血浆激肽释放酶B1和缓激肽受体B2基因单核苷酸多态性与原发性高血压的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:原发性高血压(Essential hypertension,EH)是与基因遗传明显有关的复杂的多因素疾病,它是多种心脑血管疾病重要的病因和危险因素之一。血浆激肽释放酶B1(plasma kallikrein B1,KLKB1)和缓激肽受体B2(bradykinin receptor B2, BDKRB2)在血压和肾钠调节中发挥重要作用。KLKB1和BDKRB2基因是参与EH发病的候选基因之一。近年来,虽有较多BDKRB2基因单核苷酸多态性(Single nucleotide polymorphism,SNP)与EH关系的病例对照研究文献报道,但不同人种不同地区的研究结果缺乏一致性,并且KLKB1和BDKRB2基因SNP与老年汉族人群EH的关系报道很少。另外,流行病学研究表明体质指数(Body mass index,BMI)与EH发病密切相关,而关于KLKB1和BDKRB2基因多态性与体质指数之间的协同作用关系尚无报道。本课题研究和探讨KLKB1和BDKRB2基因的两个单核苷酸多态性(SNP)位点rs1799722和rs2304595与EH之间的相关性,以期获得该基因多态性与EH发病风险之间的可靠证据,为EH,特别是老年EH的发病预测和防治提供依据。
     方法:
     1.应用限制性片段长度多态性-聚合酶链反应(RFLP-PCR)的方法检测103例重庆地区老年EH患者和103例老年正常对照者的KLKB1基因rs2304595A/G多态性,统计分析该位点单核苷酸多态性及BMI与老年EH的相关性。
     2.应用限制性片段长度多态性-聚合酶链反应(RFLP-PCR)的方法检测103例重庆地区老年EH患者和103例老年正常对照者的BDKRB2基因rs1799722T/C多态性,统计分析该位点单核苷酸多态性及BMI与老年EH的相关性。
     3.检索电子数据库中符合纳入标准的BDKRB2基因rs1799722T/C多态性与EH关系的病例对照研究文献,应用RevMan 5.0和SPSS 13.0统计软件对各研究结果进行异质性分析,选择适当的分析模型进行数据定量合并估计其效应,同时进行种族亚组分层分析和发表偏倚的评估。
     结果:
     1.KLKB1基因rs2304595位点的GG基因型重庆地区携带者老年EH发病优势比(odds ratio,OR)为1.60,无统计学差异(P>0.05)。男性亚组GG基因型携带者OR=1.03,无统计学差异(P>0.05);女性亚组GG基因型携带者OR=3.71,有显著统计学差异(P<0.01)。χ2检验BMI≥25个体老年EH发病风险有显著统计学差异(P<0.01)。Logistic回归分析表明:rs2304595位点GG基因型和BMI均不同程度的增加老年EH的发病风险,二者之间存在协同作用,其中GG基因型对重庆地区老年EH发病的影响更大。
     2. BDKRB2基因rs1799722位点的CC基因型重庆地区携带者EH发病OR为0.74,全体及各性别亚组的CC基因型携带者均无统计学差异(P>0.05),该基因位点CC基因型与重庆地区老年EH发病没有确切影响。
     3.共纳入10篇文献,12项研究共计1736例EH患者,1682例对照。Meta分析结果提示:BDKRB2基因rs1799722多态性CC基因型携带者的EH发病风险是CT和TT基因型携带者的1.36倍(P<0.05)。按不同种族亚组分层分析显示:在部分日本人群,中国汉族人群和非洲裔美国人群亚组中的CC基因型与EH的发病风险存在一定相关性(P<0.05),而中国哈萨克族人群、另一部分日本人群和高加索人群亚组CC基因型与EH的发病之间的关系尚不明确(P>0.05)。
     结论:KLKB1基因rs2304595位点GG基因型和G等位基因重庆地区女性携带者老年EH发病风险明显增高,并且GG基因型和BMI对老年EH发病存在协同作用。BDKRB2基因rs1799722位点CC基因型与重庆地区老年EH发病的关系尚不明确,Meta分析表明该基因位点CC基因型可能增加EH的发病风险,但具有显著的地区和种族差异。
Objective: Essential hypertension (EH) is a complicated disease which is affected by multiple factors. It is an important cause and risk factor in many kinds of cardiovascular and cerebrovascular diseases. The onset of EH is notably impacted by the inherited factor. Plasma kallikrein B1 (KLKB1) and bradykinin receptor B2 (BDKRB2) play an important roles in regulating blood pressure and renal sodium. KLKB1 and BDKRB2 genes are candidate genes which contribute to EH morbidity. Recently, it was reported that the relationship between EH and single nucleotide polymorphism (SNP) of KLKB1 and BDKRB2 genes was in many case-control study literatures. But it was inconsistency in different races and regions, furthermore it was seldom reported in geratic Han people of essential hypertension. In addition, epidemiologic studies were showed that the onset of EH was obviously related to body mass index (BMI). However, it was not reported to the synergistic action between BMI, KLKB1 and BDKRB2 gene polymorphism. Our questions for study and discussion are the correlation between EH and two SNPs (rs1799722 and rs2304595), and the reliable evidence of the association of EH onset risk and two SNPs in order to provide us the effective methods of prevention and cure for EH, especially geratic EH.
     Methods:
     1. Restriction fragment lenth polymorphism and polymerase chain reaction (RFLP-PCR) were used to detect KLKB1 gene SNP(rs2304595 A/G) in 103 geratic normotension controls and 103 geratic EH patients at Chongqing region. Statistical analysis was performed to investigate the correlation between KLKB1 gene SNP, BMI and geratic EH.
     2. Restriction fragment lenth polymorphism and polymerase chain reaction (RFLP-PCR) were used to detect BDKRB2 gene SNP (rs1799722) in 103 geratic normotension controls and 103 geratic EH patients at Chongqing region. Statistical analysis was performed to investigate the correlation between BDKRB2 gene SNP, BMI and geratic EH.
     3. In electronic databases , the literatures of case-control trials of the relation between BDKRB2 gene SNP(rs1799722T/C) and the EH risk were searched, which met the inclusion criteria.Statistical analysis was performed with RevMan 5.0 and SPSS 13.0 to investigate heterogeneity, to use suitable models for the study data combination and effect evaluation and to undertake the analysis of ethnic subgroups and the evaluation of publication bias.
     Results:
     1. The odds ratio(OR) for GG genotypic carriers of KLKB1 gene SNP(rs2304595) was 1.60, furthermore geratic Han people cases and contrals showed no statistical difference(P>0.05) at Chongqing region. The male subgroups of GG genotypic carriers were no statistical difference(P>0.05); but the female subgroups of GG genotypic carriers were significant statistical difference (P<0.01). Theχ2 test showed that the EH risk of geratic individuals of BMI≥25 were significant statistical difference(P<0.01). Logistic regression analysis indicated that rs2304595 GG genotype and BMI had certain synergistic action to increase the onset risk of geratic EH at different levels, and the onset risk influenced by GG genotype became even bigger in Chongqing local geratic Han people.
     2. The OR for CC genotypic carriers of BDKRB2 gene SNP (rs1799722) was 0.74 at Chongqing region. The male or female subgroups as well as all groups of CC genotypic carriers were no statistical difference(P>0.05), and CC genotype didn’t precisely affect the geratic EH risk in Chongqing local geratic Han people.
     3. Totally, 10 literatures, 12 studies, 1736 cases and 1682 controls were included. The Meta analysis showed that the EH risk of CC genotypic carriers of BDKRB2 gene SNP(rs1799722) was 1.36 times than CT or TT genotypic carriers(P<0.05). Japanese, Chinese Han and African-American CC genotype were related to the EH risk(P<0.05); but the association between the EH risk and CC genotype of Chinese Kazakans, partial Japanese and Caucasian was indefinite in the subgroups analysis(P>0.05).
     Conclusions: The onset risk of geratic EH of KLKB1 gene rs2304595 GG genotypic and allelic carriers was increased notably at Chongqing region, furthermore GG genotype and BMI had synergistic action in the geratic EH morbility. The association between CC genotype of BDKRB2 gene rs1799722 and Chongqing local geratic EH morbility was indefinite, furthermore the Meta analysis showed that the CC genotype of BDKRB2 gene rs1799722 might increase the EH risk, but this conclusion was notably affected by local and ethnic differences.
引文
[1] Yu H, Bowden DW, Spray BJ, et a1.Identification of human plasma kallikrein gene polymorphisms and evaluation of their role in end-stage renal disease[J].Hypertension.1998;31(4):906-11.
    [2] Mukae S, Aoki S, Itoh S, et al. Promoter polymorphism of the beta2 bradykinin receptor gene is associated with essential hypertension[J].Jpn Circ J.1999;63(10):759-62.
    [3] Gainer JV, Brown NJ, Bachvarova M, et a1.Altered frequency of a promoter polymorphism of the kinin B2 receptor gene in hypertensive African-Americans[J].Am J Hypertens.2000;13(12):1268-73.
    [4] Cui J, Melista E, Chazaro I, et al. Sequence variation of bradykinin receptors B1 and B2 and association with hypertension[J].J Hypertens.2005;23(1):55-62.
    [5] Lu X, Zhao W, Huang J, et al. Common variation in KLKB1 and essential hypertension risk: tagging-SNP haplotype analysis in a case-control study[J].Hum Genet.2007;121(3-4):327-35.
    [6]王吉耀主编.内科学[M].第1版.北京:人民卫生出版社.2002:229-234.
    [7]李法琦主编.老年医学[M].第1版.北京:科学出版社.2002:130-133.
    [8] Schmaier AH.The kallikrein-kinin and the renin-angiotensin systems have a multilayered interaction[J].Am J Physiol Regul Integr Comp Physiol. 2003;285(1):R1-13.
    [9] Tang J , Yu CL , Williams SR , et al. Expression, crystallization, and three-dimensional structure of the catalytic domain of human plasma kallikrein[J].J Biol Chem. 2005;280(49):41077-89.
    [10] Marcondes S,Antunes E.The plasma and tissue kininogen kallikrein kinin system: role in the cardiovascular system[J].Curr Med Chem Cardiovasc Hematol Agents.2005;3(1):33-44.
    [11] Dielis AW, Smid M, Spronk HM, et al. The prothrombotic paradox of hypertension: role of the renin-angiotensin and kallikrein-kinin systems[J].Hypertension.2005;46(6):1236-42.
    [12] Beaubien G, Rosinski-Chupin I, Mattei MG,et al. Gene structure and chromosomal localization of plasma kallikrein[J].Biochemistry.1991 ;30(6):1628-35.
    [13] Yu H, Anderson PJ, Freedman BI,et al. Genomic structure of the human plasma prekallikrein gene, identification of allelic variants, and analysis in end-stage renal disease[J].Genomics.2000;69(2):225-34.
    [14] Mori MA, Araujo RC, Reis FC, et al. Kinin B1 Receptor Deficiency Leads to Leptin Hypersensitivity and Resistance to Obesity[J].Diabetes, 2008 ;57(6):1491-500.
    [1]李法琦主编.老年医学[M].第1版.北京:科学出版社.2002:130-133.
    [2]王吉耀主编.内科学[M].第1版.北京:人民卫生出版社.2002:229-234.
    [3] Yu H, Bowden DW, Spray BJ, et a1.Identification of human plasma kallikrein gene polymorphisms and evaluation of their role in end-stage renal disease[J]. Hypertension,1998;31(4):906-11.
    [4] Mukae S, Aoki S, Itoh S, et al. Promoter polymorphism of the beta2 bradykinin receptor gene is associated with essential hypertension[J]. Jpn Circ J, 1999; 63(10):759-62.
    [5] Gainer JV, Brown NJ, Bachvarova M, et a1.Altered frequency of a promoter polymorphism of the kinin B2 receptor gene in hypertensiveAfrican-Americans[J]. Am J Hypertens,2000;13(12):1268-73.
    [6] Cui J, Melista E, Chazaro I, et al. Sequence variation of bradykinin receptors B1 and B2 and association with hypertension[J]. J Hypertens,2005; 23(1):55-62.
    [7] Lu X, Zhao W, Huang J, et al. Common variation in KLKB1 and essential hypertension risk: tagging-SNP haplotype analysis in a case-control study[J]. Hum Genet. 2007;121(3-4):327-35.
    [8] Wang B, Dang A, Liu G. Genetic variation in the promoter region of the beta2 bradykinin receptor gene is associated with essential hypertension in a Chinese Han population[J]. Hypertens Res, 2001; 24(3):299-302.
    [9] Fu Y, Katsuya T, Matsuo A, et al. Relationship of bradykinin B2 receptor gene polymorphism with essential hypertension and left ventricular hypertrophy[J]. Hypertens Res, 2004; 27(12):933-938.
    [10]李南方,汪迎春,周玲等.缓激肽β2受体基因启动子区-58T/C多态性与哈萨克族原发性高血压的相关性分析[J].医学分子生物学杂志, 2008; 5(2):110-113.
    [11] Milan A, Mulatero P, Williams TA, et al. Bradykinin B2 receptor gene polymorphism influences baroreflex sensitivity in never-treated hypertensive patients[J]. J Hypertens, 2005; 23(1):63-69.
    [12] Mori MA, Araujo RC, Reis FC, et al. Kinin B1 Receptor Deficiency Leads to Leptin Hypersensitivity and Resistance to Obesity [J]. Diabetes, 2008;57(6):1491-500.
    [1] Kurtz TW, Spence MA. Genetics of essential hypertension[J]. Am J Med, 1993; 94:77–84.
    [2] Katori M, Majima M. Pivotal role of renal kallikreinkinin system in the development of hypertension and approaches to new drugs based on this relationship[J]. Jpn J Pharmacol, 1996; 70:95-128.
    [3] Hall JM. Bradykinin receptors[J]. Gen Pharmacol, 1997; 28:1-6.
    [4] Mukae S, Aoki S, Itoh S, et al. Promoter polymorphism of the beta2 bradykinin receptor gene is associated with essential hypertension[J]. Jpn Circ J, 1999; 63(10):759-62.
    [5]王吉耀主编.内科学[M].第1版.北京:人民卫生出版社.2002:233-234.
    [6] MunafòMR, Flint J. Meta-analysis of genetic association studies[J]. Trends in Genetics, 2004; 20(9):439-444.
    [7] Lichtensteln MJ, Mulrow CD, Elwood PC, et al. Guidelines for rereading case-control studies. J Chronic Dis, 1987; 40:893-903.
    [8] Egger M, Smith GD, Schneidet M, el a1. Bias in meta-analysis detected by a simple, graphical test[J]. BMJ, 1997; 315:629-634.
    [9] Rosenthal R. The“file drawer problem”and tolerance for nu11 results[J]. Psychol Bull, 1979; 86:638-641.
    [10] Gainer JV, Brown NJ, Bachvarova M, et al. Altered frequency of a promoter polymorphism of the kinin B2 receptor gene in hypertensive African-Americans[J]. Am J Hypertens, 2000; 13(12):1268-1273.
    [11] Wang B, Dang A, Liu G. Genetic variation in the promoter region of the beta2 bradykinin receptor gene is associated with essential hypertension in a Chinese Han population[J]. Hypertens Res, 2001; 24(3):299-302.
    [12] Aoki S, Mukae S, Itoh S, et al. The genetic factor in acute myocardial infarction with hypertension[J]. Jpn Circ J, 2001; 65(7):621-626.
    [13] Fu Y, Katsuya T, Matsuo A, et al. Relationship of bradykinin B2 receptor gene polymorphism with essential hypertension and left ventricular hypertrophy[J]. Hypertens Res, 2004; 27(12):933-938.
    [14] Cui J, Melista E, Chazaro I, et al. Sequence variation of bradykinin receptors B1 and B2 and association with hypertension[J]. J Hypertens, 2005; 23(1):55-62.
    [15] Milan A, Mulatero P, Williams TA, et al. Bradykinin B2 receptor gene polymorphism influences baroreflex sensitivity in never-treated hypertensive patients[J]. J Hypertens, 2005; 23(1):63-69.
    [16]董会奕,李秋荣,王勤,等.β2-BKR基因和AGT基因多态性与原发性高血压的相关性研究[J].第三军医大学学报, 2006; 28(11):1252-1254.
    [17]李南方,汪迎春,周玲,等.缓激肽β2受体基因启动子区-58T/C多态性与哈萨克族人原发性高血压的相关性分析[J].医学分子生物学杂志, 2008; 5(2):110-113.
    [18]王兵,刘国杖,党爱民.缓激肽β2受体基因启动子区点突变与高血压病的关系[J].中华心血管病杂志, 2001; 29(4):203-205.
    [1] Pesesse X, Deleu S, De Smedt F, et al. Identification of a second SH2-domain-containing protein closely related to the phosphatidyl-inositol polyphosphate 5-phosphatase SHIP[J].Biochem Biophys Res Commun, 1997; 239(3): 697-700.
    [2] Krystal G, Damen JE, Helgason CD, et al. SHIPs ahoy[J].Int J Biochem Cell Biol,1999;31(10):1007-1010.
    [3]韩国平,母义明,邹效漫.SHIP2与胰岛素抵抗[J].国际内分泌代谢杂志, 2007, 27(2):106-108.
    [4] Sasaoka T, Wada T, Tsuneki H. Lipid phosphatases as a possible therapeutic target in cases of type 2 diabetes and obesity[J]. Pharmacol Ther,2006;112(3):799-809.
    [5] Backers K,Blero D,Paternotte N,et a1. The termination of PI3K signalling by SHIP1 and SHIP2 inositol 5-phosphatases[J].Adv Enzyme Regu1,2003;43:15-28.
    [6] Asano T, Fujishiro M, Kushiyama A,et al. Role of phosphatidylinositol 3-kinase activation on insulin action and its alteration in diabetic conditions[J].Biol Pharm Bull,2007;30(9):1610-1616.
    [7] Wada T, Sasaoka T, Funaki M, et al.Overexpression of SH2-containing inositol phosphatase 2 results in negative regulation of insulin-induced metabolic actions in 3T3-L1 adipocytes via its 5'-phosphatase catalytic activity[J].Mol Cell Biol,2001;21(5): 1633-1646.
    [8] Sasaoka T, Hori H, Wada T,et al.SH2-containing inositol phosphatase 2 negatively regulates insulin-induced glycogen synthesis in L6 myotubes[J]. Diabetologia, 2001;44(10):1258-1267.
    [9] Fukui K, Wada T, Kagawa S, et al.Impact of the liver-specific expression of SHIP2 (SH2-containing inositol 5'-phosphatase 2) on insulin signaling and glucose metabolism in mice[J].Diabetes, 2005;54(7):1958-1967.
    [10] Sasaoka T, Wada T, Fukui K,et al.SH2-containing inositol phosphatase 2 predominantly regulates Akt2, and not Akt1, phosphorylation at the plasma membrane in response to insulin in 3T3-L1 adipocytes[J]. J Biol Chem,2004; 279(15):14835-14843.
    [11] Ishihara H, Sasaoka T, Ishiki M,et al. Membrane localization of Src homology 2-containing inositol 5'-phosphatase 2 via Shc association is required for the negative regulation of insulin signaling in Rat1 fibroblasts overexpressing insulin receptors[J].Mol Endocrinol, 2002;16(10):2371-2381.
    [12] Kagawa S, Soeda Y, Ishihara H, et al. Impact of Transgenic Overexpression of SH2-Containing Inositol 5'-Phosphatase 2 on Glucose Metabolism and Insulin Signaling in Mice[J].Endocrinol, 2008;149(2):642-650.
    [13] Dyson JM, Kong AM, Wiradjaja F, et al.The SH2 domain containing inositol polyphosphate 5-phosphatase-2: SHIP2[J].Int J Biochem Cell Biol,2005; 37(11): 2260-2265.
    [14] Sasaoka T, Fukui K, Wada T, et al. Inhibition of endogenous SHIP2 ameliorates insulin resistance caused by chronic insulin treatment in 3T3-L1 adipocytes[J]. Diabetologia, 2005;48(2):336-344.
    [15] Onnockx S, De Schutter J, Blockmans M, et al. The association between the SH2-containing inositol polyphosphate 5-Phosphatase 2 (SHIP2) and the adaptor protein APS has an impact on biochemical properties of both partners[J]. J Cell Physiol,2008;214(1):260-272.
    [16] Baumgartener JW. SHIP2: an emerging target for the treatment of type 2 diabetes mellitus[J].Curr Drug Targets Immune Endocr Metabol Disord,2003; 3(4):291-298.
    [17] Kaisaki PJ, Delepine M, Woon PY, et al. Polymorphisms in type II SH2 domain-containing inositol 5-phosphatase (INPPL1, SHIP2) are associated with physiological abnormalities of the metabolic syndrome[J].Diabetes, 2004;53(7): 1900-1904.
    [18] Kagawa S, Sasaoka T, Yaguchi S, et al. Impact of SRC homology 2-containing inositol 5'-phosphatase 2 gene polymorphisms detected in a Japanese population on insulin signaling[J].J Clin Endocrinol Metab,2005;90(5):2911-1919.
    [19] Ishida S, Funakoshi A, Miyasaka K,et al. Association of SH-2 containing inositol 5'-phosphatase 2 gene polymorphisms and hyperglycemia[J].Pancreas, 2006; 33(1):63-67.
    [20] Grempler R, Zibrova D, Schoelch C, et al. Normalization of prandial blood glucose and improvement of glucose tolerance by liver-specific inhibition of SH2 domain containing inositol phosphatase 2 (SHIP2) in diabetic KKAy mice[J]. Diabetes, 2007; 56(9):2235-2241.
    [21] Buettner R, Ottinger I, Gerhardt-Salbert C, et al. Antisense oligonucleotides against the lipid phosphatase SHIP2 improve muscle insulin sensitivity in a dietary rat model of the metabolic syndrome[J].Am J Physiol Endocrinol Metab, 2007;292(6):E1871-1878.
    [22] Bertelli DF, Ueno M, Amaral M E, et al. Reversal of denervation-induced insulin resistance by SHIP2 protein synthesis blockade[J].Am J Physiol Endocrinol Metab,2003;284(4):E679-E687.
    [23] Vandeput F, Backers K, Villeret V ,et al. The influence of anionic lipids on SHIP2 phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase activity[J].Cell Signal,2006;18(12):2193-2199.
    [24] Lazar DF, Saltiel AR. Lipid phosphatases as drug discovery targets for type 2 diabetes[J].Nat Rev Drug Discov,2006;5(4):333-342.
    [25] Marcano AC, Burke B, Gungadoo J, et al. Genetic association analysis of inositol polyphosphate phosphatase-like 1 (INPPL1, SHIP2) variants with essential hypertension[J].J Med Genet, 2007; 44(9): 603-605.