催化氧化对甲酚制备对羟基苯甲醛的研究[J].兰州大学硕士论文.2006.
    [302] Rhodia C. Method for preparing a4-hydroxybenzaldehyde and derivatives[P].2001-02-06.
    [303] Peeters M P J, Busio M, Leijten P. Autoxidation of p-cresol to p-hydroxybenzaldehyde using CoCl2,CoAPO-5and CoAPo-11[J]. Applied Catalysis A: General.1994,118(51-62).
    [304] Schnatter A, Fiege H. Process for the preparation of p-HBA[P]. US6184421,1989-05-28.
    [305]杨国坤.氧化钴/吸附树脂催化剂在对甲酚氧化反应中的催化性能研究[J].离子交换与吸附.1990,(5):328-332.
    [306]霍力,邝鲁生.对羟基苯甲醛的液相催化氧化合成[J].合成化学.1997,(5):404-407.
    [307]钦传光,丁焰.合成对羟基苯甲醛的工艺进展[J].化学世界.1996,(5):230-235.
    [308]侯宏森,张颂培.分子氧氧化对甲酚得催化研究进展[J].现代化工.2006,10:30-34.
    [309]戴萍,唐保清等.对甲酚氧化合成对羟基苯甲醛[J].江苏化工.1991,19(2):34-39.
    [310]杨家祥,严卫东等.对羟基苯甲醛的催化氧化合成[J].化学世界.1996,(12):638-639.
    [311]刘玉敏,朱凯征等.对甲酚液相氧化合成对羟基苯甲醛的研究[J].精细石油化工.1997,(6):22-24.
    [312]佘远斌,黄颖等.对羟基苯甲醛合成及分离方法的研究[J].北京工业大学学报.1999,9:114-118.
    [313]肖如亭.分离水杨醛-苯酚混合物的一种新方法[J].精细化工.1994,(11):32-34.
    [314]丁素霞.水杨醛的合成与提纯[J].西安化工.1991,3:27-29.
    [315]陈耀祖.有机分析[M].北京:高等教育出版社,1981:252.
    [316] Negishi O, Ozawa T. Determination of hydroxycinnamic acids. hydroxyl–benzaldehydes, hydroxybenzylalcohols and their glucosides by high-performance liquid chromatography[J]. Chromatography A.1996,756:129-136.
    [317]陈连文,刘敬兰.毛细管气相色谱法分离分析苯酚和水杨醛[J].化学分析计量.2003,12(6):41-42.
    [318]兰州大学复旦大学化学系有机化学教研室.有机化学实验[M].北京:高等教育出版社,1994:315-319.
    [319] Weast R C. CRC Handbook of Chemistry and Physics[J]. CRC Press, Inc.1997.
    [320]殷钢,周蕊,刘铮,等.对甲酚催化氧化反应及分离工艺研究进展[J].精细化工.1998,15(1):40-43.
    [321]李菊清,罗一大.对羟基苯甲醛的GC分析方法研究[J].有机化学.2003,15(增刊):1-4.
    [322]魏东炜,范冬平,耿安利,等.对甲基苯酚氧化反应液的高效液相色谱分析[J].天津大学学报.1995,28(5):706-708.
    [323]任树杰,尹荃,赵瑞强,等.对羟基苯甲醛及其副产物的高效液相色谱分析[J].农药.2010,49(2):114-116.
    [324] Barton B, Logie C G, Schoonees B M, et al. Pratical process for the air oxidation of cresols:PartA.Mechanistic investigations[J]. Organic Process Research&Development.2005,9:62-65.
    [325] Chandrashekhar V R, Mahesh V S, Jayprakash M N, et al. Selective synthesis of p-hydroxybenzaldhydeby liquid-phase catalytic oxidation of p-cresol[J]. Organic Process Research&Development.2004,8(6):873-878.
    [326] Wang F, Yang G, Zhang W, et al. Oxidation of p-cresol to p-hydroxybenzaldehyde with molecular oxygenin the presence of CuMn-Oxide heterogeneous catalyst[J]. Advanced Synthesis&Catalysis.2004,346(6).
    [327]徐彩霞.选择性催化氧化对甲酚制备对羟基苯甲醛的研究[D].兰州:兰州大学,2006.
    [328]殷钢,周蕊,胡华.对甲酚氧化合成对羟基甲苯[J].石油化工.1997,26(16):663-666.
    [329] Poling B E, Prausntz J M, O’ Connell J P. The Properties of Gases and Liquids [M].5th ed. New York:McGraw-Hill,2000.
    [330]张继龙,赵志仝,乔燕,林昊,庞先勇,白启荣,李瑞丰.酯交换制油酸甲酯的基团贡献法热力学分析[J].化工学报.2012,63(6):1684-1690.
    [331]王琳琳,陈建云,梁杰珍,陈小鹏,陈远萍,唐开韦.枞酸与甲醇酯化反应的基团贡献法热力学分析[J].化工学报.2013,网络出版.
    [332]赵国良,靳长德.有机物热力学数据的估算[M].北京高等教育出版社,1983.
    [333]天津大学物理化学教研室.物理化学[M].北京高等教育出版社,2005.
    [334]王晨晔,李会泉,曹妍,柳海涛,侯新娟,张懿.苯胺与甲醛合成4-4-二氨基二苯甲烷反应体系的热力学分析[J].化工学报.2012,63(8):2348-2355.