DPPⅣ酶抑制减轻大鼠肺移植缺血再灌注损伤的差异蛋白组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:肺移植(lung transplantation, LT)是当前治疗终末期肺部疾病的唯一有效方法,自1983年第一例成功的临床异体肺移植完成,二十多年来,肺移植技术越来越多的运用于临床并取得了长足的发展。现全球每年肺移植数量超过2000例,截止至2010年,全球158个中心行各类肺移植术共32652例,平均中位生存期5.3年,五年生存率达到了52%,十年生存率达29%。肺移植的生存率随着各种肺保护技术,抗排斥反应技术,及综合学科技术的进步逐渐提高[1]。
     然而,围手术期死亡仍然是造成肺移植失败的一个主要因素,据统计,肺移植围手术期死亡的主要原因是肺缺血再灌注损伤(Ischemia/Reperfusion Injury, I/R Injury)引起的原发性移植物功能障碍(Primary Graft Dysfunction, PGD) [2]。尽管手术技术、肺保护技术、重症监护技术不断提高,肺缺血再灌注损伤诱发的原发性移植物功能障碍仍然是肺移植早期死亡的主要病因[3]。发生在移植术后72小时内的非特异性肺泡及间质损伤、肺水肿、低氧血症是肺缺血再灌注损伤的主要表现[4]。过去的20年,缺血再灌注损伤的机制越来越清楚地被阐明,新型肺保护液及肺保护技术的运用使得原发性移植物功能障碍的发生率从90年代初的30%降低至目前的12%左右[2]。然而,肺组织相对于其他实质性脏器有其自有的生理特性,肺组织对缺血及其他外源性环境刺激更为敏感,供肺的获取与保护较其他实质性脏器更为严格。真正适合作为供肺的来源的器官数量也远远少于诸如肝,肾,心等实质性脏器[5]。据统计,约3/4的终末期肺部疾病患者在等待合适的供体的过程中就已死亡[6],开发新型的具有保护甚至恢复作用的肺保存药物可以减轻移植术后缺血再灌注损伤的发生率,并扩大供肺的获取来源,具有十分重要的临床意义。
     T淋巴细胞表面分化抗原CD26/DPPⅣ是一个相对分子质量为110kDa的多功能Ⅱ型跨膜糖蛋白,其具有二酰二肽酶活性,并在多种细胞,如上皮细胞、T淋巴细胞和内皮细胞等表面表达,其在肺组织中也发现了较高的表达[7]。之前我们的研究发现,通过抑制供肺二肽酰肽酶Ⅳ(DPPⅣ酶)的活性能够明显地减轻大鼠移植肺的I/R损伤,并在短期内(2 h)达到改善移植肺功能(pulmonary function)的作用[8-9]。然而抑制供肺DPPⅣ酶活性对术后较长时间段肺功能的影响以及其减轻移植肺I/R损伤的具体机制尚不清楚,推测可能与CD26/DPPⅣ对炎症反应的调节作用及其底物对肺功能的保护作用有关[10]。本实验旨在探讨抑制供肺DPPⅣ酶活性对大鼠肺移植术后较长时间段肺功能的影响,并运用差异蛋白质组学(proteomics)技术找出供肺DPPIV酶抑制后肺组织的差异蛋白表达,探究DPPIV酶活性减轻肺移植术后缺血再灌注损伤的机制。
     目的:建立大鼠原位异体肺移植模型(rat lung transplantation model),研究供肺DPPⅣ酶活性抑制对大鼠肺移植术后较长时间段内(7d)肺功能的影响,并运用差异蛋白质组学技术找出供肺DPPⅣ酶抑制后(1d)肺组织的差异蛋白表达,探究DPPⅣ酶活性抑制减轻肺移植术后缺血再灌注损伤的机制。
     方法:以SD大鼠作为试验动物,运用改良的三套管法建立大鼠原位异体左肺移植模型。运用DPPⅣ酶特异性抑制剂AB192灌注并保存供肺18h后行移植术,观察其对肺移植术后缺血再灌注损伤及长期肺功能的影响。将运用AB192灌注保存的进行肺组织与对照组供肺行蛋白组学研究,即利用双向凝胶电泳(two-dimensional polyacrylamide electrophoresis,2D-PAGE)分离两组总蛋白,通过图像分析寻找表达差异的蛋白点,对其进行MALDI-TOF质谱分析。对经质谱鉴定的蛋白质ATⅢ应用酶联免疫法对其含量进行鉴定,研究并验证其对肺缺血再灌注损伤的保护作用。
     结果:建立了稳定大鼠原位肺移植模型。对照组大鼠至术后第7天全部死亡,实验组(DPPⅣ酶特异性抑制组)的大鼠均存活至术后第7天。与对照组比较,各实验组的PIP值降低(P<0.05),PO2值升高(P<0.05),W/D值降低(P<0.05),MPO活性及MDA含量降低(P<0.05),并且随着时间的推移,实验组的上述指标不断改善,至术后第7天,各项检测值接近正常。运用差异蛋白质组学技术找出供肺DPPⅣ酶抑制后肺组织的差异蛋白表达,比较术后第1d两组供肺组织2D-PAGE图谱,得到差异蛋白点87个。对其中15个差异蛋白点进行质谱肽质量指纹图分析,鉴定出多个差异蛋白。其中9个差异蛋白均在实验组中过表达,而在对照组组织中低表达或不表达,6个在对照组中过表达。发现ATⅢ对肺组织缺血再灌注损伤有保护作用。
     结论:特异性的DPPⅣ酶抑制能够明显的减轻大鼠肺移植术后移植肺的缺血再灌注损伤,并有促进肺功能恢复作用。通过2-DE蛋白电泳成功的建立了大鼠肺组织2-DE图谱,并发现了多个差异蛋白表达,鉴定了其中15个蛋白质。发现了多个对肺功能有保护作用的蛋白及多种细胞信号转导通路蛋白。其中ATⅢ可能是DPPⅣ酶可能存在的对肺功能有保护作用的底物。
Background:lung transplantation is the unique effective treatment for terminal pulmonary diseases, since the first allo-graft lung transplatation was accomplished successfully in 1983, it was used more and more in clinic and developed sufficiently. Currently, more than 2000 cases are completed in the world every year. By 2010, 32652 cases are accomplished in 158 centers worldwide, and the median survival time is 5.3y, the survival rate of 5 and 10 year are 52% and 29%. The survival rate is raised with the development of lung protective technique, anti-rejection technique, and combination of vary departments[1].
     The peroperative death is still a significant factor causing the failure of lung transplantation, according to statistics, the main cause of death is primary graft dysfunction(PGD) induced by ischemia reperfusion(I/R) injury[2]. Although the skills of operation, techniques of lung protection and intensive care therapy are improving, PGD is still the main cause of death in the early stage of lung transplantation[3]. Nonspecific alveolus injury, pulmonary edema, and hypoxemia within 72hrs post-transplantation are the major manifest of ischemia reperfusion injury[4]. In the previous two decades, the mechanisms of IR injury were interpreted more and more perspicuously, the use of new lung protective fluid and technology reduced the rate of PGD from 30% in 1990s to 12% presently. However, the lung has its specific physiological nature via other parenchymatous organs[5], and is more sensitive to ischemia and other ectogenesis enviromental stimulus, the acquisition and protection of lung are more strict than others. According to statistics, about 75% patient with terminal pulmonary diseases died during the waiting for suitable donors[6]. With the purpose of the release of IR injury and enlargement of donor sources, it is important to exploit new medicines for the storage of lung which can protect even revive lung functions.
     T lymphocyte surface differentiated antigen CD26/DPPIV is a multifunctional typeⅡtransmembrane glycoprotein with relative molecular mass of 110kDa, which possess dipeptidase enzyme activity and express on the surfaces of varied cells such as epithelial cells, T lymphocytes, and endotheliocytes. Its over-expression is also found in lung tissues[7]. Our research showed that I/R injury in rat lung transplantation can be released obviously by inhibiting the activity of DDPⅣenzyme in the donor lung, and pulmonary fuction can be improved in short-term(2h) [8-9]. However, the effects of inhibiting the activity of DDPⅣenzyme for long-term lung function after transplantation and the concrete mechanism for relieving IRI of transplanted lung are not clear yet. It is suspected to be related to the regulation of inflammation by DDPIV enzyme and the protection of lung function by its substrate[10]. By this experiment, we intend to investigate the effects of donor's DPPIV enzyme activity inhibition on long-term lung function post-operation, and investigate the expression of differential proteins in lung tissue after inhibiting donor's DPPIV enzyme activity by the methods of differential proteomics, to clarify the mechanisms of relieving I/RI after lung transplantation with the activity of DDPIV enzyme inhibition.
     Objective:To setup rat lung transplantation model, study the effect of inhibition of donor's inhibiting donor's DPPIV enzyme activity on long time lung function post-transplantation, and to find the expression of differential proteins in lung tissue after inhibiting donor's DPPⅣenzyme activity at 1d post-transplantation by the technique of differential proteomics, and probe the mechanism of relieving IR injury after lung transplantation by inhibiting DPPIV enzyme activity.
     Methods:SD rats for experimental animals, we use modified "tri-cannulations" model to set up rat in-situ allograft lung transplantation. Donor lung tissue was perfused with specific DPPⅣenzyme inhibitor AB192 and preserved for 18h before transplantation, I/R injury after transplatation and effects for long-term lung function were observed. Proteomics was studied betweem the lung tissues perfused and preserved with AB192 and the non-interference ones in control groups, then two set of total protein were separated by two-dimensional polyacrylamide electrophoresis and differentially expressed protein site were searched. Under using MALDI-TOF mass chromatographic analysis, the proteins were detected by mass spectrum. Finally, we validate the protein by euzymelinked immunosorbent assay, and the use the protein to investigate its effect on lung I/R injury.
     Result:Stable pattern of in situ rat lung transplantation was setup. All the rats of control group died in 7d after transplantation, while all survived exceed 7days in the experimental group(DPPⅣenzyme was inhibited specificitily). Comparing with the control group, PIP decreased(P<0.05), PO2 increased (P< 0.05) and W/D decreased (P<0.05), MPO activity and MDA content decreased (P<0.05) in experimental groups. The indexes mentioned above improved in experimental group along with the time and every index approached normal level at the 7 day after operation. Differential proteomics was applied to find the discrepancy protein expression in donor lung tissue after DPPW enzyme was inhibited,2D-PAGE icons at the 1 days after operation were compared between the two set of lung tissues, and 87 discrepancy protein spots were obtained. Multiple discrepancy proteins were identified after mass spectrum peptide finger print map analysis for 15 spots. Amomg the total,9 discrepancy proteins were over-expressed in experimental group while were hypo-expressed or non-expressed in control group.6 were over-expressed in control group.
     Conclusion:Specific DPPⅣenzyme inhibitor can obviously relieve the IR injury after rat lung transplantation and promote the recovery of lung function. We successfully construct 2-DE icons of rat lung tissue by protein electrophoresis, detect multiple discrepancy protein expression and identify 15 of them. Proteins that can protect lung function or participate in cell signal transduction pathways were detected. ATⅢMay be the substrate of DPPⅣenzyme to protect lung function.
引文
1. Aurora P, Edwards LB, Kucheryavaya AY, et al. The Registry of the International Society for Heart and Lung Transplantation:thirteenth official pediatric lung and heart-lung transplantation report--2010. J Heart Lung Transplant.2010; 29(10):1129-41.
    2. Marasco SF, Bailey M, McGlade D, et al. Effect of donor preservation solution and survival in lung transplantation. J Heart Lung Transplant. 2010 Dec 3.
    3. Kuntz CL, Hadjiliadis D, Ahya VN, et al. Risk factors for early primary graft dysfunction after lung transplantation:a registry study. Clin Transplant.2009; 23(6):819-30.
    4. de Perrot M, Liu M, Waddell TK, et al. Ischemia-reperfusion-induced lung injury. Am J Respir Crit Care Med.2003; 167(4):490-511.
    5. Wilkes DS. Primary graft dysfunction:it's all the RAGE. Am J Respir Crit Care Med.2009; 180(10):915-6.
    6. Kreisel D, Krupnick AS, Puri V, et al. Short- and long-term outcomes of 1000 adult lung transplant recipients at a single center. J Thorac Cardiovasc Surg.2011; 141(1):215-22.
    7. Morimoto C, Schlossman SF. The structure and function of CD26 in the T-cell immune response. Immunol Rev.1998; 161:55-70.
    8. Zhai W, Cardell M, De Meester I, et al. Intragraft DPP IV inhibition attenuates post-transplant pulmonary ischemia/reperfusion injury after extended ischemia. J Heart Lung Transplant.2007; 26(2): 174-180.
    9. Zhai W, Cardell M, De Meester I, et al. Ischemia/Reperfusion Injury: The Role of CD26/Dipeptidyl-Peptidase-IV-Inhibition in Lung Transplantation. Transplant Proc.2006; 38(10):3369-3371.
    10. De Meester I, Korom S, Van Damme J, et al. CD26, let it cut or cut it down. Immunol Today.1999; 20(8):367-375.
    11. Rolf Mentlein. Dipeptidyl-peptidase Ⅳ (CD26)-role in the inactivation of regulatory Peptides. Regul Pept.1999; 85(1):9-24.
    12. Korom S, De Meester I, Onodera K, et al. The Effects of CD26/DPP IV-Targeted Therapy on Acute Allograft Rejection. Transplant Proc. 1997; 29(1):1274-1275.
    13. Boonacker E, Van Noorden CJF. The multifunctional or moonlighting protein CD26/DPPIV. Eur J Cell Biol.2003; 82(2):53-73.
    14. Ahren B, Simonsson E, Larsson H, et al. Inhibition of dipeptidyl peptidase IV improves metabolic control over a 4-week study period in type 2 diabetes. Diabetes Care.2002; 25(5):869-875.
    15. Link AJ, Eng J, Sehieltz DM, et a1. Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol.1999; 17(7):676-82.
    16. Jr GW, Cazares LH, Leung SM, et al. Proteinchip(R) surface enhanced laser desorption-ionization (SELDI) mass spectrometry:A novel protein biochip technology for detection of prostate cancer biomarkers in complex protein mixtures. Prostate Cancer Prostatic Dis.1999;2(5):264-276.
    17. Gygi SP, Rist B, Gerber SA, et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol. 1999; 17(10):994-999
    18. Asimacopoulos PJ, Molokhia FA, Pegg CA, et al. Lung transplantation in the rat. Transplant Proc.1971; 3(1):583-5.
    19. Zhai W, Ge J, Inci I, et al. Simplified rat lung transplantation by using a modified cuff technique. J Invest Surg.2008; 21(1):33-7.
    20. Santana Rodriguez N, Martin Barrasa JL, Lopez Garcia A, et al. Lung transplantation in rats:a viable experimental model (in Spanish). Arch Bronconeumol.2004; 40(10):438-42.
    21. Marck KW, Wildevuur CR. Lung transplantation in the rat:Technique and survival. Ann Thorac Surg.1982; 34(1):74-80.
    22. Mizuta T, Kawaguchi A, Nakahara K, et al. Simplified rat lung transplantation using a cuff technique. J Thorac Cardiovasc Surg. 1989; 97(4):578-81.
    23. Mizuta T, Nakahara K, Shirakura R, et al. Total nonmicrosuture technique for rat lung transplantation. J Thorac Cardiovasc Surg. 1991; 102(1):159-60.
    24. Reis A, Giaid A, Serrick C, et al. Improved outcome of rat lung transplantation with modification of the nonsuture external cuff technique. J Heart Lung Transplant.1995; 14(2):274-9.
    25. Oscar J, Cordero Francisco J, Salgado Montserrat Nogueira. On the origin of serum CD26 and its altered concentration in cancer patients. Cancer Immunol Immunother.2009; 58(11):1723-1747.
    26. Ohnuma K, Dang NH, Morimoto C. Revisiting an old acquaintance: CD26 and its molecular mechanisms in T cell function. Trends Immunol.2008; 29(6):295-301.
    27. Jung FJ, Yang L, De Meester I, et al. CD26/Dipeptidylpeptidase IV-targeted Therapy of Acute Lung Rejection in Rats. J Heart Lung Transplant.2006; 25(9):1109-1116.
    28. Said SI, Dickman KG. Pathways of inflammation and cell death in the lung:Modulation by vasoactive intestinal peptide. Regul Pept.2000; 93(1):21-29.
    29. Mentlein R. Dipeptidyl-peptidase Ⅳ (CD26)-role in the inactivation of regulatory peptides. Regul Pept.1999; 85(1):9-24.
    30. Jungraithmayr W, De Meester I, Matheeussen V, et al. Inhibition of CD26/DPP IV attenuates ischemia/reperfusion injury in orthotopic mouse lung transplants:The pivotal role of vasoactive intestinal peptide. Peptides.2010; (31)4:585-591.
    31. Zhai W, Jungraithmayr W, De Meester I, et al. Primary Graft Dysfunction in Lung Transplantation:The Role of CD26/Dipeptidylpeptidase IV and Vasoactive Intestinal Peptide. Transplantation.2009; (87) 8:1140-1146.
    32. Sergejeva S, Hoshino H, Yoshihara S,et al. A synthetic VIP peptide analogue inhibits neutrophil recruitment in rat airways in vivo. Regulatory Peptides.2004; (117) 2:149-154.
    33. Ng CS, Wan S, Arifi AA, et al. Inflammatory response to pulmonary ischemia-reperfusion injury. Surg Today.2006; 36:205-214.
    34. den Hengst WA, Gielis JF, Lin JY, et al. Lung ischemia-reperfusion injury:a molecular and clinical view on a complex pathophysiological process. Am J Physiol Heart Circ Physiol.2010; 299 (5):1283-1299
    35. Macilwain C. World leadersheap praise on human genome landmark. Nature.2000; 405(6790):983-984.
    36. Wilkins MR, Sanchez JC, Gooley AA, et al. Progress with proteome projects:why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev. 1996; 13:19-50.
    37.赵欣,蒲小平.蛋白质组学在药物研究中的运用.中国药理学通报.2009;25(08):988-91.
    38.万晶红,贺福初.蛋白质组技术的研究进展.科学通报.1999;44(9):904-11
    39.钱小红,贺福初.蛋白质组学:理论与方法.科学出版社;2003;48-57.
    40. Koomen J, Hawke D, Kobayashi R. Developing an understanding of proteomics:An introduction to biological mass spectrometry. Cancer Invest.2005; 23(1):47-59.
    41. Shi R, Kumar C, Zougman A, Zhang Y, et al. Analysis of the mouse liver proteome using advanced mass spectrometry. J Proteome Res.2007; 6(8):2963-72.
    42. Schulze-Topphoff U, Prat A, Bader M, et al. Roles of the kallikrein/kinin system in the adaptive immune system. Int Immunopharmacol.2008; 8(2):155-60.
    43. Bouchard J F, Chouinard J, Lamontagne D. Role of kinins in the endothelial protective effect of ischemic preconditioning. Br J Pharmacol.1998; 123 (3):413-20.
    44. Sharma JN, Sharma J. Cardiovascular properties of the kallikrein-kinin system. Curr Med Res Opin.2002; 18(1):10-7.
    45. Watanabe M, Yoshihara S, Abe T, et al. Effects of the orally active non-peptide bradykinin B2 receptor antagonist, FR173657, on plasma extravasation in guinea pig airways. Eur J Pharmacol.1999; 367(2-3):373-8
    46.陈友岱,周总光.缓激肽在器官微循环损伤中的作用.微循环学杂志.2001;11(1):43-46
    47. Janciauskiene S. Conformational properties of serine proteinase inhibitors (serpins) confer multiple pathophysiological roles. Biochim Biophys Acta.2001; 1535(3):221-35.
    48. Oliva ML, Souza-Pinto JC, Batista IF, et al. Leucaena leucocephala serine proteinase inhibitor:primary structure and action on blood coagulation, kinin release and rat paw edema. Biochim Biophys Acta. 2000;1477(1-2):64-74
    49. Schlosser A, Thomsen T, Shipley JM, et al. Microfibril-associated protein 4 binds to surfactant protein A (SP-A) and colocalizes with SP-A in the extracellular matrix of the lung. Scand J Immunol.2006; 64(2):104-16.
    50. Lausen M, Lynch N, Schlosser A, et al. Microfibril-associated protein 4 is present in lung washings and binds to the collagen region of lung surfactant protein D. J Biol Chem.1999;274(45):32234-40.
    51. Wong HR, Wispe JR. The stress response and the lung. Am J Physiol Lung Cell Mol Physiol.1997; 17:1-9.
    52. Wong HR, Ryan M, Gebb S, et al. Selective and transient in vitro effects of heat shock on alveolar type II cell gene expression. Am J Physiol. 1997; 272(11):132-8.
    53. Wong HR, Finder JD, Wasserloos K, Pitt BR. Expression of iNOS in cultured rat pulmonary artery smooth muscle cells is inhibited by the heat shock response. Am J Physiol.1995; 269(61):843-8.
    54. den Hengst WA, Gielis JF, Lin JY,et al. Lung ischemia-reperfusion injury: a molecular and clinical view on a complex pathophysiological process. Am J Physiol Heart Circ Physiol.2010; 299(5):1283-99.
    55. Lu YT, Hellewell PG, Evans TW, et al. Ischemia-reperfusion lung injury: contribution of ischemia, neutrophils, and hydrostatic pressure. Am J Physiol.1997; 273(11):46-54.
    56. Ross SD, Tribble CG, Gaughen JR Jr, et al. Reduced neutrophil infiltration protects against lung reperfusion injury after transplantation. Ann Thorac Surg.1999; 67(5):1428-33.
    57. Uchiba M, Okajima K. Antithrombin Ⅲ (AT Ⅲ) prevents LPS-induced pulmonary vascular injury:novel biological activity of AT Ⅲ. Semin Thromb Hemost.1997; 23(6):583-90.
    58. Uchiba M, Okajima K, Murakami K, et al. Effects of antithrombin III (AT Ⅲ) and Trp4-modified ATⅢ on plasma level of 6-keto-PGF1α in rats. Thromb Res.1995; 80(3):201-208
    59. Palabrica T, Lobb R, Furie BC, et al. Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature.1992; 359(6398):848-851
    60. Yamaguchi Y, Akizuki E, Ichiguchi O, et al. Neutrophil elastase inhibitor reduces neutrophil chemoattractant production after ischemia-reperfusion in rat liver. Gastroenterology.1997; 112(2): 551-560
    61. Maung R, Kelly JK, Schneider MP, et al. Mesenteric venous thrombosis due to antithrombin Ⅲ deficiency. Arch Pathol Lab Med.1988; 112: 37-39.
    62. Yamauchi T, Umeda F, Inoguchi T, et al. Antithrombin Ⅲ stimulates prostacyclin production by cultured aortic endothelial cells. Biochem Biophys Res Commun.1989; 163(2):1404-1411
    63. Mammen EF. Clinical relevance of antithrombin deficiencies. Semin Hematol.1995; 32(4):2-6.
    64. Moncada S, Vane JR. Arachidonic acid metabolites and the interactions between platelets and blood vessels walls. N Engl J Med.1979; 300(20):1142-7.
    65. Jochum M. Influence of high-dose antithrombin concentrate therapy on the release of cellular proteinases, cytokines, and soluble adhesion molecules in acute inflammation. Semin Hematol.1995; 32(4):19-32.
    66. Okano K, Kokudo Y, Okajima K, et al.Protective Effects of Antithrombin Ⅲ Supplementation on Warm Ischemia and Reperfusion Injury in Rat Liver. World J Surg.1996; 20(8):1069-75.
    67. Ozden A, Tetik C, Bilgihan A, et al.Antithrombin Ⅲ prevents 60 min warm intestinal ischemia reperfusion injury in rats. Res Exp Med (Berl).1999; 198(5):237-46.
    68. Ozden A, Sarioglu A, Demirkan NC, et al. Antithrombin Ⅲ reduces renal ischemia-reperfusion injury in rats. Res Exp Med (Berl).2001; 200(3):195-203.
    69. Hagiwara S, Iwasaka H, Matsumoto S, et al.High dose antithrombin Ⅲ inhibits HMGB1 and improves endotoxin-induced acute lung injury in rats. Intensive Care Med.2008; 34(2):361-7.
    1. Aurora P, Edwards LB, Kucheryavaya AY, et al. The Registry of the International Society for Heart and Lung Transplantation:thirteenth official pediatric lung and heart-lung transplantation report--2010. J Heart Lung Transplant.2010;29:1129-41.
    2. Marasco SF, Bailey M, McGlade D, et al. Effect of donor preservation solution and survival in lung transplantation. J Heart Lung Transplant.2010 Dec 3.
    3. Kuntz CL, Hadjiliadis D, Ahya VN, et al. Risk factors for early primary graft dysfunction after lung transplantation:a registry study. Clin Transplant. 2009;23:819-30.
    4. Ng CSH, Wan S, Yim APC, Arifi AA. Pulmonary dysfunction after cardiac surgery. Chest.2002;121:1269-77.
    5. Wan S, Yim APC, Ng CSH, et al. Systematic organ protection in coronary artery surgery with or without cardiopulmonary bypass. J Card Surg 2002;17:529-35.
    6. Allison RC, Kyle J, Adkins WK, et al. Effect of ischemia reperfusion or hypoxia reoxygenation on lung vascular permeability and resistance. J Appl Physiol. 1990:69:597-603.
    7. Jones DR, Becker RM, Hoffmann SC, et al. When does the lung die? Kfc, cell viability, and adenine nucleotide changes in the circulation-arrested rat lung. J Appl Physiol.1997:83:247-52.
    8. de Perrot M, Liu M, Waddell TK, et al. Ischemia reperfusion-induced lung injury. Am J Respi Crit Care Med.2003:167:490-511.
    9. Kowalski TF, Guidotti S, Deffebach M, et al. Bronchial circulation in pulmonary artery occlusion and reperfusion. J Appl Physiol.1990:68:125-9.
    10. Christie JD, Carby M, Bag R, et al. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction part II:definition. A consensus statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2005;24:1454-1459.
    11. Ng CS,Wan S, Yim AP, et al. Pulmonary dysfunction after cardiac surgery. Chest. 2002;121:1269-1277.
    12. Shimamoto A, Pohlman TH, Shomura S, et al. Toll-like receptor 4 mediates lung ischemia-reperfusion injury. Ann Thorac Surg.2006; 82:2017-2023.
    13. Ambrosio G, Tritto I. Reperfusion injury:experimental evidence and clinical implications. Am Heart J.1999;138:S69-S75.
    14. Lansman JB. Endothelial mechanosensors, Going with the flow. Nature.1988; 331: 481-482.
    15. Zhao G, al-Mehdi AB, Fisher AB. Anoxia-reoxygenation versus ischemia in isolated rat lungs. Am J Physiol Lung Cell Mol Physiol.1997; 273:1112-1117.
    16. Ishiyama T, Dharmarajan S, Hayama M, et al. Inhibition of nuclear factor kappaB by IkappaB suppressor gene transfer ameliorates ischemia-reperfusion injury after experimental lung transplantation. J Thorac Cardiovasc Surg.2005; 130:194-201.
    17. Kaminski A, Pohl CB, Sponholz C, et al. Up-regulation of endothelial nitric oxide synthase inhibits pulmonary leukocyte migration following lung ischemia-reperfusion in mice. Am J Pathol.2004; 164:2241-2249.
    18. al-Mehdi AB, Zhao G, Dodia C, et al. Endothelial NADPH oxidase as the source of oxidants in lungs exposed to ischemia or high K-. Circ Res.1998; 83:730-737.
    19. Ng CS, Wan S, Arifi AA, et al. Inflammatory response to pulmonary ischemia-reperfusion injury. Surg Today.2006; 36:205-214.
    20. Karakurum M, Shreeniwas R, Chen J, et al. Hypoxic induction of interleukin-8 gene expression in human endothelial cells. J Clin Invest.1994;93:1564-70.
    21. de Perrot M, Sekine Y, Fischer S, et al. Interleukin-8 release during early reperfusion predicts graft function in human lung transplantation. Am J Respir Crit Care Med.2002;165:211-215.
    22. Haniuda M, Dresler CM, Mizuta T, Cooper JD, Patterson GA. Free radical-mediated vascular injury in lungs preserved at moderate hypothermia. Ann Thorac Surg 1995:60:1376-81.
    23. Lu YT, Hellewell PG, Evans TW. Ischemia-reperfusion lung injury:contribution of ischemia, neutrophils, and hydrostatic pressure. Am J Physiol.1997;273:L46-54.
    24. Qayumi AK, Nikbakht-Sangari MN, Godin DV, et al. The relationship of ischemia-reperfusion injury of transplanted lung and the upregulation of major histocompatibility complex II on host peripheral lymphocytes. J Thorac Cardiovasc Surg.1998:115:978-89.
    25. Fischer S, Maclean AA, Liu M, et al. Dynamic changes in apoptotic and necrotic cell death correlate with severity of ischemia-reperfusion injury in lung transplantation. Am J Respir Crit Care Med.2000; 162:1932-9.
    26. Lockinger A, Schutte H, Walmrath D, et al. Protection against gas exchange abnormalities by pre-aerosolized PGE1, iloprost and nitroprusside in lung ischemia-reperfusion. Transplantation.2001; 71:185-193.
    27. JurmannMJ, Dammenhayn L, Schaefers HJ, et al. Pulmonary reperfusion injury: evidence for oxygen-derived free radical mediated damage and effects of different free radical scavengers. Eur J Cardio thorac Surg.2990; 4:665-670.
    28. Eppinger MJ, Jones ML, Deeb GM, et al. Pattern of injury and the role of neutrophils in reperfusion injury of rat lung. J Surg Res.1995; 58:713-718.
    29. Eppinger MJ, Deeb GM, Bolling SF, et al. Mediators of ischemia-reperfusion injury of rat lung. Am J Pathol.1997;150:1773-1784.
    30. Moore TM, Khimenko P, Adkins WK, et al. Adhesion molecules contribute to ischemia and reperfusion-induced injury in the isolated rat lung. J Appl Physiol.1995; 78:2245-2252.
    31. Ng CS.Wan S, Yim AP, Arifi AA. Pulmonary dysfunction after cardiac surgery. Chest.2002; 121:1269-1277.
    32. Novick RJ, Gehman KE, Ali IS, et al. Lung preservation:the importance of endothelial and alveolar type Ⅱ cell integrity. Ann Thorac Surg.1996; 62:302-314.
    33. Fievers HH, Freund-Kaas C, Eleftheriadis S, et al. Lung protection during total cardiopulmonary bypass by isolated lung perfusion:preliminary results of a novel perfusion strategy. Ann Thorac Surg.2002; 74:1167-1172.
    34. Stammberger U, Gaspert A, Hillinger S, et al. Apoptosis induced by ischemia and reperfusion in experimental lung transplantation. Ann Thorac Surg.2000; 69: 1532-6.
    35. Hamvas A, Palazzo R, Kaiser L, et al. Inflammation and oxygen free radical formation during pulmonary ischemia-reperfusion injury. J Appl Physiol. 1992;72:621-8.
    36. Eckenhoff RG, Dodia C, Tan Z, et al. Oxygen-dependent reperfusion injury in the isolated rat lung. J Appl Physiol.1992;72:1454-60.
    37. Eppinger MJ, Ward PA, Jones ML, et al. Disparate effects of nitric oxide on lung ischemia-reperfusion injury. Ann Thorac Surg.1995;60:1169-75.
    38. Khimenko PL, Taylor AE. Segmental microvascular permeability in ischemia-reperfusion injury in rat lung. Am J Physiol.1999; 276:958-60.
    39. Soccal PM, Gasche Y, Pache JC, et al. Matrix metalloproteinases correlate with alveolar-capillary permeability alteration in lung ischemia-reperfusion injury. Transplantation.2000; 70:998-1005.
    40. Okada K, Fujita T, Minamoto K, et al. Potentiation of endogenous fibrinolysis and rescue from lung ischemia/reperfusion injury in interleukin (IL)-10-reconstituted IL-10 null mice. J Biol Chem.2000; 275:21468-76.
    41. Katz A, Oldham KT, Guice KS, et al. Oxidized glutathione as a marker of ischemia reperfusion associated with single lung transplantation. J Am Coll Surg 1995; 180: 25-32.
    42. Cardella JA, Keshavjee SH, Bai XH, et al. Increased expression of nitric oxide synthase in human lung transplants after nitric oxide inhalation. Transplantation. 2004; 77:886-90.
    43. Featherstone RL, Chambers DJ, Kelly FJ. Comparison of phosphodiesterase inhibitors of differing isoenzyme selectivity added to St. Thomas' hospital cardioplegic solution used for hypothermic preservation of rat lungs. Am J Respir Crit Care Med.2000;162:850-6.
    44. Kim JD, Baker CJ, Danto SI, et al. Modulation of pulmonary Na+ pump gene expression during cold storage and reperfusion. Transplantation.2000; 70: 1016-20.
    45. Gilmont RR, Dardano A, Engle JS, et al. TNF-alpha potentiates oxidant and reperfusion-induced endothelial cell injury. J Surg Res.1996; 61:175-182.
    46. StruberM, Hirt SW, Cremer J, et al. Surfactant replacement in reperfusion injury after clinical lung transplantation. Intensive Care Med.1999; 25:862-864.
    47. Fischer S, MacLean AA, Liu M, et al. Dynamic changes in apoptotic and necrotic cell death correlate with severity of ischemia-reperfusion injury in lung transplantation. Am J Respir Crit Care Med.2000; 162:1932-1939.
    48. Kuhnle GE, Reichenspurner H, Lange T, et al. Micro hemodynamics and leukocyte sequestration after pulmonary ischemia and reperfusion in rabbits. J Thorac Cardiovasc Surg 1998;115:937-944.
    49. Kuratani T, Matsuda H, Sawa Y, et al. Experimental study in a rabbit model of ischemia-reperfusion lung injury during cardiopulmonary bypass. J Thorac Cardiovasc Surg.1992; 103:564-568.
    50. Hearse DJ, Maxwell L, Saldanha C, et al. The myocardial vasculature during ischemia and reperfusion:a target for injury and protection. J Mol Cell Cardiol.1993; 25:759-800.
    51. Kennedy TP, Rao NV, Hopkins C, et al. Role of reactive oxygen species in reperfusion injury of the rabbit lung. J Clin Invest.1989; 83:1326-1335.
    52. von Wichert P. Studies on the metabolism of ischemic rabbit lungs. Conclusions for lung transplantation. J Thorac Cardiovasc Surg.1972; 63:285-291.
    53. Oens AL, Champion HC, Claeys MJ, et al. High-dose folic acid pretreatment blunts cardiac dysfunction during ischemia coupled to maintenance of high-energy phosphates and reduces postreperfusion injury. Circulation.2008; 117:1810-1819.
    54. Shoji T, Omasa M, Nakamura T, et al. Mild hypothermia ameliorates lung ischemia reperfusion injury in an ex vivo rat lung model. Eur Surg Res.2005; 37:348-353.
    55. Esme H, Fidan H, Koken T, Solak O. Effect of lung ischemia-reperfusion on oxidative stress parameters of remote tissues. Eur J Cardiothorac Surg.2006; 29: 294-298.
    56. Boyle EM Jr, Canty TG Jr, Morgan EN, et al. Treating myocardial ischemia-reperfusion injury by targeting endothelial cell transcription. Ann Thorac Surg.1999; 68:1949-1953.
    57. Chen Q, Camara AK, Stowe DF, et al. Modulation of electron transport protects cardiac mitochondria and decreases myocardial injury during ischemia and reperfusion. Am J Physiol Cell Physiol.2007; 292:137-147.
    58. Brookes PS, Yoon Y, Robotham JL, et al. Calcium, ATP, and ROS:a mitochondrial love-hate triangle. Am J Physiol Cell Physiol.2004; 287:817-833.
    59. Finucane DM, Bossy-Wetzel E, Waterhouse NJ, et al. Bax-induced caspase activation and apoptosis via cytochrome crelease from mitochondria is inhibitable by Bcl-xL. J Biol Chem.1999; 274:2225-2233.
    60. Danial NN, Korsmeyer SJ. Cell death:critical control points. Cell.2004; 116:205-219
    61. Borutaite V, Jekabsone A, Morkuniene R, et al. Inhibition of mitochondrial permeability transition prevents mitochondrial dysfunction, cytochrome c release and apoptosis induced by heart ischemia. J Mol Cell Cardiol.2003; 35:357-366.
    62. Kennedy TP, Rao NV, Hopkins C, et al. Role of reactive oxygen species in reperfusion injury of the rabbit lung. J Clin Invest.1989; 83:1326-1335.
    63. Allison RC, Kyle J, Adkins WK, et al. Effect of ischemia reperfusion or hypoxia reoxygenation on lung vascular permeability and resistance. J Appl Physiol.1990; 69:597-603.
    64. Lynch MJ, Grum CM, Gallagher KP, et al. Xanthine oxidase inhibition attenuates ischemic-reperfusion lung injury. J Surg Res.1988; 44:538-544.
    65. Kinnula VL, Sarnesto A, Heikkila L, et al. Assessment of xanthine oxidase in human lung and lung transplantation. Eur Respir J.1997; 10:676-680.
    66. Fisher AB. Reactive oxygen species and cell signaling with lung ischemia. Undersea Hyperb Med.2004; 31:97-103.
    67. Al-Mehdi AB, Zhao G, Dodia C, et al. Endothelial NADPH oxidase as the source of oxidants in lungs exposed to ischemia or high K-. Circ Res.1998; 83:730-737.
    68. Fisher AB, al-Mehdi AB, Manevich Y. Shear stress and endothelial cell activation. Crit Care Med.2002; 30:192-197.
    69. Zhang Q, Matsuzaki I, Chatterjee S, et al. Activation of endothelial NADPH oxidase during normoxic lung ischemia is KATP channel dependent. Am J Physiol Lung Cell Mol Physiol.2005; 289:954-961.
    70. Sherman TS, Chen Z, Yuhanna IS, et al. Nitric oxide synthase isoform expression in the developing lung epithelium. Am J Physiol Lung Cell Mol Physiol.1999; 276: 383-390.
    71. Ghafourifar P, Schenk U, Klein SD, et al. Mitochondrial nitricoxide synthase stimulation causes cytochrome c release from isolated mitochondria. Evidence for intramitochondrial peroxynitrite formation. J Biol Chem.1999; 274:31185-31188.
    72. HickeyMJ, Sharkey KA, Sihota EG, et al. Inducible nitric oxide synthase-deficient mice have enhanced leukocyte-endothelium interactions in endotoxemia. FASEB.1997; 11:955-964.
    73. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol.2003; 552:335-344.
    74. Wickersham NE, Johnson JJ, Meyrick BO, et al. Lung ischemia-reperfusion injury in awake sheep:protection with verapamil. J Appl Physiol.1991; 71:1554-1562.
    75. Clark SC. Lung injury after cardiopulmonary bypass. Perfusion.2006; 21:225-228.
    76. Ross SD, Tribble CG, Gaughen JR Jr, et al. Reduced neutrophil infiltration protects against lung reperfusion injury after transplantation. Ann Thorac Surg.1999; 67: 1428-1433.
    77. Fischer S, Cassivi SD, Xavier AM, et al. Cell death in human lung transplantation: apoptosis induction in human lungs during ischemia and after transplantation. Ann Surg.2000; 231:424-431.
    78. Saelens X, Festjens N, Vande Walle L, et al. Toxic proteins released from mitochondria in cell death. Oncogene.2004; 23:2861-2874.
    79. Beere HM. "The stress of dying":the role of heat shock proteins in the regulation of apoptosis. J Cell Sci.2004; 117:2641-2651.
    80. Buccellato LJ, Tso M, Akinci OI, et al. Reactive oxygen species are required for hyperoxia-induced Bax activation and cell death in alveolar epithelial cells. J Biol Chem.2004; 279:6753-6760.
    81. Zhang X, Shan P, Alam J, et al. Carbon monoxide modulates Fas/Fas ligand, caspases, and Bcl-2 family proteins via the p38alpha mitogen-activated protein kinase pathway during ischemia-reperfusion lung injury. J Biol Chem.2003; 278: 22061-22070.
    82. Ibertine KH, Soulier MF, Wang Z, et al. Fas and fas ligand are up-regulated in pulmonary edema fluid and lung tissue of patients with acute lung injury and the acute respiratory distress syndrome. Am J Pathol.2002; 161:1783-1796.
    83. Fischer S, MacLean AA, Liu M, et al. Dynamic changes in apoptotic and necrotic cell death correlate with severity of ischemia-reperfusion injury in lung transplantation. Am J Respir Crit Care Med.2000; 162:1932-1939.
    84. Novick RJ, Gehman KE, Ali IS, et al. Lung preservation:the importance of endothelial and alveolar type Ⅱ cell integrity. Ann Thorac Surg.1996; 62:302-314.
    85. Zhang X, Shan P, Alam J, et al. Carbon monoxide differentially modulates STAT1 and STAT3 and inhibits apoptosis via a phosphatidylinositol 3-kinase/Akt and p38 kinase-dependent STAT3 pathway during anoxia-reoxygenation injury. J Biol Chem. 2005;280:8714-8721.
    86. Krishnadasan B, Naidu BV, Byrne K, et al. The role of proinflammatory cytokines in lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg.2003; 125:261-272.
    87. Rizzo V, Mclntosh DP, Oh P, et al. In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association. J Biol Chem.1998; 273:34724-34729.
    88. Ross SD, Kron IL, Gangemi JJ, et al. Attenuation of lung reperfusion injury after transplantation using an inhibitor of nuclear factor-KB. Am J Physiol Lung Cell Mol Physiol.2000; 279:528-536.
    89. Maus UA, Waelsch K, Kuziel WA, et al. Monocytes are potent facilitators of alveolar neutrophil emigration during lung inflammation:role of the CCL2-CCR2 axis. J Immunol.2003; 170:3273-3278.
    90. Zhao M, Fernandez LG, Doctor A, et al. Alveolar macrophage activation is a key initiation signal for acute lung ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol.2006; 291:1018-1026.
    91. de Perrot M, Sekine Y, Fischer S, et al. Interleukin-8 release during early reperfusion predicts graft function in human lung transplantation. Am J Respir Crit Care Med.2002; 165:211-215.
    92. Fisher AJ, Donnelly SC, Hirani N, et al. Elevated levels of interleukin-8 in donor lungs is associated with early graft failure after lung transplantation. Am J Respir Crit Care Med.2001; 163:259-265.
    93. Khimenko PL, Bagby GJ, Fuseler J, et al. Tumor necrosis factor-alpha in ischemia and reperfusion injury in rat lungs. J Appl Physiol.1998; 85:2005-2011.
    94. Abe A, Hiraoka M, Wild S, et al. Lysosomal phospholipase A2 is selectively expressed in alveolar macrophages. J Biol Chem.2004; 279:42605-42611.
    95. Kitsiouli E, Nakos G, LekkaME. Phospholipase A2 subclasses in acute respiratory distress syndrome. Biochim Biophys Acta.2009; 1792:941-953.
    96. Palace GP, Horgan MJ, Malik AB. Generation of 5-lipoxygenase metabolites following pulmonary reperfusion in isolated rabbit lungs. Prostaglandins.1992; 43: 339-349.
    97. Sunose Y, Takeyoshi I, Tsutsumi H, et al. Effects of FK3311 on pulmonary ischemia-reperfusion injury in a canine model. J Surg Res.2001; 95:167-173.
    98. Miotla JM, Jeffery PK, Hellewell PG. Platelet-activating factor plays a pivotal role in the induction of experimental lung injury. Am J Respir Cell Mol Biol.1998;18: 197-204.
    99. Stammberger U, Carboni GL, Hillinger S, et al. Combined treatment with endothelin- and PAF-antagonists reduces posttransplant lung ischemia/reperfusion injury. J Heart Lung Transplant.1999; 18:862-868.
    100. Shaw MJ, Shennib H, Bousette N, et al. Effect of endothelin receptor antagonist on lung allograft apoptosis and NOSII expression. Ann Thorac Surg.2001; 72: 386-390.
    101. Okada M, Yamashita C, Okada M, et al. Contribution of endothelin-1 to warm ischemia/reperfusion injury of the rat lung. Am J Respir Crit Care Med.1995; 152: 2105-2110.
    102. Qayumi AK, English JE, Duncan S, et al. Extended lung preservation with platelet-activating factor-antagonist TCV-309 in combina-tion with prostaglandin E1. J Heart Lung Transplant.1997; 16:946-955.
    103. de Perrot M, Fischer S, Liu M, et al. Prostaglandin E1 protects lung transplants from ischemia-reperfusion injury:a shift from pro- to anti-inflammatory cytokines. Transplantation.2001; 72:1505-1512.
    104. Qiu W, Gu H, Zheng L, et al. Pretreatment with edaravone reduces lung mitochondrial damage in an infant rabbit ischemia-reperfusion model. J Pediatr Surg.2008; 43:2053-2060.
    105. Halestrap AP, Connern CP, Griffiths EJ, et al. Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury. Mol Cell Biochem.1997; 174:167-172.
    106. Li N, Ragheb K, Lawler G, et al. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem.2003; 278:8516-8525.
    107. Adkins WK, Taylor AE. Role of xanthine oxidase and neutrophils in ischemia-reperfusion injury in rabbit lung. J Appl Physiol.1990; 69:2012-2018.
    108. al-Mehdi AB, Shuman H, Fisher AB. Intracellular generation of reactive oxygen species during nonhypoxic lung ischemia. Am J Physiol Lung Cell Mol Physiol. 1997;272:294-300.
    109. Zhu C, Bilali A, Georgieva GS, et al. Salvage of nonischemic control lung from injury by unilateral ischemic lung with apocynin, a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, in isolated perfused rat lung. Transl Res.2008; 152:273-282.
    110. Heumuller S, Wind S, Barbosa-Sicard E, et al. Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension.2008; 51:211-217.
    111. Morris CR, Morris SM Jr, Hagar W, et al. Arginine therapy:a new treatment for pulmonary hypertension in sickle cell disease? Am J Respir Crit Care Med.2003; 168:63-69.
    112. Suda T, Mora BN, D'Ovidio F, et al. In vivo adenovirus-mediated endothelial nitric oxide synthase gene transfer ameliorates lung allograft ischemia-reperfusion injury. J Thorac Cardiovasc Surg.2000; 119:297-304.
    113. Moens AL, Takimoto E, Tocchetti CG, et al. Reversal of cardiac hypertrophy and fibrosis from pressure overload by tetrahydrobiopterin:efficacy of recoupling nitric oxide synthase as a therapeutic strategy. Circulation.2008; 117:2626-2636.
    114. Girgis RE, Li D, Zhan X, et al. Attenuation of chronic hypoxic pulmonary hypertension by simvastatin. Am J Physiol Heart Circ Physiol.2003; 285:938-945, 2003.
    115. Sud N, Sharma S, Wiseman DA, et al. Nitric oxide and superoxide generation from endothelial NOS:modulation by HSP90. Am J Physiol Lung Cell Mol Physiol.2007; 293:1444-1453.
    116. Kan WH, Hsu JT, Schwacha MG, et al. Estrogen ameliorates trauma-hemorrhage-induced lung injury via endothelial nitric oxide synthase-dependent activation of protein kinase G. Ann Surg.2008; 248:294-302.
    117. Ovechkin AV, Lominadze D, Sedoris KC, et al. Inhibition of inducible nitric oxide synthase attenuates platelet adhesion in subpleural arterioles caused by lung ischemia-reperfusion in rabbits. J Appl Physiol.2005; 99:2423-2432.
    118. Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature.1998; 391:82-86.
    119. Chiang CH, Pai HI, Liu SL. Ventilator-induced lung injury (VILI) promotes ischemia/reperfusion lung injury (I/R) and NF-kappaB antibody attenuates both injuries. Resuscitation.2008; 79:147-154.
    120. Ross SD, Kron IL, Gangemi JJ, et al. Attenuation of lung reperfusion injury after transplantation using an inhibitor of nuclear factor-KB. Am J Physiol Lung Cell Mol Physiol.2000; 279:528-536.
    121. Krishnadasan B, Naidu B, Rosengart M, et al. Decreased lung ischemia-reperfusion injury in rats after preoperative administration of cyclosporine and tacrolimus. J Thorac Cardiovasc Surg.2002; 123:756-767.
    122. IshiiM, Suzuki Y, Takeshita K, et al. Inhibition of c-Jun NH2-terminal kinase activity improves ischemia/reperfusion injury in rat lungs. J Immunol.2004; 172: 2569-2577.
    123. Bennett BL, Sasaki DT, Murray BW, et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci.2001; 98:13681-13686.
    124. Naidu BV, Krishnadasan B, Farivar AS, et al. Early activation of the alveolar macrophage is critical to the development of lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg.2003; 126:200-207.
    125. Naidu BV, Krishnadasan B, Byrne K, et al. Regulation of chemokine expression by cyclosporine A in alveolar macrophages exposed to hypoxia and reoxygenation. Ann Thorac Surg.2002; 74:899-905.
    126. Zhao M, Fernandez LG, Doctor A, et al. Alveolar macrophage activation is a key initiation signal for acute lung ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol.2006; 291:1018-1026.
    127. Maus UA, Waelsch K, Kuziel WA, et al. Monocytes are potent facilitators of alveolar neutrophil emigration during lung inflammation:role of the CCL2-CCR2 axis. J Immunol.2003; 170:3273-3278.
    128. Goto T, Ishizaka A, Kobayashi F, et al. Importance of tumor necrosis factor-alpha cleavage process in post-transplantation lung injury in rats. Am J Respir Crit Care Med.2004; 170:1239-1246.
    129. Krishnadasan B, Naidu BV, Byrne K, et al. The role of proinflammatory cytokines in lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg.2003; 125:261-272.
    130. Clark SC. Lung injury after cardiopulmonary bypass. Perfusion.2006; 21:225-228.
    131. Ege T, Arar C, Canbaz S, et al. The importance of aprotinin and pentoxifylline in preventing leukocyte sequestration and lung injury caused by protamine at the end of cardiopulmonary bypass surgery. Thorac Cardiovasc Surg.2004; 52:10-15.
    132. Thabut G, Brugiere O, Leseche G, et al. Preventive effect of inhaled nitric oxide and pentoxifylline on ischemia/reperfusion injury after lung transplantation. Transplantation.2001; 71:1295-1300.
    133. Sage E, Mercier O, Van den Eyden F, et al. Endothelial cell apoptosis in chronically obstructed and reperfused pulmonary artery. Respir Res.2008; 9:19.
    134. Friedrich I, Spillner J, Lu EX, et al. Ischemic pre-conditioning of 5 min but not of 10 minutes improves lung function after warm ischemia in a canine model. J Heart Lung Transplant.2001; 20:985-995.
    135. Luh SP, Kuo PH, Kuo TF, et al. Effects of thermal preconditioning on the ischemia-reperfusion-induced acute lung injury in minipigs. Shock.2007; 28: 615-622.
    136. Zhang SX, Miller JJ, Gozal D, et al. Whole-body hypoxic preconditioning protects mice against acute hypoxia by improving lung function. J Appl Physiol.2004; 96: 392-397.
    137. Featherstone RL, Chambers DJ, Kelly FJ. Ischemic preconditioning enhances recovery of isolated rat lungs after hypothermic preservation. Ann Thorac Surg. 2000; 69:237-242.
    138. Hearse DJ, Maxwell L, Saldanha C, et al. The myocardial vasculature during ischemia and reperfusion:a target for injury and protection. J Mol Cell Cardiol. 1993;25:759-800.
    139. Hopkinson DN, Bhabra MS, Hooper TL. Pulmonary graft preservation:a worldwide survey of current clinical practice. J Heart Lung Transplant.1998; 17:525-531.
    140. Kaminski A, Kasch C, Zhang L, et al. Endothelial nitricoxide synthase mediates protective effects of hypoxic preconditioning in lungs. Respir Physiol Neurobiol. 2007; 155:280-285.
    141. Keenan RJ, Griffith BP, Kormos RL, et al. Increased perioperative lung preservation injury with lung procurement by Euro-Collins solution flush. J Heart Lung Transplant.1991,10:650-655.
    142. de Perrot M, Liu M, Waddell TK, et al. Ischemia-reperfusion induced lung injury. Am J Respir Crit Care Med.2003; 167:490-511,2003
    143. Keshavjee S, Davis RD, Zamora MR, et al. A randomized, placebo-controlled trial of complement inhibition in ischemia-reperfusion injury after lung transplantation in human beings. J Thorac Cardiovasc Surg.2005; 129:423-428.
    144. Wittwer T, Grote M, Oppelt P, et al. Impact of PAF antagonist BN 52021 (Ginkolide B) on post-ischemic graft function in clinical lung transplantation. J Heart Lung Transplant.2001; 20:358-363.
    145. Stammberger U, Carboni GL, Hillinger S, et al. Combined treatment with endothelin- and PAF-antagonists reduces posttransplant lung ischemia/reperfusion injury. J Heart Lung Transplant.1999; 18:862-868.
    146. Kermeen FD, McNeil KD, Fraser JF, et al. Resolution of severe ischemia-reperfusion injury post-lung transplantation after administration of endobronchial surfactant. J Heart Lung Transplant.2007; 26:850-856.
    147. StruberM, Hirt SW, Cremer J, et al. Surfactant replacement in reperfusion injury after clinical lung transplantation. Intensive Care Med.1999; 25:862-864.
    148. Kan WH, Hsu JT, Schwacha MG, et al. Estrogen ameliorates trauma-hemorrhage-induced lung injury via endothelial nitric oxide synthase-dependent activation of protein kinase G. Ann Surg.2008; 248:294-302. 149. Suda T, D'Ovidio F, Daddi N, et al. Recipient intramuscular gene transfer of active transforming growth factor-beta1 attenuates acute lung rejection. Ann Thorac Surg.2001; 71:1651-1656.
    149. Suda T, D'Ovidio F, Daddi N, et al. Recipient intramuscular gene transfer of active transforming growth factor-beta1 attenuates acute lung rejection. Ann Thorac Surg. 2001;71:1651-1656.
    150. Fischer S, Liu M, MacLean AA, et al. In vivo transtracheal adenovirus-mediated transfer of human interleukin-10 gene to donor lungs ameliorates ischemia-reperfusion injury and improves early posttransplant graft function in the rat. Hum Gene Ther. 2001; 12:1513-1526.
    151. Suda T, Mora BN, D'Ovidio F, et al. In vivo adenovirus-mediated endothelial nitric oxide synthase gene transfer ameliorates lung allograft ischemia-reperfusion injury. J Thorac Cardiovasc Surg.2000; 119:297-304.
    152. de Perrot M, Fischer S, Liu M, et al. Prostaglandin E1 protects lung transplants from ischemia-reperfusion injury:a shift from pro- to anti-inflammatory cytokines. Transplantation.2001; 72:1505-1512.
    153. Okada Y, Marchevsky AM, Kass RM, et al. A stable prostacyclin analog, beraprost sodium, attenuates platelet accumulation and preservation-reperfusion injury of isografts in a rat model of lung transplantation. Transplantation.1998; 66: 1132-1136.
    154. Otterbein LE, Choi AM. Heme oxygenase:colors of defense against cellular stress. Am J Physiol Lung Cell Mol Physiol.2000; 279:1029-1037.