MitoK_(ATP)通道开放对培养心肌细胞模拟缺血/再灌注损伤的保护机制及其功能蛋白质组研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
    大量的研究证据表明, MitoKATP通道开放在预处理抗心肌梗死中起着非常关键的作用,它是预处理心肌保护的终末效应器。然而最近的研究提示,缺血前MitoKATP通道开放起着启动预处理信号传导的作用。本研究旨在探讨MitoKATP通道开放在预处理心肌保护中的作用及其与ROS生成和PKC epsilon转位激活的相互关系,以及MitoKATP通道开放预处理的功能蛋白质组研究。
    方法:
    本课题采用培养成年大鼠心室肌细胞的模拟缺血/再灌注模型和H9C2心肌细胞的缺氧/复氧模型,分三部分进行。第一部分,培养的成年大鼠心室肌细胞随机分成5组,即对照组、缺血/再灌注组、200(mol/L DZ预处理组、200(mol/L DZ+400(mol/L MPG预处理组和200(mol/L DZ+2(mol/L CH预处理组。预处理后的心肌细胞均模拟缺血40min,再灌注30min。用MTT法、CK检测试剂盒、Na+-K+ATPase检测试剂盒和Western blot等方法分别检测细胞的活性、CK的释放、细胞Na+-K+ATPase活性和细胞色素C漏出线粒体的量。用免疫荧光和Western blot方法观察PKC epsilon的转位激活情况。第二部分,培养的H9C2心肌细胞随机分成5组,即对照组、缺血/再灌注组、200(mol/L DZ预处理组、200(mol/L DZ+400(mol/L MPG预处理组和200(mol/L DZ+2(mol/L CH预处理组。预处理后,细胞均被缺氧100 min,复氧30 min。通过标记PI和Hoechst33258以及JC-1,来检测心肌细胞的活性和线粒体膜电位的变化。第三部分,培养的H9C2心肌细胞随机分成2组,即对照组和200(mol/L DZ预处理组,分别富集两组细胞的磷酸化蛋白质,采用双向电泳和质谱技术,分离鉴定DZ预处理后心肌细胞内磷酸化蛋白的差异表达。
    结果:
    1. 模拟缺血/再灌注后,各组心肌细胞的活性显著降低 (p<0.01), 但DZ预处理能
    
    课题由国家自然科学基金NO.30200089资助
    
    
    明显增加活细胞数量,与其他预处理组相差显著 (p<0.01);该心肌保护效应能被MPG和CH消除。
    2. 模拟缺血/再灌注后, 各组心肌细胞CK的释放量明显增加 (p<0.01), 但DZ预处理组细胞CK的释放量比较低,与其他预处理组相差显著 (p<0.01); 而DZ+MPG预处理组和DZ+CH预处理组细胞CK的释放量较DZ预处理组显著增高(p<0.01);其中以DZ+MPG预处理组增高最明显,与DZ+CH预处理组之间相差显著(p<0.01)。
    3. 模拟缺血/再灌注后,各组心肌细胞的Na+-K+ATPase活性显著降低(p<0.01),其中DZ预处理组细胞Na+-K+ATPase活性较高,与其他预处理组相差显著(p<0.01)。
    4. 模拟缺血/再灌注后,各组心肌细胞明显细胞色素C的释放增加(p<0.01),但DZ预处理组细胞色素C的释放较少,与DZ+MPG预处理组和缺血/再灌注组相差显著(p<0.01)。
    5. 倒置荧光显微镜下观察,正常对照组细胞内可见散在的少数几个点状荧光;DZ预处理组心肌细胞内可见清晰的条状荧光,呈横向排列,与肌丝方向基本一致; DZ+MPG预处理组心肌细胞略有条状荧光;DZ+CH预处理组心肌细胞内分布有少量的点状免疫荧光。Western-blot结果显示,DZ预处理后心肌细胞内的PKC epsilon向膜质部分转位明显(p<0.01);ROS清除剂MPG和PKC特异性抑制剂CH均能抑制DZ预处理引起的PKC epsilon转位激活(p<0.01),其中以CH作用最明显(p<0.01)。
    6. 缺氧/复氧后,各组H9C2心肌细胞PI阳性率显著增加(p<0.01);DZ预处理组细胞的PI阳性率显著降低(p<0.01),但该作用可被MPG和CH拮抗。
    7. 培养的H9C2心肌细胞缺氧/复氧损伤后,各组线粒体膜电位下降明显(p<0.01);DZ预处理可以升高细胞线粒体膜电位;而当用MPG或CH与DZ共同预处理时,该作用被完全消除。
    8. 经MALDI-TOF-MS鉴定,差异表达的磷酸化蛋白质有:糖调节蛋白(GRP94)、胞吐相关蛋白重链I、铁蛋白轻链、TCP-1蛋白(CCT) zeta 亚单位和假想蛋白XP_346548等。
    结论:
    1.大鼠心室肌细胞模拟缺血/再灌注损伤模型是研究预处理心肌保护的一种非常有效的细胞模型。
    2.MitoKATP通道特异性开放剂DZ预处理心肌细胞,对大鼠心室肌细胞模拟缺血/再灌注损伤和H9C2心肌细胞缺氧/复氧损伤都有保护作用,表现在延缓细胞的死亡、减少细胞内CK的释放和线粒体细胞色素C的漏出、增加细胞内Na+-K+ATPase的活性,
    
    
    以及防止线粒体膜电位的降低。
    3.PKC epsilon参与了MitoKATP通道开放预处理心肌细胞的信号传导,开放MitoKATP通道能引起PKC epsilon由胞浆向肌丝样结构的转位, 它可能是MitoKATP通道的下游信号分子。ROS清除剂能部分阻断PKC epsilon的转位激活,在MitoKATP通道开放预处理的信号传导中,ROS可能PKC epsilon的上游信号分子。
    4.在MitoKATP通道开放预处理过程中,阻断ROS的生成能消除心肌保护效应。 ROS可能是MitoKATP通道开放预处理心肌保护机制中重要的信号分子,预处理期使用自由基清除剂不利于心肌保护。
    5.MitoKATP通道特异性开放剂DZ预处理心肌细胞,可能使糖调节蛋白(GRP94)、胞吐相关蛋白重链I、铁蛋白轻链等蛋白发生了去磷酸化修饰,而分子伴侣包含TCP-1蛋白(CCT) zeta 亚单位和假想蛋白XP_346548等发生磷酸化修饰。这些发生了磷酸化修饰改变的蛋白质可能参与了MitoKATP通道开放预处理心肌保护。
Objective A great deal of accumulated evidence implicate opening of mitochondrial ATP-sensitive potassium (MitoKATP) channel as an important step in the anti-infarct effect of ischemic preconditioning, it is the end-effector of preconditioning’s cardioprotection. Recent studies, however, reveal that MitoKATP opening prior to ischemia can actually serve as a trigger of preconditioning’s signal transduction. The purpose of this study was to investigate the mechanisms of cardioprotection about ROS producing and PKC epsiolon translocation and functional proteomics in myocytes preconditioning by MitoKATP channels opener.
    Methods cultured adult rat ventricular myocytes and H9C2 myocytes were used as experimental ischemia/reperfusion model and hypoxia/reoxygen model. The study was carried out in Three parts: In the first part, cultured adult rat ventricular cardiomyocytes were randomly divided into five groups, including control group, ischemia/reperfusion group, 200(mol/L diazoxide (DZ) preconditioning group, 200(mol/L DZ and 400(mol/L N-(2-mercaptopropionyl) glycine (MPG) , 200(mol/L DZ and 2(mol/L chelerythrine chloride (CH) preconditioning group.After preconditioning, cardiomyocytes were treated with simulated ischemia for 40min and reperfusion for 30 min. The cell viability, creatine kinase released from cell, activity of Na+-K+ATPase and cytochrome C released from mitochondria were respectively measured by MTT methold, CK test kit, Na+-K+ATPase test kit and western blot. The PKC epsilon translocation in cells inducing by preconditioning was assayed by immunofluorescence and western blot. In the second part, cultured H9C2 myocytes were randomly divided into five groups, including control group, hypoxia/reoxygen group, 200(mol/L DZ preconditioning group, 200(mol/L DZ and 400(mol/L MPG, 200(mol/L DZ and 2(mol/L CH preconditioning group. After preconditioning, cardiomyocytes were treated with hypoxia for 100min and reoxygen for 30 min. The cell viability and mitochondrial membrane potential were assayed by labeling cells with both propidium iodide (PI) and Hoechst33258 or JC-1.In the third part, cultured H9C2 myocytes were randomly divided into two groups, the control group and 200(mol/L DZ
    
    
    preconditioning group. The phosphoproteins were enriched from H9C2 myocytes in either control group or 200(mol/L DZ preconditioning group, and isolated by two-dimensional electrophoresis. Finally, the differentially expressed phosphoproteins were identified by MALDI-TOF-MS.
    Results
    1. The cell viability in all groups treated with simulated ischemia/reperfusion was decreased significantly (p<0.01); Preconditioning by DZ markedly increased the number of live cells (p<0.01), but this effect of DZ preconditioning could be suppressed by MPG or CH (p<0.01).
    2. Creatine kinase released from cardiomyocytes increased significantly in all groups treated with simulated ischemia/reperfusion, but the level of CK was much lower in DZ preconditioning group than in the others (p<0.01), and was much higher in DZ and MPG preconditioning group than in DZ and CH preconditioning group (p<0.01).
    3. The activity of Na+-K+ATPase in cardiomyocytes was inhibited significantly in all groups treated with simulated ischemia/reperfusion (p<0.01), but it was kept much higher in DZ preconditioning group than in the others (p<0.01).
    4. Lots of cytochrome C released from mitochondria after undergoing simulated ischemia/reperfusion (p<0.01), DZ preconditioning induced cardiomyocytes to release less amount of cytochrome C to cytosol than DZ and MPG preconditioning (p<0.01).
    5. Under a fluorescence microscope,the fluorescence of PKC epsilon was located on myofibrillar-like structures, but there were a few green fluorescence spot in cells in control group. The myofibrillar-like fluorescence is very faint in DZ+MPG preconditioning group and disappeared in DZ+CH preconditioning group. The result of western blot showed that PKC epsilon translocated to particulate fraction more significantly in DZ preconditioning group (p<0.01) than that in both DZ+MPG precon
引文
Murphy E. Primary and secondary signaling pathways in early preconditioning that converge on the mitochondria to produce cardioprotection.Circ Res. 2004;94(1):7-16.
    Taimor G. Mitochondria as common endpoints in early and late preconditioning.Cardiovasc Res. 2003;59(2):266-7.
    Garlid KD,Paucek P,Yarov-Yarovoy V,et al. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ. Res. 1997;81:1072–1082.
    Neckar J, Szarszoi O, Koten L, et al. Effects of mitochondrial K(ATP) modulators on cardioprotection induced by chronic high altitude hypoxia in rats. Cardiovasc. Res. 2002;55 :567–575;
    Miura T, Liu Y, Goto M, et al. Mitochondrial ATP-sensitive K+ channels play a role in cardioprotection by Na+–H+ exchange inhibition against ischemia/reperfusion injury. J. Am. Coll. Cardiol.. 2001;37:957–963.
    McPherson CD, Pierce GN, Cole WC. Ischemic cardioprotection by ATP-sensitive K+ channels involves high-energy phosphate preservation. Am. J. Physiol. 1993;265:1809–H1818.
    Pain T, Yang XM, Critz SD, et al. Opening of mitochondrial KATP channels triggers the preconditioned state by generating free radicals. Circ Res. 2000; 87:460–466.
    Wang Y, Takashi E, Xu M,et al.Downregulation of protein kinase C inhibits activation of mitochondrial KATP channels by diazoxide. Circulation . 2001;104:85–90.
    Ping P. Identification of novel signaling complexes by functional proteomics. Circ Res. 2003;93(7):595-603
    许秀芳,李温斌,陈宝田等.成年大鼠心肌细胞培养方法的建立和形态学观察.首都医科大学学报[J],2001,21(2):104-107
    D.L.斯佩克特,L.A.莱因万德,R.D.,戈德曼著.黄培堂等译.细胞实验指南[M].上册.北京.科学出版社,2001.83-89
    薛庆善 主编.体外细胞培养的原理与技术[M].北京.科学出版社,2001.618-636
    Zaugg M, Lucchinetti E, Spahn DR, et al. Volatile anesthetics mimic cardiac
    
    
    preconditioning by priming the activation of mitochondrial K (ATP) channels via multiple signaling pathways[J]. Anesthesiology. 2002 ; 97(1):4-14.
    蔡文琴,王伯泫,主编. 免疫组织化学和核酸分子杂交技术[M].成都.四川科学出版社,1994.61-63
    Garlid K D, Paucek P,Yarov-Yarovoy V,et al. The mitochondrial KATP channel as a receptor for potassium channel openers. J. Biol. Chem. 1996; 271: 8796–8799.
    Garlid KD. Opening mitochondrial K (ATP) in the heart––what happens, and what does not happen. Basic Res. Cardiol. 2000; 95:275–279;
    Tian J, Liu J, Garlid KD, et al. Involvement of mitogen-activated protein kinases and reactive oxygen species in the inotropic action of ouabain on cardiac myocytes. A potential role for mitochondrial KATP channels. Mol. Cell. Biochem. 2003; 242:181–187.
    Christopher P B, Mahiko G, James MD. Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J. Mol. Cell. Cardiol. 1997;29: 207–216.,
    Vanden Hoek TL, Becker LB, Shao Z, et al. Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J. Biol. Chem. 1998; 273: 18092–18098.
    Cohen MV, Yang XM, Liu GS, et al. Acetylcholine, bradykinin, opioids, and phenylephrine, but not adenosine, trigger preconditioning by generating free radicals and opening mitochondrial K (ATP) channels. Circ. Res. 2001; 89: 273–278.
    Dorn GW 2nd, Souroujon MC, Liron T,et al. Sustained in vivo cardiac protection by a rationally designed peptide that causes epsilon protein kinase C translocation. Proc Natl Acad Sci U S A. 1999; 96(22): 12798-803.
    Saurin AT, Pennington DJ, Raat NJ, et al. Targeted disruption of the protein kinase C epsilon gene abolishes the infarct size reduction that follows ischaemic preconditioning of isolated buffer-perfused mouse hearts. Cardiovasc Res. 2002; 55(3):672-80
    Tsouka V, Markou T, Lazou A. Differential effect of ischemic and pharmacological preconditioning on PKC isoform translocation in adult rat cardiac myocytes. Cell Physiol Biochem. 2002; 12(5-6): 315-24
    Kim CN, Wang X, Huang Y, et al. Overexpression of Bcl-XL inhibits Ara-C-induced mitochondrial loss of cytochrome c and other perturbations that activate the molecular
    
    
    cascade of apoptosis. Cancer Res .1997; 57: 3115-3120
    Liu, X, Kim CN, Yang J, et al. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell .1996; 86: 147-157,
    Miyamae M, Rodriguez MM, Camacho SA, et al. Activation of epsilon protein kinase C correlates with a cardioprotective effect of regular ethanol consumption. Proc Natl Acad Sci U S A. 1998; 95(14): 8262-7.
    Xu Z, Cohen MV, Downey JM, et al. Attenuation of oxidant stress during reoxygenation by AMP 579 in cardiomyocytes. Am J Physiol Heart Circ Physiol. 2001; 281(6): H2585-9.
    Mathur A, Hong Y, Kemp BK, et al. Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovasc Res. 2000; 46(1): 126-38.
    Armstrong SC, Hoover DB, Shivell LC, et al. Preconditioning of isolated rabbit cardiomyocytes: no evident separation of induction, memory and protection. J Mol Cell Cardiol. 1997; 29(8): 2285-98;
    Liu GS, Cohen MV, Mochly-Rosen D, et al. Protein kinase C-epsilon is responsible for the protection of preconditioning in rabbit cardiomyocytes. J Mol Cell Cardiol. 1999; 31(10): 1937-48;
    Chen CH, Gray MO, Mochly-Rosen D.Cardioprotection from ischemia by a brief exposure to physiological levels of ethanol: role of epsilon protein kinase C. Proc Natl Acad Sci U S A. 1999 26; 96(22): 12784-9.
    Goldstein JC, Waterhouse NJ, Juin P, Evan GI, Green DR. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol. 2000; 2:156–162.
    Akao M, Ohler A, O'Rourke B, et al. Mitochondrial ATP-sensitive potassium channels inhibit apoptosis induced by oxidative stress in cardiac cells. Circ Res. 2001; 88(12):1267-75.
    Grimmsmann T, Rustenbeck I. Direct effects of diazoxide on mitochondria in pancreatic B-cells and on isolated liver mitochondria. Br J Pharmacol. 1998; 123:781–788
    Kowaltowski AJ, Seetharaman S, Paucek P, et al. Bioenergetic consequences of opening the ATP-sensitive K (+) channel of heart mitochondria. Am. J. Physiol. 2001; 280: H649
    
    
    H657
    Ozcan C, Bienengraeber M, Dzeja P, et al. Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation. Am J Physiol Heart Circ Physiol. 2002; 282: H531H539
    Korge P, Honda HM, Weiss JN. Protection of cardiac mitochondria by diazoxide and protein kinase C: implications for ischemic preconditioning. Proc Natl Acad Sci U S A. 2002; 99(5): 3312-7.
    Laclau MN, Boudina S, Thambo JB,et al. Cardioprotection by ischemic preconditioning preserves mitochondrial function and functional coupling between adenine nucleotide translocase and creatine kinase. J Mol Cell Cardiol 2001; 33: 947–956.
    Holmuhamedov EL, Wang L, Terzic A, et al. ATP-sensitive K+ channel openers prevent Ca2+ overload in rat cardiac mitochondria. J Physiol .1999; 519: 347–360
    Gray MO, Zhou HZ, Schafhalter-Zoppoth I, et al. Preservation of base-line hemodynamic function and loss of inducible cardioprotection in adult mice lacking protein kinase C epsilon. J Biol Chem. 2004; 279(5): 3596-604
    Ohnuma Y, Miura T, Miki T, et al. Opening of mitochondrial K (ATP) channel occurs downstream of PKC-epsilon activation in the mechanism of preconditioning. Am J Physiol Heart Circ Physiol. 2002; 283(1): H440-7
    Okubo S, Tanabe Y, Fujioka N,et al. Differential activation of protein kinase C between ischemic and pharmacological preconditioning in the rabbit heart. Jpn J Physiol. 2003; 53 (3):173-80
    Wang Y,Takashi E,Xu M,et al. Downregulation of protein kinase C inhibits activation of mitochondrial K (ATP) channels by diazoxide.Circulation. 2001; 104(1): 85-90
    Pain T, Yang XM, Critz SD, et al. Opening of mitochondrial K (ATP) channels triggers the preconditioned state by generating free radicals. Circ Res. 2000; 87(6): 460-466.
    Forbes RA, Steenbergen C, Murphy E. Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ Res. 2001; 88(8): 802-9.
    Yao Z, Tong J, Tan X, et al. Role of reactive oxygen species in acetylcholine-induced preconditioning in cardiomyocytes. Am J Physiol. 1999; 277(6 Pt 2): H2504-9.
    
    
    
    Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002; 82(1):47-95.
    Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol. 1997; 29(1): 207-16.
    Tritto I, D'Andrea D, Eramo N, et al. Oxygen radicals can induce preconditioning in rabbit hearts. Circ Res. 1997; 80(5): 743-8.
    Kabakov AE, Budagova KR, Latchman DS, et al. Stressful preconditioning and HSP70 overexpression attenuate proteotoxicity of cellular ATP depletion. Am J Physiol Cell Physiol. 2002; 283(2): C521-34.
    Moon,-C-H; Jung,-Y-S; Kim,-M-H,et al.Protein kinase C inhibitors attenuate protective effect of high glucose against hypoxic injury in H9c2 cardiac cells. Jpn-J-Physiol. 2000; 50(6): 645-9.
    Ekhterae D, Lin Z, Lundberg MS, et al. ARC inhibits cytochrome c release from mitochondria and protects against hypoxia-induced apoptosis in heart-derived H9c2 cells. Circ Res. 1999; 85(12): e70-7.
    Yeung YG, Wang Y, Einstein DB,et al. Colony-stimulating factor-1 stimulates the formation of multimeric cytosolic complexes of signaling proteins and cytoskeletal components in macrophages. J. Biol. Chem. 1998; 273: 17128–17137.
    54. Gaberc-Porekar V, Menart V. Perspectives of immobilized-metal affinity chromatography. J. Biochem. Biophys. Methods. 2001; 49:335-360.
    55. Lee A S. Mammalian stress response: induction of the glucose-regulated protein family. Curr Opin Cell Biol. 1992; 4: 267-273
    56. Gala SE, GRP94 hyperglycosylation and phosphorylation in Sf21 cells. Biochim Biophys Acta. 2000; 1496(2-3): 296-310
    57. Riera M, Roher N, Miro F, et al. Association of protein kinase CK2 with eukaryotic translation initiation factor eIF-2 and with grp94/endoplasmin. Mol Cell Biochem. 1999; 191(1-2): 97-104.
    58. Csermely P, Kahn, CR. The 90-kDa heat shock protein (hsp-90) possesses an ATP binding site and autophosphorylating activity. J Biol Chem. 1991; 266: 4943-4950
    59. Clairmont CA, De Maio A, Hirschberg, CB. Translocation of ATP into the lumen of rough endoplasmic reticulum- derived vesicles and its binding to luminal proteins
    
    
    
    including BiP (GRP 78) and GRP 94. J. Biol. Chem. 1992; 267: 3983-3990
    60. Nigam SK, Goldberg AL, Ho S, et al. A set of endoplasmic reticulum proteins possessing properties of molecular chaperones includes Ca(2+)-binding proteins and members of the thioredoxin superfamily J. Biol. Chem. 1994; 269:1744-1749
    61. Csermely P, Miyata Y, Schnaider T, et al. Autophosphorylation of grp94 (Endoplasmin). J Biol Chem. 1995; 270: 6381-6388
    62. Csermely P, Miyata Y, Schnaider T, Yahara I. Autophosphorylation of grp94 (Endoplasmin). J Biol Chem. 1995; 270: 6381-6388
    63. Menoret A, Li Z, Niswonger M, et al. An Endoplasmic Reticulum Protein Implicated in Chaperoning Peptides to Major Histocompatibility of Class I Is an Aminopeptidase* J Biol Chem. 2001; 276: 33313-33318
    64. Reed RC, Zheng T, Nicchitta CV. GRP94-associated Enzymatic Activities. Resolution by chromatographic fractionation. Biol Chem. 2002; 277(28): 25082 - 25089.
    65. Gala SE, Jones LR. GRP94 resides within cardiac sarcoplasmic reticulum vesicles and is phosphorylated by casein kinase II. J Biol Chem. 1994; 269: 5926-5931
    66. Vitadello M, Colpo P, Gorza L. Rabbit cardiac and skeletal myocytes differ in constitutive and inducible expression of the glucose-regulated protein GRP94. Biochem J. 1998; 332 (Pt2):351-9.
    67. Vitadello M, Penzo D, Petronilli V,et al. Overexpression of the stress protein Grp94 reduces cardiomyocyte necrosis due to calcium overload and simulated ischemia. FASEB J. 2003; 17(8): 923-5.
    68. Little E, Lee A. Generation of a mammalian cell line deficient in glucose-regulated protein stress induction through targeted ribozyme driven by a stress-inducible promoter. J Biol Chem. 1995; 270: 9526-9534.
    69. McCormick TS, McColl KS, Distelhorst CW. Mouse lymphoma cells destined to undergo apoptosis in response to thapsigargin treatment fail to generate a calcium-mediated GRP78/GRP94 stress response. J Biol Chem. 1997; 272: 6087-6092.
    70. Liu H, Miller E, van de Water B. Endoplasmic reticulum stress proteins block oxidant-induced Ca2* increases and cell death. J Biol Chem. 1998; 273: 12858-12862.
    71. Nishida E, Koyasu S, SakaiH, et al. Calmodulin-regulated binding of the 90-kDa heat shock protein to actin filaments. J Biol Chem. 1986; 261: 16033-16036
    
    
    
    72. Koyasu S, Nishida E, Kadowaki T, et al. Proc. Natl Acad Sci USA. 1986; 83: 8054-8058
    73. Koyasu S, Nishida E, Miyata Y, et al. HSP100, a 100-kDa heat shock protein, is a Ca2+-calmodulin-regulated actin-binding protein. J Biol Chem. 1989; 264:15083-15087
    74. Melnick J, Dul JL, Argon Y. Sequential interaction of the chaperones BiP and GRP94 with immunoglobulin chains in the endoplasmic reticulum. Nature. 1994; 370(6488): 373-5.
    75. Saris CJ, Tack BF, Kristensen T, et al. The cDNA sequence for the protein-tyrosine kinase substrate p36 (calpactin I heavy chain) reveals a multidomain protein with internal repeats. Cell. 1986; 46(2): 201-12.
    76. lidaH, HataeT, Shibata Y. Immunocytochemical localization of 67 KD Ca2+ binding protein (p67) in ventricular, skeletal, and smooth muscle cells. J Histochem Cytochem. 1992; 40(12): 1899-907.
    77. Kubota H, Hynes G, Willison K. The chaperonin containing t-complex polypeptide 1 (TCP-1): multisubunit machinery assisting in protein folding and assembly in the eukaryotic cytosol. Eur J Biochem. 1995; 230: 3-16.
    78. Lewis SA, Tian G, Vainberg IE, et al. Chaperonin-mediated folding of actin and tubulin. J Cell Biol. 1996; 132: 1-4.
    79. Willison KR, Horwich AL. Structure and function of chaperonins in archaebacteria and eukaryotic cytosol. In The Chaperonins(Ellis, R.J., ed.). 1996; pp: 107-136.
    80. Academic Press, San Diego; Willison, K.R. & Horwich, A.L.. Structure and function of chaperonins in archaebacteria and eukaryotic cytosol. In The Chaperonins(Ellis, R.J., ed.), 1996; pp. 107-136. Academic Press, San Diego.
    81. Farr GW, Scharl EC, Schumacher RJ, et al. Chaperonin-mediated folding in the eukaryotic cytosol proceeds through rounds of release of native and nonnative forms. Cell. 1997; 89: 927-937.
    82. Tian G, Huang Y, Rommeaere H, et al. Pathway leading to correctly folded P-tubulin. Cell 1996; 86: 287-296
    83. Frydman J, Hartl FU. Principles of chaperone-assisted protein folding: difference between m vitro and in vivo mechanisms. Science. 1996; 272: 1497-1502.
    
    
    
    84. Thulasiraman V, Yang CF, Frydman J. In vivo newly translated polypeptides are sequestered in a protected folding environment. EMBO J. 1999; 18: 85-95
    85. Sternlicht H, Farr GW, Sternlicht ML, et al. The t-complex polypeptide 1 complex is a chaperonin for tubulin and actin in vivo. Proc Natl Acad Sci USA. 1993; 90: 9422-9426.
    86. Kubota H, Hynes G, Carne A, et al. Identification of six 7c/>-7.-related genes encoding divergent subunits of the TCP-1-containing chaperonin. Curr Biol. 1994; 4: 89-99.
    87. Kubota H, Yokota S, Yanagi H, et al. Structures and coregulated expression of the genes encoding mouse cytosolic chaperonin CCT subunits. Eur J Biochem. 1999; 262: 492-500.
    88. Yokota SI, Yanagi H, Yura T, et al. Upregulation of cytosolic chaperonin CCT subunits during recovery from chemical stress that causes accumulation of unfolded proteins. Eur. J. Biochem. 2000; 267: 1658-1664
    89. Guay J, Lambert H, Gingras-Breton G, et al. Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci. 1997; 110:357-368,
    90. Huot J, Houle F, Spitz DR, et al. HSP27 phosphorylation-mediated resistance against actin fragmentation and cell death induced by oxidative stress. Cancer Res. 1996; 56: 273-279
    91. Arrigo AP, Landry J. Expression and function of the low-molecular-weight heat shock proteins. In: The Biology of Heat Shock Proteins and Molecular Chaperones, edited by R. I. Morimoto, A. Tissieres, and C. Georgopoulos. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1994, p. 335-373.
    92. Benndorf R, Hayess K, Ryazantsev S, et al. Phosphorylation and supramolecular organization of murine small heat shock protein HSP25 abolish its actin polymerization-inhibiting activity. J. Biol. Chem. 1994; 269: 20780-20784
    93. Kuhne W, Besselmann M, Noll T, et al. Disintegration of cytoskeletal structure of actin filaments in energy-depleted endothelial cells. Am J Physiol. 1993; 264: H1599-H1608
    94. Pyle WG, Hart MC, Cooper JA, et al. Actin capping protein: an essential element in protein kinase signaling to the myofilaments. Circ Res. 2002; 90(12): 1299-306.
    95. Jideama NM, Noland TA Jr, Raynor RL, et al. Phosphorylation specificities of protein
    
    
    
    kinase C isozymes for bovine cardiac troponin I and troponin T and sites within these proteins and regulation of myofilament properties. J Biol Chem. 1996; 271(38): 23277-83.
    96. Pyle WG, Chen Y, Hofmann PA. Cardioprotection through a PKC-dependent decrease in myofilament ATPase. Am J Physiol Heart Circ Physiol. 2003; 285(3): HI220-8.
    97. Munro HN, Linder M. Ferritin: structure, biosynthesis, and role in iron metabolism. Physiol. Rev. 1978; 58: 317-396
    98. Coux O, Camoin L, Nothwang H, et al. The protein of M(r) 21,000 constituting the prosome-like particle of duck erythroblasts is homologous to apoferritin. Eur J Biochem. 1992; 207: 823-832;
    99. Akhayat O, Infante AA, Infante D, et al. A new type of prosome-like particle, composed of small cytoplasmic RNA and multimers of a 21-kDa protein, inhibits protein synthesis in vitro. Eur J Biochem. 1987; 170: 23-33
    100. Belasco J, Brawerman G. (eds) (1993) Control of mRNA Stability, Academic Press, Inc., San Diego
    101. Takahama Y, Singer A. Post-transcriptional regulation of early T cell development by T cell receptor signals. Science 1992; 258: 1456-1462
    102. Iwai Y, Bickel M, Pluznik, D H, et al. Identification of sequences within the murine granulocyte-macrophage colony-stimulating factor mRNA 3'-untranslated region that mediate mRNA stabilization induced by mitogen treatment of EL-4 thymoma cells. J Biol Chem. 1991; 266: 17959-17965
    103.Heise T, Nath A, Jungermann K, et al. Purification of a RNA-binding protein from rat liver. Identification as ferritin L chain and determination of the RNA/protein binding characteristics. J Biol Chem. 1997; 272(32): 20222-9.
    104. Eisenstein RS, Tuazon PT, Schalinske KL, et al. Iron-responsive element-binding protein. Phosphorylation by protein kinase C. J Biol Chem. 1993; 268: 27363-27370
    105. Cairo G, Rappocciolo E, Tacchini L, et al. Expression of the genes for the ferritin H and L subunits in rat liver and heart. Evidence for tissue-specific regulations at pre-and post-translational levels. Biochem J. 1991; 275 ( Pt 3): 813-6.