兔窦房结组织急性损伤后电生理功能与细胞形态结构改变及缝隙连接蛋白表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:病态窦房结综合征(简称病窦综合征)是临床常见疾病,对人类健康危害很大。目前病窦综合征确切的发病机理尚不清楚,探讨病窦综合征的发病机制,寻求可能的预防及根治措施,是心血管疾病领域中研究的重要内容之一。缝隙连接是心肌细胞间特化的连接方式之一,而缝隙连接蛋白(connexin, Cx)是构成细胞缝隙连接的分子基础,心肌组织中存在大量不同种类的Cx,其介导了心肌细胞间电冲动及化学信号的传递,保证不同心肌细胞间电、机械偶联正常进行,从而维持正常的心脏功能。哺乳动物心脏组织中Cx主要有Cx45、Cx43及Cx40三种。研究表明,Cx的病变与心脏疾病尤其是心律失常关系密切,但有关兔窦房结组织损伤后细胞Cx的表达如何?目前尚未见文献报道。本研究用甲醛湿敷兔窦房结组织后,观察兔窦房结电生理功能变化、细胞形态结构病变及细胞Cx45、Cx43表达的变化规律,探讨用甲醛湿敷法建立兔窦房结组织急性损伤模型的可行性。
    方法:取健康成年兔60只,随机分为对照组、损伤后2h、1w、2w、3w及4w组(每组10只)。麻醉后固定,从胸骨正中偏右2~3mm开胸,暴露心脏,用棉签浸湿20%甲醛(对照组用生理盐水)后湿敷兔窦房结区,建立兔窦房结组织急性损伤模型。自麻醉后至实验结束持续观测心率(heart rate, HR)及心律变化;对照组、损伤后2h组兔在模型建立后2h而其余实验组在相应时间点再次麻醉后,经右颈外静脉插入自制3F四极电极导管至右心房,行窦房结功能测定(SNRT、CSNRT及SACT)。电生理检查完毕即处死动物快速切取窦房结组织并分别固定,在光镜、电镜下观察窦房结细胞形态结构的变化,用TUNEL法检测窦房结细胞凋亡情况,用免疫组化SP法检测窦房结细胞Cx45、Cx43的表达。
    结果:
    1. 对照组兔窦房结组织经生理盐水湿敷前、后其HR及心律均无明显变化。各实验组兔窦房结组织经甲醛湿敷后,HR均明显下降,且与对照组相比有显著性差异(P<0.05);实验组中有80%兔于湿敷后出现窦性停搏、交界性逸搏心律及心房颤动。
    2. 实验组兔窦房结组织经甲醛湿敷后测量SNRT、CSNRT及SACT,与对照组比
    
    
    较,均明显延长,有显著性差异(P<0.05)。
    3. 实验组兔窦房结组织经甲醛湿敷后,光镜下观察:早期可见窦房结细胞肿胀、粒细胞浸润及局灶性坏死,后期则可见部分胶原纤维组织增生。电镜下观察:可见窦房结细胞基质疏松变淡,线粒体肿胀及嵴变短、变少甚至消失,内质网解体、离断及空泡变,核膜极不规整,肌原纤维断裂及核仁裂解。
    4. 对照组兔窦房结组织中仅见少量的TUNEL阳性细胞。各实验组兔窦房结组织中均见较多的TUNEL阳性细胞,其细胞凋亡率与对照组相比有显著性差异(P<0.01)。
    5. 兔窦房结细胞Cx45的表达主要位于窦房结中央区细胞膜表面,表达的Cx45呈点状散乱分布;而兔窦房结细胞Cx43的表达位于窦房结周边区心房肌细胞闰盘处,窦房结中央区细胞则未见其表达。
    6.各实验组兔窦房结细胞Cx45的IOD值与对照组相比均显著性减少(P<0.05);各实验组兔窦房结周边区心房肌细胞Cx43的IOD值与对照组相比则均无显著性差异(P>0.05)。
    结论:
    1. 采用甲醛湿敷法建立兔窦房结组织急性损伤模型方法可靠,操作简便,重复性好,可以满足实验要求。
    2. 用甲醛湿敷兔窦房结区可致窦房结电生理功能发生持续性改变,心电图表现为HR减慢、窦性停搏伴交界性逸搏心律及心房颤动等。此特点与病窦综合征患者的心电图改变相似。
    3. 甲醛湿敷兔窦房结组织所致的窦房结损伤范围局限,且为不可逆性损伤,早期以细胞坏死及细胞凋亡为主,后期主要表现为纤维组织增生,同时伴有Cx45表达下降,这些改变系兔窦房结电生理异常的病理学基础。
    4. 用甲醛湿敷兔窦房结组织所致的电生理功能改变与细胞形态学异常具有良好的相关性,该方法已形成兔窦房结细胞慢性持续性损伤,是较理想的病窦综合征动物模型方法。
Background and objective: Sick sinoatrial node syndrome (SSS) is a common cardiovascular disease which is greatly harmful to human health. To elucidate the pathogenesis of SSS and to find out the possible measures of prevention and radical cure is important in cardiovascular field. Gap junction whose molecular basis is made up of connexin (Cx) is one of the specialized intercellular connection manners. There are many kinds of Cxs in myocardial cells which are crucial for guiding electric and chemical signals amongst myocardial cells and guarantee normal electric-machinery coupling to maintain normal cardiac function. There are different connexins in different mammals as well as one of mammal with different connexins. There are three kinds of connexins (Cx45, Cx43 and Cx40) in mammalian heart. Up to date, there are many reports on the lesions of connexins in myocardial diseases especially arrhythmias, but there are few reports on connexin changes in rabbit sinoatrial node cells when damaged. The purpose of our investigation is to observe the dynamic regulation of electrophysiologic function, cell morphologic changes and expression of connexin of rabbit as damaged by formaldehyde wet dressing method, and discuss the feasibility of establishing the acute damage model of rabbit sinoatrial node by formaldehyde wet dressing method.
    Methods: Sixty rabbits were randomly divided into 6 groups (10 for each group): the control group and groups of after operation 2h, 1w, 2w, 3w and 4w. The rabbits were anesthetized with sodium pentobarbital and the chest was opened through the right lateral line away 2 to 3 millimeters from the sternum. The sinoatrial node area of rabbits was damaged by 20% formaldehyde wet dressing in the experimental groups and by saline wet dressing in the control group. 3F tetra-electrode catheter was inserted into the right atrium through right external jugular vein in the control group and 2h group after wet dressing for 2h, in the other groups at the corresponding times of re-operation respectively; electrocardiogram of body surface and endocardium were recorded synchronically; then the right atrium was stimulated, and sinus node recovery time (SNRT), corrected SNRT and sino-atrial conduction time (SACT) were measured respectively. The rabbits were sacrificed
    
    
    after electrophysiological study and the tissue of SAN was cut and fixed respectively. Light and electronic microscope was used to examine the pathological changes of SAN cells. Apoptosis of sinoatrial node cells was detected by TUNEL staining and expression of Cx45 and Cx43 detected by immunohistochemical staining.
    Results:
    1. The heart rate (HR) and cardiac rhythm of the control group dressed by saline didn’t change distinctly while that of the experimental groups dressed by formaldehyde were slower than before dressing. The change of HR in experimental groups was significant compared to that of control group (P<0.05). Sinus arrest, junctional escape rhythm and atrial fibrillation were present in 80% rabbits of experimental groups.
    2. The SNRT、corrected SNRT and SACT of experimental groups were all significantly longer than those of the control group (P<0.05) .
    3. There were cell swelling, granulocytic cell infiltration and focal necrosis found by light microscopy in experimental groups at the early stage, and late part of collagen fiber proliferation was found. Under electron microscope, the sinoatrial nodal matrix became sparse and lightly-stained, and mitochondria swelling, cristae disorganization or break, endoplasmic reticulum disintegration or break as well as the nucleolus splitting was also found in experimental groups.
    4. There were few TUNEL positive cells in sinoatrial node of rabbits in the control group while there were lots of TUNEL positive cells in sinoatrial nodes of all experimental groups. The ratios of apoptosis in all experimental groups were significantly higher than that of the control group (P<0.01).
    5. The Cx45 of sinoatrial node cells of rabbits expressed in the center of the sinoatrial nodal area wa
引文
Langenfeld H, Grium W, Maisch B, et al. Atrial fibrillation and embolic complications in paced patients. Pacing Clin Electrophsiol 1988, 11 (11 Pt 2): 1667-1672
    Otaki M, Inoue T, Kaneda T, et al. Physiologic atrial cardiac pacing for the prevention of chronic atrial fibrillation associated with sick sinus. ASAIO J, 2002, 48(1): 110-112
    Hamer SS, Lemberg L.Digitalis excess mimicking the sick sinus syndrome. Heart Lung, 1976, 5(4): 652-656
    Lenzinger HR, Dolder M, Gertsch M. Sinusknotensyndrom (sick sinus syndrome). Schweiz Med Wochenschr, 1976, 106(44): 1498-1503
    Nishikawa T, Sekiguchi M, Hasumi M, et al. Histopathologic findings of endomyocardial biopsies in pediatric patients with arrhythmias or conduction disturbances. Heart Vessesl Suppl, 1990, 524-527
    Alboni P, Baggioni GF, Scarfo S, et al. Role of sinus node artery disease in sick sinus syndrome in inferior wall acute myocardial infarction. Am J Cardiol, 1991, 67 (15): 1180-1184
    James TN, Kawamura K, Meijiler FL, et al. Anatomy of the sinus node, AV node, and His bundle of the sperm whale (Physeter macrocephalus), with a note on the absence of an os cordis. Anat Rec, 1995, 242 (3): 355-373
    Ishikawa S, Sawada K, Tanahashi Y, et al. Experimental studies on sick sinus syndrome: Relationshiip of exent of right atrial lesions to subsidiary pacemaker shift and its function. Am Heart J, 1983, 105: 593-602
    葛郁芝,熊华锋,张景明等。病态窦房结综合征实验研究。中华心血管病杂志,1986, 14 (4): 193-197
    陈元禄,吴伊丽,杨昆等。窦房结功能损伤模型的方法学和电生理特征。天津医科大学学报,2000, 6 (1): 42-44
    蒋戈利,马津全。针刺对慢性实验性病窦电生理的影响。上海针灸杂志,1996, 15 (2): 32-33
    王鹿,施雪筠,席时芳。兔实验性病窦模型制作及实验观察。新疆医学,1997, 27
    
    
    (2): 73-74
    Sealy WC, Bache RJ, Seaber AV, et al. The atrial pacemaking site after exclusion of sinoatrial node. J Thoracic Cardiovasculer Surg, 1973, 65 (6): 841-850
    Trabka-Janik E, Coombs W, Lemanski LF, et al. Immunohistochemical localization of gap junction protein channels in hamster sinoatrial node in correlation with electrophysiologic mapping of the pacemaker region. J Cardiovasc Electrophysiol, 1994, 5 (2): 125-137
    Verheule S, van-Kempen MJ, Postma S, et al. Gap junctions in the rabbit sinoatrial node. Am J Physiol Heart Circ Physiol, 2001, 280 (5): H2103-2115
    Saffitz JE, Green KG, Schuessler RB, et al. Structural determinants of slow conduction in the canine sinus node. J Cardiovasc Electrophysiol, 1997, 8 (7): 738-744
    Honjo H, Boyett MR, Coppen SR, et al. Heterogeneous expression of connexins in rabbit sinoatrial node cells: correlation between connexin isotype and cell size, Cardiovasc Res. 2002, 53 (1): 89-96
    陈新,孙瑞龙,王方正著。临床心电生理学和心脏起搏。第一版,北京:人民卫生出版社。1997, 277-286
    王吉耀,廖二元,胡品津著。内科学。第一版,北京:人民卫生出版社。2002,215-217
    南开大学实验动物解剖学编写组。实验动物解剖学。第一版,北京:人民教育出版社,1980,1-35
    李厚达主编。实验动物学。第二版,北京:中国农业出版社,2003年,260-262
    Lauten A. Digoxin and sinus node function in the sick-sinus syndrome. Z Kardiol, 1981, 70 (3): 176-180
    Bubinski R. Effect of dipyridamole on the function state of the atrioventricular node. Kardiol Pol, 1989, 32 (6): 334-341
    Gil R, Kornacewicz-Jach Z, Kazmierczak J, et al. Sinoatrial node in primary mitral valve prolapse. Kardiol Pol, 1990, 33(11-2): 21-27
    Shin H, Higashi S, Iseki H, et al. Superion septal approach for mitral valve surgery. Nippon Kyobu Geka Gakkai Zasshi, 1996, 44(2): 111-114
    
    Boyett M.R, Honjo H, Kodama I. The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc Res, 2000, 47(4): 658-687
    李澈主编。窦房结。第一版,北京:北京医科大学出版社。2001, 183-196
    Scherlag BJ, Lazzara R, Helfant RH. Differentiation of “A-V junction rhythms”. Circulation, 48: 304-312
    Scherf D, Blumenfeld S, Yildiz M. Experimenal studies on A-V nodal rhythm following suppression of activity of the sinus node. Am J Cardiol, 10: 234-238
    Mirowski M, Lau SH, Wit AL, et al. Ectopic right atrial rhythms: experimental and clinical data. Am Heart J, 1971, 81 (5): 666-676
    Katoh Y. An experimental study on the shift of pacemaker. Jpn Circ J, 1964, 28: 733-739
    李永华,宋治远。缺血再灌注对在体兔窦房结细胞形态学结构影响的研究。第三军医大学学报,2003, 25 (8): 676-679
    Karpawich PP, Bharati S, Roskamp JO, et al. Selective transepicardial ablation in the immature canine myocardium. J Thorac Cardiovasc Surg. 1989, 97 (6): 893-899
    驼峰,王东明,周敬群等。窦房结功能障碍时心房电活动的变化。临床心血管病杂志,2003, 19 (12): 735-737
    James TN, Bear ES. Cardiac effects of some simple aliphatic aldehydes. J Pharmacol Exp Ther, 1968, 163 (2): 300-308
    Huerta F, Pourrias B. Effects of carocainide (770207) on canine cardiac automaticity. Arch Int Pharmacodyn Ther, 1984, 268 (2): 216-224
    王炳银,楼福庆,金宏义等。非侵入性电生理测定在判断窦房结功能中的价值。中华内科杂志,1984, 23 (6): 324-328
    许树强,武泽民,史载祥等。参仙升脉液对实验性病态窦房结综合征的作用研究。中西医结合杂志,1991, 11 (11): 674-676
    Sethi KK, Jaishankar S, Balachander J, et al. Sinus node function after autonomic blockade in normals and in sick sinus syndrome. Int J Cardiol, 1984, 5 (6): 707-719
    Resh W, Feuer J, Wesley RC. Intravenous adenosine: a noninvasive diagnostic test for sick sinus syndrome. Pacing Clin Electrophysiol, 1992, 15 (11 Pt 2): 2068-2073
    
    Burnett D, Abi-Samra F, Vacek JL. Use of intravenous adenosine as a noninvasive diagnostic test for sick sinus syndrome. Am Heart J, 1999, 137 (3): 435-438
    Ishikawa T, Sumita S, Kimura K, et al. Sinus node recovery time assessment by the overdrive suppression test employing an intravenous injection of disopyramide phosphate. Europace, 2000, 2 (1): 54-59
    尉传社,张怀波,孔祥云。豚鼠心传导系统的形态学研究(I)-豚鼠窦房结房室结及房室束的光镜观察。蚌埠医学院学报,2001, 26 (1): 3-6
    尉传社,张怀波,孔祥云。豚鼠心传导系统的形态学研究(II)-豚鼠窦房结房室结的亚微结构观察。蚌埠医学院学报,2001, 26 (2):97-99
    郭志坤,孔祥云,凌风东等。兔窦房结的光镜观察。解剖学杂志,1990,13(2):104-106
    Bleeker WK, Mckaay AJC, Masson-Rvet M, et al. Functional and morphological organization of the rabbit sinus node. Circ Res, 1980, 46 (1): 11-22
    James TN. Structure and function of the sinus node,AV node and His bundle of the human heart: part II-function. Prog Cardiovasc Dis, 2003, 45 (4): 327-360
    Opthof T, Jonge Bde, Mackaay AJC, et al. Functional and morphological organization of the guinea pig sinoatrial node comparted with rabbit sinoatrial node. J Moll Cell Cardiol, 1985, 17(6): 549-564
    Negoescu A, Lorimier P, Labat-Moleur F, et al. In situ apoptotic cell labeling by the TUNEL method: improvement and evaluation on cell preparations. J Histochem Cytochem, 1996, 44(9): 959-968
    Umemura S, Yasuda M, Osamura RY,et al. Enhancement of TdT-mediated duTP-biotin nick end-labeling (TUNEL) method using mung bean nuclease, a single-stranded DNA digestion enzyme. J Histochem Cytochem, 1996, 44(2): 125-132
    Gavrieli Y, Sherman Y,Ben-Sasson SA. Indentification of programmed cell death in situ via specific labeling of nuclear DNA fragment. J Cell Biol, 1992, 119 (3): 493-501
    Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science, 1995, 267 (5203): 1456-1462
    Kerr FR, Wylle AA, Curnl AR. Apoptosis: a basic biological phenomenon with ranging implication in tissue kinetics. Br J Cancer, 1972, 26 (4): 239-257.
    
    Wyllie AA, Kerr JFR, Corne AR. Cell death: the significance of apoptosis. Int Rer Cytol, 1980, 68: 251-206.
    Majno G, Joris I. Apoptosis, oncosis and necrosis. Am J Pathol, 1995, 146 (1): 3-15.
    Gorman A, McCarthy J, Finucane D, et al. MorphologicaL assessment of apoptosis. In: Cotter TG, Martin SJ, editors. Techniques in apoptosis. A user’s guide, London: Portland Press, 1996, 1-20
    Darzynkiewcz Z, Bruno S, Del-Bino G, et al. Features jof apoptotic cells measured by flow cytometry. Cytomtry, 1992, 13 (8): 795-808
    Itoh G, Tanura J, Suzuki M, et al. DNA fragmentation of human infracted myocardial cells demonstrasted by the nick end labeling method and DNA agarose gel etectrophoresis. Am J Pathol, 1995, 146 (6): 1325-1331
    James TN, Terasaki F, Pavlovich ER, et al. Apoptosis and pleomorphic micromitochondriosis in the sinus nodes surgically excised from five patients with the long QT syndrome. J Lab Clin Med, 1993, 122 (3): 309-323
    Stevenson WG, Perloff JK, Weiss JN, et al. Facioscapulohumeral muscular dystrophy: evidence for selective, genetic electrophsiologic cardiac involvement. J Am Coll Cardiol, 1990, 15 (2): 292-296
    Bensaid J, Vallat JM, Amsallem D, et al. Total permanent auricular paralysis. Review of the literature apropos of 109 cases. Ann Cardiol Angeiol, 1995, 44 (3): 139-145
    李永华,宋治远,张倩等。缺血再灌注对在体兔窦房结细胞凋亡影响的研究。中国心脏起搏与心电生理杂志,2002, 16 (6): 456-459
    Spach MS, Dolber PC. Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle. Evidence for electrical uncoupling of side-to-side fiber connections with increasing age. Circ Res, 1986, 58 (3): 356-371
    Van der VH, Ausma J, Rook MB, et al. Gap junction remodeling in relation to stabilization of atrial fibrillation in the goat. Cardiovasc Res, 2000, 46 (3): 476-486
    Green CR, Severs NJ. Distribution and role of gap junctions in normal myocardium and human ischaemic heart disease. Histochemistry, 1993, 99 (2): 105-120
    
    De Bakker JM, Van Capelle FJ, Janse MJ, et al. Slow conduction in the infarcted human heart: ‘Zig-Zag’ course of activation. Circulation, 1993, 88 (3): 915-926
    Peters NS, Coromilas J, Severs NJ, et al. Disturbed connexin43 gap junction distribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia. Circulation, 1997, 95 (4): 988-996
    Thomas SA, Schuessler RB, Berul CI, et al. Disparate effects of deficient expression of connexin43 on atrial and ventricular conduction: evidence for chamber-specific molecular determinants of conduction. Circulation, 1998, 97 (7): 686-691
    蔡文琴,王伯云主编。实用免疫细胞化学与核酸分子杂交技术。第一版,成都:生物科学技术出版社。1994, 8-12
    霍明章,于德洁,郝维等。犬陈旧性心肌梗死时连接蛋白43的分布。中国医学科学院学报,2001, 23 (3): 255-258
    徐振平,郭志坤,张光谋等。新生儿心肌连接蛋白43、45的表达。解剖学研究,2002, 24 (3): 177-179
    丁杰,王淑玉,刘嘉茵等。间隙连接蛋白Cx43在卵巢癌中的表达及意义。南京医科大学学报(自然科学版),2003, 23 (1): 54-55
    Goodenough DA, Goliger JA, Paul DL. Connexins, connexons, and intercellular communication. Annu Rev Biochem, 1996, 65: 475-502
    Kumar NM, Gilula NB. The gap junction communication channel. Cell, 1996, 84 (3): 381-388
    Steinberg TH. Gap junction function: the messenger and the message. Am J Pathol, 1998. 152 (4): 851-854
    Beardslee MA, Laing JG, Beyer EC, et al. Rapid turnover of connexin43 in the adult rat heart. Circ Res, 1998, 83 (6): 629-635
    Dermietzel R, Spray DC. Gap junctions in the brain: where, what type, how many and why? Trends Neurosci, 1993,16 (5): 186-192
    Gros D, Jarry GT, Velde TI, et al. Restricted distribution of connexin40, a gap junctuon proteins, in mammalian heart. Circ Res, 1994, 74 (5): 839-851
    
    Davis LM, Rodefeld ME, Green K, et al. Gap junction protein phenotypes of the human heart and conduction system. J Cardiovasc Electrophysiol, 1995, 6 (10 pt 1): 813-822
    Coppen SR, Kodama I, Boyett MR,et al. Connexin45, a major connexin of the rabbit sinoatrial node, is co-expressed with connexin43 in a restricted zone at the nodal–crista terminalis border. J Histochem Cyochem, 1999, 4 (7): 907-918
    Coppen SR, Severs NJ, Gourdic RG. Connexin45 (α6) expression delineates an extended conduction system in the embryonic and mature rodent heart. Dev Genet, 1999, 24 (1-2): 82-90
    Davis LM, Kanter HL, Beyer EC, et al. Distict gap junction protein phenotypes in cardiac tissues with disparate conduction properties. J Am Coll Cardiol, 1994, 24 (4): 1124-1132