α-甘氨酸晶体制备及其变温拉曼光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
构成地球上的生命体蛋白质有20种氨基酸,唯有甘氨酸没有手性,并且甘氨酸是最简单的氨基酸。研究甘氨酸对蛋白质结构和生物体手性的研究有重大意义。它在结晶状态上,有α、β、γ三种形态,并且以两性离子的形式存在(NH3+CH2COO?)。α-甘氨酸具有单斜结构,空间点群分别是P21/n。我们用恒温慢蒸发法制得了高纯度的α-甘氨酸单晶。
     1999年Chilcott等人发现,通常是绝缘体的α-甘氨酸,在304K左右有导电行为,但导电机理不清楚。为了了解其导电机理,本文中研究了α-甘氨酸单晶的变温拉曼光谱,发现晶体中NH3+扭曲振动模式分裂,表现为N?H(6)…O(1) (491 cm?1)和N?H(7)…O(2) (483cm?1)模式,以及CO2?摇摆模式(503 cm?1),在304K均有不连续性变化。由于α-甘氨酸晶胞中NH3+和CO2?基团构成的电偶极子在变温下重新定向,出现两性离子电荷重心变化致使晶体极化,引起晶体在304K左右发生了铁电相变。
     我们也研究了α-甘氨酸多晶粉末的变温拉曼光谱,发现它和单晶有类似的行为,NH3+扭曲振动模式分裂,并且在304K有不连续性变化。在整个α-甘氨酸晶体结构中,极化是晶体本身内在的一种性质,所以α型-甘氨酸多晶粉末在大约在304K也可能发生了铁电相变。同时发现晶格振动(162cm-1)、CH2弯曲振动、CH2扭曲振动、CH2反对称伸缩振动模式和COO -1弯曲振动、COO -1反对称伸缩振动、CN伸缩振动以及NH3+扭曲振动、NH3+对称变形模式在90-170K和308-400K两个温度区域的分裂,它们分裂的不同原因被解释。
Glycine, a biologically important compound, is the simplest and uniquely achiral among the amino acids. Investigation of glycine could be far-reaching with respect to protein structure and the origins of biochirality. In the crystalline state, glycine hasα,βandγ-polymorphs, existing as zwitterionic form (NH3+CH2COO?).α-glycine has monoclinic structure (space group symmetry P21/n) with four formula units per unit cell. High-purity single crystals ofα-glycine were grown from saturated aqueous solution ofα-glycine by slow evaporation at 277K. In 1999, Chilcott found that electrical impedance measurements of single crystal glycine revealed anomalous temperature dependence of the conductance and capacitance around 304K. This unusual electric behavior was not explained by the conduction mechanism. The present paper investigates temperature-dependent Raman spectra ofα-glycine single crystal at different temperatures. We find a discontinuous frequency variation of the NH3+ torsional mode ofα-glycine crystal around 304K, which was assumed due to the NH3+ torsion mode splitting and deformations. The electrical dipoles of NH3+CH2COO? are reoriented and the crystal had to undergo a ferroelectric transition around 304K.
     Raman spectra ofα-glycine polycrystalline powder are also studied from 90 to 400K. we found frequency variation of the NH3+ torsional mode in polycrystalline powder exhibits a similar discontinuous change around 304K. Because the polarization of a ferroelectric is an effect inherent in the entire structure of the crystal, polycrystalline powder could also undergo a ferroelectric transition around 304K. 162cm-1 ,CH2 twist ,CH2bend ,CH2 asym str, COO -1bend, COO -1asym str, CN str , NH3+ torsion and NH3+ sym def mode show splitting , the reasons of which are explained.
引文
[1]程光煦,拉曼布里渊散射,北京,科学出版社,2001、王玮、李微、薛奇、吉敏,红外光谱与Raman光谱,山东,山东科
    [4]谱,王祖铨、吴思诚编,近代物理实验(第二版),北
    [2]席时全学技术出版社,1999
    [3]吴国祯,分子振动光谱学原理与研究,北京,清华大学出版社,2001张树霖等:振动拉曼光京大学出版社,1992年
    [5] Jan Baran, Henryk Ratajczak, vibrational spectroscopy , 2006, 1412
    [1]姚连增:晶体生长基础,中国科学技术大学出版社,1995
    [2]罗谷风:结晶学导论,地质出版社,1985
    [3]张可从:近代晶体学基础,科学出版社,1987
    [4]机械工业部仪器仪表工业局统编:晶体生长技术,机械工业出版社,1987
    
    [1]王萍,李国昌:结晶学教程,国防工业出版社,2006
    [2]杨洪钧:结晶学导论,地质出版社,1989
    [3]李宗全,晶体学与晶体结构,浙江科学技术出版社,2003年第一版
    [4]秦善:晶体学基础,北京大学出版社,2004年第一版
    [5]张可从:近代晶体学基础,科学出版社,1987
    
    [1]沈同,王镜岩,赵邦悌等.生物化学(上册).北京:人民教育出版社, 1992, 77
    [2]蔡素德主编,有机化学(第三版),北京:中国建筑工业出版社,2006
    [3]易芳,氨基酸单晶的低温相变机制研究,北京大学硕士学位论文. 1996年,北京:北京大学图书馆
    [4]梁智,丙氨酸和缬氨酸单晶培养及丙氨酸晶体的固相核磁共振研究,北京大学本科学位论文.2001年,北京:北京大学图书馆
    [5]龚?,氨基酸晶体制备及α-氨基酸分子手性的拉曼和AFM研究,北京大学本科学位论文. 2001年,北京:北京大学图书馆
    [6] V. V. Lemanov, S. N. Popov, and G. A. Pankova, Physics of the Solid State, 44( 10)2002, 1929–1935.
    [7] M.N. Bhat, S.M. Dharmaprakash,Journal of Crystal Growth.,242(2002) 245–252.
    [8] M.N. Bhat, S.M. Dharmaprakash, Journal of Crystal Growth,236(2002)376–380.
    [9] P-G Jonsson, A Kvick, Acta Cryst. B, 28(1972) 1827-1833.
    [10]C.H. Lin, N. Gabas, J.P. Canselier et al., Journal of Crystal Growth, 191(1998 )791—802.
    [11] E.S.Boek, D.F.eil, W.J.Briels, Journal of Crystal Growth, 114(1991)389-410.
    [1] G.L. Perlovich, L.K. Hansen, A. Baur-Brandl, J. Therm. Anal. Calorimetry 66 (2001) 699.
    [2] P.-G. Jonsson, A. Kvick, Acta Cryst. B 28 (1972) 1827.
    [3] P. Langan, S.A. Mason, D. Myles, B.P. Schoenborn, Acta Crystallogr. B 58 (2002) 728.
    [4] T.C. Chilcott, B.P. Schoenborn, D.W. Cooke, H.G.L. Coster, Philos. Magazine B 79 (10) (1999) 1695.
    [5] C. Murli, S. Thomas, S. Venkateswaran, S. M. Sharma, Physica B 364 (2005) 233–238.
    [6] P.Papon, J.Leblond,P.H.E .Meijer. The physics of phase transitions : concepts and applications[M]. Berlin ; New York: Springer,2002. 1~397
    [7]龚?,易芳,王文清.光散射学报. 14(3)(2002) 145.
    [8] N. Doki, M.Yokota, K. Kido, S. Sasaki, N. Kubota, Cryst. Growth Des. 4 (2004) 103–7.
    [9] H. Stenback, J. Raman Spectrosc. 5 (1976) 49.
    [10] K. Machida, A. Kagayama, Y. Saito, Y. Kuroda, T. Uno, Spectrochim. Acta 33A (1977) 569.
    [11] C. Murli, S. M. Sharma, S. Karmakar, S. K. Sikka, Physica B 339 (2003) 23–30
    [12] Y. Shi, L.Wang, J. Phys. D: Appl. Phys. 38 (2005) 3741–3745.
    [13] M. Barthes, H.N. Bordallo, F. Denoyer, J.E. Lorenzo, J. Zaccaro, A. Robert, F. Zontone, Eur. Phys. J. B 37 (2004) 375.
    [14] R.S. Krishnan, K. Krishnan, Proc. Ind. Acad. Sci. A 60 (1964) 11.
    [15] S. Forss, J. Raman Spectrosc. 12 (3) (1982) 266.
    [16] Chun-Jen Li Robert, Berman Neil S, The Journal of Physical Chemistry. 74(7)(1970) 1643-1647.
    [17] Murli C, Sharma S. M, Karmakar S, etal., Physica B . 339(2003)23.
    [1] G. Albrecht, R.B. Corey, J. Am. Chem. Soc. 61 (1939) 1087.
    [2] Y. Iitaka, Acta Crystallogr. 13 (1960) 35.
    [3] Y. Iitaka, Acta Crystallogr. 14 (1961) 1.
    [4]G.L. Perlovich, L.K. Hansen, A. Baur-Brandl, J. Therm. Anal. Calorimetry 66 (2001) 699.
    [5] T.C. Chilcott, B.P. Schoenborn, D.W. Cooke, H.G.L.Coster, Philos. Magazine B 79 (10) (1999) 1695.
    [6]MEIR SHINITZKY, AVSHALOM C. ELITZUR. CHIRALITY 18 (2006) 754–756.
    [7]A.J.D. B.J.Phys. 29(1999)380
    [8] Doki N, Yokota M, Kido K, Sasaki S and Kubota N 2004 Cryst. Growth Des. 4 103–7
    [9] K. Machida, A. Kagayama, Y. Saito, Y. Kuroda, T. Uno, Spectrochim. Acta 33A (1977) 569.
    [10] Jan Baran ,Henryk Ratajczak, vibrational spectroscopy. 2006 1412.
    [11] H. Stenback, J. Raman Spectrosc. 5 (1976) 49.
    [12] C. Murli, S. M. Sharma, S. Karmakar, S. K. Sikka, Physica B 339 (2003) 23–30.
    [13]G..Dovbeshko, L. Bwrezhinsky.Journal of Molecular Structure 450(1998)121-128
    [14] K.Machida, A.Kagayama, Y.Saito, J. Raman spectroscopy. 8(1979)133.
    [15] S.F.A. Kettle, E. Lugwisha, J. Eckert, N.K. Mcguire, Spectrochim. Acta 45A (1989) 533.
    [16] R.S. Krishnan, K. Krishnan, Proc. Ind. Acad. Sci. A 60 (1964) 11.
    [17] H.J. Himmler, H.H. Eysel, Spectrochim. Acta 45 (10) (1989) 1077.
    [18] J.T. Edsall, H. Scheinberg, J.Chem.Phys. 8 (1940) 520.
    [19] J.P. Legros, A. Kvick, Acta Crystallogr. B 36 (1980) 3052.
    [20] P. Langan, S.A. Mason, D. Myles, B.P. Schoenborn, Acta Crystallogr. B 58 (2002) 728.
    [21] C.L. Thaper, B.A. Dasannacharya, P.S. Goyal, R.Chakravarthy, J. Tomkinson, Physica B 174 (1991) 251.
    [22] M. Barthes, H.N. Bordallo, F. Denoyer, J.E. Lorenzo,J. Zaccaro, A. Robert, F. Zontone, Eur. Phys. J. B 37 (2004) 375.