缓激肽预处理及脑缺血预处理对脑缺血保护作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言
     脑卒中是严重威胁人类健康尤其是中老年人健康的常见病,目前对其发病机制的研究正不断深入,但其确切机制尚未完全阐明,还没有令人满意的治疗措施。
     预先给予短暂的、亚致死性缺血(即缺血预处理)可以减轻其后发生的严重缺血所造成的组织损伤,此即缺血耐受。脑缺血耐受机制目前还未完全阐明,可能有多种物质参与作用。脑缺血耐受与脑缺血性损伤是有一定联系的。脑缺血预处理与脑缺血损伤在启动机制上很可能有一些相似之处,只是由于刺激程度的不同产生的结果不同。研究证明脑缺血中介导脑损伤的许多物质在脑缺血预处理中却起保护作用。
     缓激肽(bradykinin,BK)是外周和中枢神经系统重要的炎症介质,参与脑缺血后的脑损伤。脑缺血后组织和血浆缓激肽水平均升高,缺血后早期应用缓激肽受体拮抗剂明显改善脑缺血大鼠的预后,而在缺血后期转导激肽释放酶基因,可对脑组织产生保护作用。可见缓激肽在脑缺血的不同时程中具有不同的作用。此外,研究证明内源性及外源性缓激肽均对其后的心肌缺血有重要的保护作用。在大鼠小肠微循环实验中也证明,外源性给予缓激肽预处理可抑制缺血后的炎症反应。本实验旨在观察缺血前给予缓激肽预处理,是否会模拟缺血预处理对其后的脑缺血产生保护作用。从而为脑缺血耐受机制的研究及药物预处理的研究提供理论依据。所以本实验首先制备大鼠局灶性脑缺血模型,给予外源性缓激肽预处理,观察其对脑缺血的影响,明确缓激肽预处理的效果和机制,为脑缺血预处理机制的研究提供帮助。
     血脑屏障由脑微血管内皮细胞、基膜和胶质细胞足突组成,对于维持脑组织和血液间的物质平衡起重要作用。脑缺血时血脑屏障破坏导致脑血管通透性增加,是缺血性脑损伤与水肿形成病理发展过程中的重要因素。脑毛细血管内皮细胞以紧密连接为特点,缺乏窗孔和胞饮泡。脑缺血后,血脑屏障间紧密连接破坏,胞饮小泡数量增加,白细胞粘附迁移率增加。故本实验进一步采用原代培养的大鼠脑微血管内皮细胞作为体外血脑屏障模型,采用低氧/低糖模拟体内缺血状态,探讨此时血脑屏障结构和功能的改变。此外,研究表明预处理不仅能够保护神经元,而且对内皮细胞也有重要作用。故本实验最后在体外血脑屏障模型中研究预处理时,血脑屏障结构和功能的变化,为进一步研究脑缺血预处理机制提供帮助。
     材料与方法
     一、缓激肽预处理对大鼠局灶性脑缺血的影响研究
     (一)实验材料
     1、动物:雄性SD大鼠,体重250-300克。
     2、主要试剂:缓激肽,红四氮唑,伊文思兰,兔抗碱性成纤维细胞生长因子(bFGF)多克隆抗体,SABC试剂盒,羊抗兔IgG多克隆抗体,兔抗β-actin多克隆抗体,ECL试剂盒。
     3、主要仪器:微量注射泵,分光光度计,电泳仪,转印仪,恒冷冰冻切片机。
     (二)实验方法
     1、线栓法制备大鼠局灶性脑缺血/再灌注模型。
     2、红四氮唑染色和图像分析检测脑缺血梗死体积百分比,分析缓激肽预处理的脑保护效应。
     3、干湿重法测定脑缺血后脑水肿程度,分析缓激肽预处理的脑保护机制。
     4、伊文思兰染色后,用分光光度计观察血脑屏障通透性的改变,分析缓激肽预处理的脑保护机制。
     5、免疫组织化学法测定脑缺血周围组织碱性成纤维细胞生长因子的表达水平,分析缓激肽预处理的脑保护机制。
     6、Western-blot法测定脑缺血周围组织碱性成纤维细胞生长因子的表达水平,分析缓激肽预处理的脑保护机制。
     二、预处理对脑内皮细胞紧密连接和细胞粘附的影响
     (一)实验材料
     1、动物:出生3-5d的SD大鼠。
     2、主要试剂:DMEM培养基、胎牛血清、ECGS、胰蛋白酶、Ⅱ型胶原酶、葡聚糖、兔抗Ⅷ因子相关抗原抗体、兔抗occludin抗体、鼠抗ZO-1抗体、罗丹明标记鬼笔环肽、兔抗ICAM-1抗体、兔抗VCAM-1抗体、SABC免疫组化试剂盒。
     3、主要仪器:二氧化碳培养箱、倒置显微镜、低氧培养箱、荧光显微镜、透射电镜。
     (二)实验方法
     1、大鼠脑微血管内皮细胞的分离鉴定。
     2、采用血气分析仪分析细胞培养液气体含量,确定细胞处于低氧状态。
     3、透射电镜观察细胞超微结构,分析氧糖剥夺预处理对脑微血管内皮细胞的保护效应。
     4、免疫荧光和荧光标记检测细胞紧密连接相关蛋白ZO-1和细胞骨架蛋白F-actin的位置改变,分析氧糖剥夺预处理对脑微血管内皮细胞的保护机制。
     5、免疫组化检测细胞间粘附分子ICAM-1和VCAM-1的表达水平,分析氧糖剥夺预处理对脑微血管内皮细胞的保护机制。
     实验结果
     一、缓激肽预处理对大鼠局灶性脑缺血的影响研究
     1、红四氮唑染色显示缓激肽预处理可明显降低再次缺血时的脑梗死体积,随着缓激肽预处理与脑缺血间隔时间的逐渐缩短,其梗死体积百分比也逐渐减少。
     2、缓激肽预处理可明显降低再次缺血时的脑含水量,降低脑水肿程度。
     3、缓激肽预处理可使再次缺血时脑组织伊文思兰的渗出量减少,血脑屏障的破坏减轻。
     4、免疫组织化学和Western-blot法均表明缓激肽预处理可使再次缺血时缺血周围组织碱性成纤维细胞生长因子的表达增强,从而促进缺血神经元的存活。
     二、预处理对脑内皮细胞紧密连接和细胞粘附的影响
     1、氧糖剥夺预处理可减轻脑微血管内皮细胞的损伤,降低紧密连接开放程度,对脑微血管内皮细胞有保护效应。
     2、氧糖剥夺预处理可使脑微血管内皮细胞紧密连接相关蛋白ZO-1和细胞骨架蛋白F-actin的位置改变减轻。
     3、氧糖剥夺预处理可使脑微血管内皮细胞细胞间粘附分子ICAM-1和VCAM-1的表达水平降低。
     结论
     1、预先给予缓激肽预处理,可对其后的大鼠大脑中动脉缺血再灌注损伤起保护作用,使脑梗死体积减少、脑水肿减轻、血脑屏障通透性降低、脑缺血周围组织碱性成纤维细胞生长因子表达增加。研究证明缓激肽预处理可诱导脑缺血耐受,可能是通过保护脑血管、促进神经元的存活而起作用的。
     2、氧糖剥夺/再给氧糖可破坏大鼠脑微血管内皮细胞间紧密连接等超微结构,改变细胞间紧密连接相关蛋白及细胞骨架蛋白的表达,增强细胞间粘附分子的表达;氧糖剥夺预处理可诱导缺血耐受产生,对其后的大鼠脑微血管内皮细胞的损伤起保护作用。
Objective
     Stroke is a kind of health-threatening disease especially for the older people. The mechanism of stroke has been studied deeply, but is not fully understood and the treatment measures are not well satisfactory.
     Preconditioning with brief, nonlethal ischemia (ischemic preconditioning, IPC) can reduce the injury of subsequent severe ischemia. This phenomenon is called ischemia tolerance. The precise mechanism of brain ischemia tolerance is unclear and a lot of substances may have been involved in the process. Studies revealed there was relationship between brain ischemia tolerance and the injury of cerebral ischemia. The triggering mechanism of brain IPC is similar to that of cerebral ischemia injury, except that different extent of stimuli results in different effects. Studies have illustrated that many substances deteriorating brain damage in ischemia can be protective in the process of brain IPC.
     Bradykinin (BK) is considered an important mediator of the inflammatory response in both peripheral and central nervous system, and it has attracted recent interest as a potential mediator of brain injury following stroke. An increase in plasma bradykinin levels was observed during cerebral ischemia. Early treatment after cerebral ischemia with bradykinin B_2 receptor antagonist was reported to improve outcome in ischemic rats. During the late stage of ischemic stroke, kallikrein gene transfer provided neuroprotection against cerebral ischemia injury. These results suggest that during the different period of cerebral ischemia bradykinin acts differently. Studies in heart IPC implicated that not only endogenous bradykinin mediated IPC but also exogenously administrated bradykinin mimicked IPC and protected ischemic myocardium. In the study of rat mesenteric microcirculation, exogenous bradykinin preconditioning resisted inflammatory effects after ischemia. Therefore, we tested bradykinin's ability in a rat middle cerebral artery occlusion model to induce ischemia tolerance against ischemic neuronal injury. It will provide theoretical basis for the studies of brain ischemic tolerance mechanism and drug preconditioning.
     Blood-brain barrier (BBB) is composed of brain microvascular endothelial cells, basal membrane and glial cell processes, and which is important to hold the balance between brain tissue and blood. During brain ischemia, the disruption of BBB results in the increase of brain vascular permeability and it could further promote ischemic brain injury and brain edema. Brain microvascular endothelial cells are characterized by the presence of tight junctions and the absence of fenestrations and vesicles. After brain ischemia, the tight junctions of BBB are disrupted, transcytosis vesicles are increased, and leukocytes adherence and migration rate is enhanced. Therefore, we primary culture the rat brain microvascular endothelial cells as BBB model in vitro, take oxygen glucose deprivation (OGD) to mimic ischemia in vivo, and then tested the changes of BBB construction and function. In addition, studies showed that ischemic preconditioning not only could protect neurons but also protect endothelial cells. At last, we tested the influence of preconditioning on BBB construction and function in vitro. It will further provide theoretical basis for the studies of brain ischemic tolerance mechanism.
     Materials and Methods
     PartⅠ: Effects of bradykinin preconditioning on focal cerebral ischemia rats.
     1. Materials
     (1) Animals: female SD rats weighing 250-300g.
     (2) Experimental reagents: bradykinin, 2,3,5-triphenyltetrazolium, Evans blue, rabbit anti-basic fibroblast growth factor antibody, SABC kit, goat anti-rabbit IgG antibody, rabbit anti-β-actin antibody, enhanced chemiluminescence kit.
     (3) Experimental instruments: micro-perfusion pump, spectrophotometer, electrophoresis apparatus, transmark apparatus, freeze microtome.
     2. Methods
     (1) Rats middle cerebral artery ischemia-reperfusion model by intraluminal suture.
     (2) Measurement of infarct volume by 2,3,5-triphenyltetrazolium staining and image analysis to test the effects of bradykinin preconditioning.
     (3) Measurement of brain hemispheric water content to demonstrate the mechanism of bradykinin preconditioning.
     (4) The blood-brain barrier permeability was quantitatively evaluated by extravasation of Evans blue to demonstrate the mechanism of bradykinin preconditioning.
     (5) Immunohistochemical assessment the expression levels of basic fibroblast growth factor surrounding the infarct area to demonstrate the mechanism of bradykinin preconditioning.
     (6) Western-blot assessment the expression levels of basic fibroblast growth factor surrounding the infarct area to demonstrate the mechanism of bradykinin preconditioning.
     PartⅡ: Effects of preconditioning on brain endothelial cells tight junctions and cell adherence.
     1. Materials
     (1) Animals: 3-5d SD rats.
     (2) Experimental reagents: DMEM, fetal calf serum, ECGS, trypsinase, typeⅡcollagenase, dextran, rabbit anti-Ⅷrelated antigen antibody, rabbit anti-occludin antibody, rat anti-ZO-1 antibody, TRITC-phalloidin, rabbit anti-ICAM-1 antibody, rabbit anti-VCAM-1 antibody, SABC kit.
     (3) Experimental instruments: CO_2 incubator, inverted microscope, low-oxygen incubator, fluorescence microscope, electro microscope.
     2. Methods
     (1) Rat brain microvascular endothelial cells culture and identification.
     (2) Analyze the cell culture fluid by blood-gas analyzer to ensure the deoxygenated culture.
     (3) Measurements of cell ultrastructure changes by electro microscope to test the effects of OGD preconditioning.
     (4) Immunofluorescence and fluorescence-labeled assessment the expression of tight junction proteins ZO-1 and F-actin, to demonstrate the effects of OGD preconditioning on BBB tight junctions.
     (5) Immunohistochemical assessment the expression levels of ICAM-1 and VCAM-1 to demonstrate the mechanism of OGD preconditioning.
     Results
     PartⅠ: Effects of bradykinin preconditioning on focal cerebral ischemia rats.
     1. TTC staining results showed that bradykinin preconditioning could reduce infarct volume significantly. And the infarct volume decreased as the time interval between bradykinin administration and ischemic insults shortened.
     2. Brain water content in the ischemic hemisphere was significantly reduced and the brain edema was alleviated by bradykinin preconditioning.
     3. EB extravasation content and scope of blue-staining were significantly decreased and blood-brain barrier function was protected by bradykinin preconditioning.
     4. Both immunohistochemical and Western-blot assessment showed that bradykinin preconditioning significantly increased bFGF-like immunoreactivity surrounding the infarct area and promoted the neuronal survival.
     PartⅡ: Effects of preconditioning on brain endothelial cells tight junctions and cell adherence.
     1.OGD preconditioning could alleviate the injury of brain microvascular endothelial cells, decrease the opening of tight junctions, protect the brain microvascular endothelial cells.
     2. OGD preconditioning could lighten the changes of tight junction proteins ZO-1 and F-actin location.
     3. OGD preconditioning could decrease the expression of inter-cellular adherence molecules ICAM-1 and VCAM-1.
     Conclusion
     1. Bradykinin preconditioning provided neuroprotection against ischemic injury induced by transient middle cerebral artery occlusion in rats. Bradykinin preconditioning decreased infarct volume, brain edema and the permeability of blood-brain barrier and increased the expression of basic fibroblast growth factor surrounding infarct area. The ischemia tolerance in the brain induced by bradykinin preconditioning may be due to the protection of cerebral vasculature and the promotion of neuronal survival.
     2. OGD and re-oxygenation/glucose destroyed the ultrastructure such as tight junctions of rat brain microvascular endothelial cells, changed the expression location of cellular tight junctions proteins and cellular framework proteins, increased the expression of inter-cellular adherence molecules. OGD preconditioning induced ischemic tolerance and provided protective effects on rat brain microvascular endothelial cells injury.
引文
1 Relton JK,Beckey VE,Hanson WL,et al.CP-0597,a selective bradykinin B2 receptor antagonist,inhibits brain injury in a rat model of reversible middle cerebral artery occlusion.Stroke.1997;28(7) :1430-1436.
    2 Sobey CG.Bradykinin B2 receptor antagonism:a new direction for acute stroke therapy? Br J Pharmacol.2003;139(8) :1369-1371.
    3 Wahl M,Whalley ET,Unterberg A,et al.Vasomotor and permeability effects of bradykinin in the cerebral microcirculation.Immunopharmacology.1996;33(1-3) :257-263.
    4 Zausinger S,Lumenta DB,Pruneau D,et al.Effects of LF 16-0687 Ms,a bradykinin B2 receptor antagonist,on brain edema formation and tissue damage in a rat model of temporary focal cerebral ischemia.Brain Res.2002;950(1-2) :268-278.
    5 Kamiya T,Katayama Y,Kashiwagi F,et al.The role of bradykinin in mediating ischemic brain edema in rats.Stroke.1993;24(4) :571-576.
    6 Wagner S,Kalb P,Lukosava M,et al.Activation of the tissue kallikrein-kinin system in stroke.J Neurol Sci.2002;202(1-2) :75-76.
    7 Xia CF,Smith RS Jr,Shen B,et al.Postischemic brain injury is exacerbated in mice lacking the kinin B2 receptor.Hypertension.2006;47(4) :752-761.
    8 Xia CF,Yin H,Borlongan CV,et al.Kallikrein gene transfer protects against ischemic stroke by promoting glial cell migration and inhibiting apoptosis.Hypertension.2004;43(2) :452-459.
    9 Baxter GF,Ebrahim Z.Role of bradykinin in preconditioning and protection of the ischaemic myocardium.Br J Pharmacol.2002;135(4) :843-854.
    10 Shigematsu S,Ishida S,Gute DC,et al.Postischemic anti-inflammatory effects of bradykinin preconditioning.Am J Physiol Heart Circ Physiol.2001;280(1) :H441-454.
    11 Longa EZ,Weinstein PR,Carlson S,et al.Reversible middle cerebral artery occlusion without craniectomy in rats.Stroke.1989;20(1) :84-91.
    12 Shimakura A,Kamanaka Y,Ikeda Y,et al.Neutrophil elastase inhibition reduces cerebral ischemic damage in the middle cerebral artery occlusion.Brain Res.2000;858(1) :55-60.
    13 Murry CE,Jennings RB,Reimer KA.Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium.Circulation.1986;74(5) :1124-1136.
    14 Ishida T,Yarimizu K,Gute DC,et al.Mechanisms of ischemic preconditioning.Shock.1997;8(2) :86-94.
    15 Chen J,Simon R.Ischemic tolerance in the brain.Neurology.1997;48(2) :306-311.
    16 Hawaleshka A,Jacobsohn E.Ischaemic preconditioning:mechanisms and potential clinical applications.Can J Anaesth.1998;45(7) :670-682.
    17 Kirino T.Ischemic tolerance.J Cereb Blood Flow Metab.2002;22(11) :1283-1296.
    18 Shimizu K,Lacza Z,Rajapakse N,et al.MitoK(ATP)opener,diazoxide,reduces neuronal damage after middle cerebral artery occlusion in the rat.Am J Physiol Heart Circ Physiol.2002;283(3) :H1005-1011.
    19 Nawashiro H,Tasaki K,Ruetzler CA,et al.TNF-alpha pretreatment induces protective effects against focal cerebral ischemia in mice.J Cereb Blood Flow Metab.1997;17(5) :483-490.
    20 Ohtsuki T,Ruetzler CA,Tasaki K,et al.Interleukin-1 mediates induction of tolerance to global ischemia in gerbil hippocampal CA1 neurons.J Cereb Blood Flow Metab.1996;16(6) :1137-1142.
    21 Inamura T,Black KL.Bradykinin selectively opens blood-tumor barrier in experimental brain tumors.J Cereb Blood Flow Metab.1994;14(5) :862-870.
    22 Schwaninger M,Sallmann S,Petersen N,et al.Bradykinin induces interleukin-6 expression in astrocytes through activation of nuclear factor-kappaB.J Neurochem.1999;73(4) :1461-1466.
    23 Takano M,Horie M,Yayama K,et al.Lipopolysaccharide injection into the cerebral ventricle evokes kininogen induction in the rat brain.Brain Res.2003;978(1-2) :72-82.
    24 Tasaki K,Ruetzler CA,Ohtsuki T,et al.Lipopolysaccharide pre-treatment induces resistance against subsequent focal cerebral ischemic damage in spontaneously hypertensive rats.Brain Res.1997;248(1-2) :267-270.
    25 Lin TN,Te J,Lee M,et al.Induction of basic fibroblast growth factor(bFGF)expression following focal cerebral ischemia.Brain Res Mol Brain Res.1997;49(1-2) :255-265.
    26 Speliotes EK,Caday CG,Do T,et al.Increased expression of basic fibroblast growth factor(bFGF)following focal cerebral infarction in the rat.Brain Res Mol Brain Res.1996;39(1-2) :31-42.
    27 Wei OY,Huang YL,Da CD,et al.Alteration of basic fibroblast growth factor expression in rat during cerebral ischemia.Acta Pharmacol.Sin.2000;21(4) :296-300.
    28 Huang Z,Chen K,Huang PL,et al.bFGF ameliorates focal ischemic injury by blood flow-independent mechanisms in eNOS mutant mice.Am J Physiol.1997;272(3 Pt 2) :H1401-1405.
    29 Li Q,Stephenson D.Postischemic administration of basic fibroblast growth factor improves sensorimotor function and reduces infarct size following permanent focal cerebral ischemia in the rat.Exp Neurol.2002;l77(2) :531-537.
    30 Uchida N,Kiuchi Y,Miyamoto K,et al.Glutamate-stimulated proliferation of rat retinal pigment epithelial cells.Eur J Pharmacol.1998;343(2-3) :265-273.
    31 Ballabh P,Braun A,Nedergaard M.The blood-brain barrier:an overview:structure,regulation,and clinical implications.Neurobiol Dis.2004;16(1) :1-13.
    32 Huang J,Upadhyay UM,Tamargo RJ.Inflammation in stroke and focal cerebral ischemia.Surg Neurol.2006;66(3) :232-245.
    33 Gidday JM.Cerebral preconditioning and ischaemic tolerance.Nat Rev Neurosci.2006;7(6) :437-448.
    34 Kapinya KJ.Ischemic tolerance in the brain.Acta Physiol Hung.2005;92(1) :67-92.
    35 Masada T,Hua Y,Xi G,et al.Attenuation of ischemic brain edema and cerebrovascular injury after ischemic preconditioning in the rat.J Cereb Blood Flow Metab.2001;21(1) :22-33.
    36 Badaut J,Hirt L,Price M,et al.Hypoxia/hypoglycemia preconditioning prevents the loss of functional electrical activity in organotypic slice cultures.Brain Res.2005;1051(1-2) :117-122.
    37 del Zoppo GJ,Mabuchi T.Cerebral microvessel responses to focal ischemia.J Cereb Blood Flow Metab.2003;23(8) :879-894.
    38 Andjelkovic AV,Stamatovic SM,Keep RF.The protective effects of preconditioning on cerebral endothelial cells in vitro.J Cereb Blood Flow Metab.2003;23(11) :1348-1355.
    39 Ishikawa M,Zhang JH,Nanda A,et al.Inflammatory responses to ischemia and reperfusion in the cerebral microcirculation.Front Biosci.2004;9:1339-1347.
    40 Fiuza C,Bustin M,Talwar S,et al.Inflammation promoting activity of HMGB1 on human microvascular endothelial cells.J Blood.2003;101(7) :2652-2660.
    41 Berk BC,Min W,Yan C,et al.Atheroprotective mechanisms activated by fluid shear stress in endothelial cells.J Drug News Perspect.2002;15(3) :133-139.
    42 Kapinya KJ,Lowl D,Futterer C,et al.Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent.Stroke.2002;33(7) :1889-1898.
    43 Perez-Pinzon MA,Maier CM,Yoon EJ,et al.Correlation of CGS 19755 neuroprotection against in vitro excitotoxicity and focal cerebral ischemia.J Cereb Blood Flow Metab.1995;15(5) :865-876.
    44 Kago T,Takagi N,Date I,et al.Cerebral ischemia enhances tyrosine phosphorylation of occludin in brain capillaries.Bioch Bioph Res Comm.2006;339(4) :1197-1203.
    45 Nagy Z,Vastag M,Kolev K,et al.Human cerebral microvessel endothelial cell culture as a model system to study the blood-brain interface in ischemic/hypoxic conditions.Cell Mol Neurobiol.2005;25(1) :201-210.
    46 Yamagata K,Tagami M,Takenaga F,et al.Hypoxia-induced changes in tight junction permeability of brain capillary endothelial cells are associated with IL-1beta and nitric oxide.Neurobiol Disease.2004;17(3) :491-499.
    47 Brown RC,Davis TP.Hypoxia/aglycemia alters expression of occludin and actin in brain endothelial cells.Bioch Bioph Res Comm.2005;327(4) :1114-1123.
    48 Wachtel M,Frei K,Ehler E.Extracellular signal-regulated protein kinase activation during reoxygenation is required to restore ischaemia-induced endothelial barrier failure.Biochem J. 2002;367(3) :873-879.
    49 Witt KA,Mark KS,Horn S,et al.Effects of hypoxia-reoxygenation on rat blood-brain barrier permeability and tight junctional protein expression.Am J Physiol Heart Circ Physiol.2003;285(6) :H2820-H2831.
    50 Fischer S,Wobben M,Marti HH,et al.Hypoxia-induced hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1. Microvascular Res.2002;63(1) :70-80.
    51 Fisher S,Wiesnet M,Marti HH,et al.Simultaneous activation of several second messengers in hypoxia-induced hyperpermeability of brain derived endethelial cells.J Cell Physiol.2004;198(3) :359-369.
    52 Mark KS,Davis TP.Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation.Am J Physiol Heart Circ Physiol.2002;282(4) :H1485-H1494.
    53 Wachtel M,Frei K,Ehler E,et al.Extracellular signal-regulated protein kinase activation during reoxygenation is related to restore ischaemia-induced endothelial barrier failure.Biochem J.2002;367(3) :873-879.
    54 Lai CH,Kuo KH,Leo JM.Critical role of actin in modulating BBB permeability.Brain Res Brain Res Rev.2005;50(1) :7-13.
    55 Abbruscato TJ,Davis TP.Combination of hypoxia/aglycemia compromises in vitro blood-brain barrier integrity.J Pharmacol Exper Therap.1999;289(2) :668-675.
    56 Frijus CJ,Kappelle LJ.Inflammatory cell adhesion molecules ischemic cerebrovascular disease.Stroke.2002;33(8) :2115-2122.
    57 Howard EF,Chen Q,Cheng C,et al.NF-kB is activated and ICAM-1 gene expression is upregulated during reoxygenation of human brain endothelial cells.Neuroscience Letters.1998;248:199-203.
    58 Simard JM,Kent TA,Chen M,et al.Brain oedema in focal ischaemia:molecular pathophysiology and theoretical implications.Lancet Neurol.2007;6(3) :258-268.
    59 Stamatovic SM,Dimitrijevic OB,Keep RF,et al.Inflammation and brain edema:new insights into the role of chemokines and their receptors.Acta Neurochir Suppl.2006;96:444-450.
    60 Hess DC,Howard E,Cheng C,et al.Hypertonic mannitol loading of NF-kB transcription factor decoys in human brain microvascular endothelial cells blocks upregulation of ICAM-1. Stroke.2000;31(5) :1179-1186.
    1 Ishida T, Yarimizu K, Gute DC, et al. Mechanisms of ischemic preconditioning. Shock. 1997; 8(2):86-94.
    2 Kitagawa K, Matsumoto M, Tagaya M, et al. Ischemic tolerance phenomenon found in the brain. Brain Res. 1990; 528(1):21-24.
    3 Glazier Ss, O' Rourke DM, Graham DI, et al. Induction of ischemic tolerance following brief focal ischemia in rat brain. J Cereb Blood Flow Metab. 1994; 14(3):545-553.
    4 Simon RP, Niiro M, Gwinn R. Prior ischemic stress protects against experimental stroke. Neurosci Lett. 1993; 163(1):125-137.
    5 Chen J, Graham SH, Zhu RL, et al. Stress proteins and tolerance to focal cerebral ischemia. J Cereb Blood Flow Metab. 1996; 16(3):566-577.
    6 Abe H, Nowak TS Jr. Induced hippocampal neuron protection in an optimized gerbil ischemia model: insult thresholds for tolerance induction and altered gene expression defined by ischemic depolarization. J Cereb Blood Flow Metab. 2004; 24(1):84-97.
    7 Tanaka S, Kitagawa K, Ohtsuki T, et al. Synergistic induction of HSP40 and HSC70 in the mouse hippocampal neurons after cerebral ischemia and ischemic tolerance in gerbil hippocampus. J Neurosci Res. 2002; 67(1):37-47.
    8 Sugawara T, Noshita N, Lewen A, et al. Neuronal expression of the DNA repair protein Ku 70 after ischemic preconditioning corresponds to tolerance to global cerebral ischemia. Stroke. 2001; 32(10):2388-2393.
    9 Liu C, Chen S, Kamme F, et al. Ischemic preconditioning prevents protein aggregation after transient cerebral ischemia. Neuroscience. 2005; 134(1):69-80.
    10 Wu C, Zhan RZ, Qi S, et al. A forebrain ischemic preconditioning model established in C57Black/Crj6 mice. J Neurosci Methods. 2001; 107(1-2):101-106.
    11 Cai Z, Fratkin JD, Rhodes PG. Prenatal ischemia reduces neuronal injury caused by neonatal hypoxia-ischemia in rats. Neuroreport. 1997; 8(6):1393-1398.
    12 Gidday JM. Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci. 2006; 7(6):437-448.
    13 Masada T,Hua Y,Xi G,et al.Attenuation of ischemic brain edema and cerebrovascular injury after ischemic preconditioning in the rat.J Cereb Blood Flow Metab.2001;21(1) :22-33.
    14 Perez-Pinzon MA,Born JG.Rapid preconditioning neuroprotection following anoxia in hippocampal slices:role of the K+ ATP channel and protein kinase C.Neuroscience.1999;89(2) :453-459.
    15 Perez-Pinzon MA,Born JG,Centeno JM.Calcium and increase excitability promote tolerance against anoxia in hippocampal slices.Brain Res.1999;833(1) :20-26.
    16 Moncayo J,deFreltas GR,Bogoussavsky J,et al.Do transient ischemic attacks have a neuroprotective effect? Neurology.2000;54(11) :2089-2094.
    17 Weih M,Kallenberg K,Bergk A,et al.Attenuated stroke severity after prodromal TLA:a role for ischemic tolerance in the brain? Stroke.1999;30(9) :1851-1854.
    18 张桂莲,昊海琴,李觉慧,等.短暂性脑缺血发作的脑保护作用研究.卒中与神经疾病.2003;10(2) :80-82.
    19 Pérez-Pinzón MA,Xu G-P,Dietrich WD,et al.Rapid preconditioning protects rats against ischemic neuronal damage after 3 but not 7days of reperfusion following global cerebral ischemia.J Cereb Blood Flow Metab.1997;17(2) :175-182.
    20 Stagliano NE,Pérez-Pinzón MA,Moskowitz MA,et al.Focal cerebral ischemic preconditioning induces rapid tolerance to middle cerebral artery occlusion in mice.J Cereb Blood Flow Metab.1999;19(7) :757-761.
    21 Michiko N,Kazuhiko N,Mishiya M,et al.Rapid tolerance to focal cerebral ischemia in rats is attenuatede by adenosine A1 receptor antagonist.J Cereb Blood Flow Metab.2002;22(2) :161-170.
    22 Heurteaux C,Lauritzen I,Widmann C,et al.Essential role of adenosine,adenosine A1 receptors,and ATP sensitive K+ channels in cerebral ischemic preconditioning.Proc Natl Acad Sci USA.1995;92(11) :4666-4670.
    23 Hiraide T,Katsura K,Muramatsu H,et al.Adenosine receptor antagonists cancelled the ischemic tolerance phenomenon in gerbil.Brain Res.2001;910(1-2) :94-98.
    24 Tanaka H,Calderone A,Jover T,et al.Ischemic preconditioning acts upstream of GluR2 down-regulation to afford neuroprotection in the hippocampal CA1. Proc Natl Acad Sci USA.2002;99(4) :2362-2367.
    25 Alsbo CW,Wrang ML,Johansen FF,et al.Quantitative PCR analysis of AMPA receptor composition in two paradigms of global ischemia.Neuroreport.2000;11(2) :311-315.
    26 Bond A,Lodge D,Hicks CA,et al.NMDA receptor antagonism,but not AMPA receptor antagonism attenuates induced ischemic tolerance in the gerbil hippocampus.Eur J Pharmacol.1999;380(2-3) :91-99.
    27 Nawashiro H,Tasaki K,Ruetzler CA,et al.TNF-apretreatment induces protective effects against focal cerebral ischemia in mice. J Cereb Blood Flow Metab. 1997; 17(5):483-490.
    28 Ohtsuki T, Ruerzler CA, Rasaki K, et al. Interleukin-1 mediates induction of tolerance to global ischemia in gerbil hippocampal CA1 neurons. J Cereb Blood Flow Metab. 1996; 16(6):1137-1142.
    29 Wang X, Li X, Erhardt JA, et al. Detection of TNF-αmRNA induction in ischemic brain tolerance by means of real-time polymerase chain reaction. J Cereb Blood Flow Metab. 2000; 20(1):15-20.
    30 Gidday JM, Shah AR, Maceren RG, et al. Nitric oxide mediates cerebral ischemic tolerance in neonatal rat model of hypoxic preconditioning. J Cereb Blood Flow Metab. 1999; 19(3):331-340.
    31 刘惠卿,李文斌,冯荣芳,等.一氧化氮合酶抑制剂L-NAME对大鼠缺血耐受诱导的影响.生理学报.2003;55(2):219-224.
    32 Atochin DN, Clark J, Demchenko IT, et al. Rapid cerebral ischemic preconditioning in mice deficit in endothelial and neuronal nitric oxide synthases. Stroke. 2003; 34(50):1299-1303.
    33 Tomasevic G, Shamloo M, Israeli D, et al. Activation of p53 and its target genes p21(WAF1/Cipl) and PAG608/Wig-1 in ischemic preconditioning. Brain Res Mol Brain Res. 1999; 70(2):304-313.
    34 Shimizu S, Nagayama T, Jin KL, et al. Bcl-2 antisense treatment prevents induction of tolerance to focal ischemia in the rat brain. J Cereb Blood Flow Metab. 2001; 21(3):233-243.
    35 Blondeau N, Widmann C, Lazdunski M, et al. Activation of the nuclear factor-κB is a key event in brain tolerance. J Neurosci. 2001; 21(13):4668-4677.
    36 Currie RW, Ellison JA, White RF, et al. Benign focal ischemic preconditioning induces neuronal Hsp70 and prolonged astrogliosis with expression of Hsp27. Brain Res. 2000; 863(1-2):169-181.
    37 Valentim LM, Geyer AB, Tavares A, et al. Effects of global cerebra ischemia and preconditioning on heat shock protein 27 immunocontent and phosphorylation in rat hippocampus. Neuroscience. 2001; 107(1):43-49.
    38 Sapolsky RM. Cellular defenses against excitotoxic insults. J Neurochem. 2001; 76(6):1601-1611.
    39 Urabe T, Hattori N, Nagamastu S, et al. Expression of glucose transporters in rat brain following transient focal ischemic injury. J Neurochem. 1996; 67(1):265-271.