粒细胞集落刺激因子联合促红细胞生成素对脑缺血再灌注损伤的保护作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:脑缺血发生后,尽早开通闭塞的血管,恢复血液灌流,是限制和缩小梗塞面积,改善预后的关键。但再灌注往往引起脑组织损伤的进一步加重,即再灌注损伤,导致神经细胞坏死或凋亡,神经功能障碍。
     超早期溶栓是目前治疗脑缺血唯一有效的措施,但太短的治疗时间窗及再灌注损伤使其临床应用受到限制;降低脑组织代谢、各种神经保护剂(自由基清除剂、钙通道阻断剂等)虽然可以在一定程度上降低患者的死亡率,但存在临床疗效不确定,不良反应严重等问题,且对于改善患者的神经功能症状,效果并不理想,究其原因是并没有从根本上解决神经细胞数量减少的问题。
     干细胞移植治疗脑缺血受到研究者的关注。移植的神经干细胞可在缺血脑组织局部迁移、增殖,并分化成神经元部分地替代和修复受损的神经元,从而在一定程度上改善神经功能缺失症状;然而伦理学问题、来源困难及移植后的免疫排斥反应等因素限制了其临床应用。MSCs作为目前研究最广泛的成体干细胞进入了人们的视线;但MSCs在体内向神经细胞的转化效率极低及体外扩增后的成瘤风险等,使人们不得不重新审视MSCs移植在脑缺血治疗中的作用及安全性。
     因此,我们迫切需要寻找新的治疗脑缺血再灌注损伤的方法,以保护和修复受损神经细胞的功能。细胞因子因其获得简便、无创伤、且有潜在的抗神经细胞凋亡和促进神经再生等作用而进入研究者的视线。
     粒细胞集落刺激因子(G-CSF)是粒系造血生长因子,用于各种原因引起的中性粒细胞减少症以及动员外周血干细胞移植治疗免疫性疾病。最近研究显示,脑缺血时,G-CSF能减少梗塞面积,促进神经功能恢复,可能的机制为:1、促进神经再生;2、促进神经营养因子的分泌;3、抑制细胞凋亡;4、抑制炎症反应;5、促进血管发生等。
     促红细胞生成素(EPO)是一种刺激骨髓造血的糖蛋白类激素,主要由成人肾脏和胎肝合成,用于各种原因引起的贫血,主要是肾性贫血的治疗。随着研究的深入,发现EPO还通过非造血相关效应在缺血所致脑损伤中发挥神经保护作用,可能通过:1、抑制细胞凋亡;2、减轻炎症反应;3、减少兴奋性氨基酸的毒性作用;4、抗氧化应激;5、促进神经和血管发生等。
     目前认为脑缺血的发病机制复杂,是多种机制、多个环节共同作用的结果,单靠某一种药物治疗,并不能达到最好的治疗效果,联合应用作用于脑缺血后不同环节的神经保护剂,进行多靶点、多环节的综合治疗,成为脑缺血神经保护研究的新方向。
     由于脑组织的功能极大程度上依赖于神经元的数量和质量,因此,如果采取措施,使缺血早期神经细胞的凋亡减少,最大限度的保存神经细胞的数量;同时缺血后期使神经细胞的再生增加,促进神经细胞的增殖、分化,必将有利于脑缺血再灌注损伤后的组织修复和功能恢复。
     因此,我们首次尝试将G-CSF和EPO联用,以细胞凋亡和神经再生为切入点,观察联合治疗对脑缺血再灌注损伤的保护作用。本课题采用乳鼠皮质神经元氧糖剥夺复糖、复氧模型和局灶性脑缺血再灌注大鼠模型,研究G-CSF联合EPO治疗是否具有防治脑缺血再灌注损伤,促进神经功能恢复的效应,并探讨其可能的作用机制。本实验内容可归纳成四部分,概述如下:
     第一部分粒细胞集落刺激因子联合促红细胞生成素对乳鼠皮质神经元氧糖剥夺模型的保护作用
     目的:利用体外培养的乳鼠皮质神经元制备氧糖剥夺复糖、复氧(OGD/R)模型,观察G-CSF和EPO单独或联合治疗对皮质神经元OGD/R后的保护作用。
     方法:体外培养乳鼠皮质神经元,建立氧糖剥夺(4h)复糖、复氧(24h)模型;研究不同浓度的G-CSF和EPO对皮质神经元的保护作用;研究最佳治疗浓度时,G-CSF和EPO单独或联合治疗对皮质神经元的保护作用,通过CCK-8分析测定细胞活力、LDH漏出量检测细胞损伤程度、AnnexinV/PI法测定细胞凋亡率、Western-blot法检测凋亡相关蛋白Bcl-2、Bax、Caspase-3的表达。
     结果:
     1、成功制备了乳鼠皮质神经元氧糖剥夺复糖、复氧(OGD/R)模型。
     2、G-CSF 0.1μg/ml、1μg/ml和10μg/ml处理组均可提高细胞活力、降低LDH漏出量,1μg/ml保护作用最强,10μg/ml保护作用略有下降。
     3、EPO 1U/ml、10U/ml和100U/ml处理组均可提高细胞活力、降低LDH漏出量,10U/ml和100U/ml保护作用相似。
     4、G-CSF和EPO联合治疗组较各单独治疗组明显提高细胞活力、降低LDH漏出量、减少细胞凋亡率(P <0.05);与G-CSF比较,EPO的干预明显提高细胞活力、降低LDH漏出量、减少细胞凋亡率,且有统计学差异(P <0.05)。
     5、G-CSF和EPO联合治疗组较各单独治疗组明显增加皮质神经元Bcl-2表达、降低Caspase-3表达;与G-CSF比较,EPO的干预使Bcl-2表达增加、Caspase-3表达降低更显著(P <0.05);G-CSF和EPO单独或联合治疗均可降低Bax表达,但三个治疗组间无明显差异。
     结论:G-CSF可减少皮质神经元OGD/R后的细胞损伤,最佳治疗浓度为1μg/ml。EPO可减少皮质神经元OGD/R后的细胞损伤,最佳治疗浓度为10U/ml。G-CSF联合EPO明显抑制皮质神经元OGD/R后的细胞损伤,减少细胞凋亡率,增加Bcl-2的表达、降低Bax、Caspase-3的表达。EPO干预使皮质神经元凋亡减轻更明显。
     第二部分粒细胞集落刺激因子联合促红细胞生成素对脑缺血再灌注大鼠的保护作用
     目的:通过建立局灶性脑缺血再灌注大鼠模型,在整体水平上,观察G-CSF和EPO单独或联合治疗对大鼠脑缺血再灌注后的保护作用,对联合治疗的有效性及安全性进行评价。
     方法:制备大脑中动脉阻断、局灶性脑缺血再灌注大鼠(I/R)模型,给予G-CSF和EPO单独或联合治疗,共5天;分别于再灌注的相应时间点进行神经功能评分、TTC染色检测梗塞面积、HE染色检测脑组织的病理改变、干湿法测定脑组织含水量、检测外周血象,实验结束时计算各组大鼠的死亡率。
     结果:
     1、成功制备局灶性脑缺血再灌注大鼠模型,制模成功率为73.9%。
     2、再灌注3d、7d、14d时三个治疗组神经功能评分均高于I/R组,差异有显著性( P <0.05);7d、14d时,联合治疗组较各单独治疗组神经功能评分明显增加,均有统计学差异( P <0.05);各时间点G-CSF组和EPO组比较,神经功能评分均无明显差异。
     3、脑梗塞灶主要位于大脑皮质及基底节区;再灌注3d、7d时,三个治疗组梗塞面积均明显小于I/R组;联合治疗组较各单独治疗组梗塞面积明显缩小,且有统计学差异( P <0.05);各时间点G-CSF组和EPO组比较,梗塞面积均无明显差异。
     4、HE染色可见I/R组脑组织水肿明显,神经细胞稀疏、间隙增大、体积变小,胞核固缩,核仁不明显,缺血中心区可见核碎裂、核溶解等细胞坏死改变、出现软化坏死灶;各治疗组神经细胞损伤明显减轻,细胞坏死有所减少、组织水肿减轻。
     5、I/R组大鼠于再灌注后体重明显下降,7d时体重出现回升,以后持续增加;再灌注1d、3d时三个治疗组与I/R组比较体重无明显差异,7d、14d时,三个治疗组与I/R组比较体重均有所增加(P <0.05);各时间点三个治疗组间大鼠体重均无明显差异。
     6、I/R组大鼠死亡率为31.91%;三个治疗组大鼠死亡率分别为20.0%、17.94%、17.94%;三个治疗组均可降低大鼠的死亡率(P <0.05),但三个治疗组间大鼠死亡率无明显差异。
     7、再灌注1d、3d时三个治疗组与I/R组比较脑组织含水量无明显差异,7d时三个治疗组均明显减少脑组织含水量( P <0.05);各时间点三个治疗组间脑组织含水量均无明显差异。
     8、各组大鼠各时间点HB、RBC、PLT均无差异;I/R组再灌注1d时WBC开始增加,7d时达到高峰,14d时有所下降;各时间点I/R组和三个治疗组间、三个治疗组间WBC均无显著性差异(P >0.05),但均显著高于对照组(P <0.05)。
     结论:G-CSF联合EPO治疗明显改善大鼠的神经功能症状、减少梗塞面积、减轻脑组织病理改变、降低大鼠死亡率,对大鼠脑缺血再灌注损伤有保护作用。短期内联合使用G-CSF和EPO,对大鼠的血液指标未见显著影响,所用药物剂量安全。
     第三部分粒细胞集落刺激因子联合促红细胞生成素对脑缺血再灌注大鼠神经细胞凋亡影响的研究
     目的:观察G-CSF和EPO单独或联合治疗对脑缺血再灌注大鼠神经细胞凋亡的影响及其可能的机制。
     方法:分别于再灌注1d、3d、7d时,TUNEL染色检测各组大鼠缺血周围脑组织凋亡神经细胞数;免疫组化法检测凋亡相关蛋白Bcl-2、Bax、Caspase-3的表达;Western-blot法检测p-Akt活性。
     结果:
     1、I/R组1d时出现大量凋亡细胞,3d时凋亡细胞数达高峰,7d时下降;再灌注1d时三个治疗组与I/R组比较凋亡细胞数无明显差异;3d、7d时三个治疗组凋亡细胞数均明显低于I/R组,联合治疗组较各单独治疗组凋亡细胞数明显减少,均有统计学差异( P <0.05);再灌注3d、7d时,与G-CSF组比较,EPO组凋亡细胞数明显减少(均P <0.05)。
     2、G-CSF和EPO联合治疗组较各单独治疗组均可明显增加脑组织Bcl-2的表达、降低Caspase-3的表达;与G-CSF组比较,EPO组Bcl-2表达增加、Caspase-3表达降低更明显,且有统计学差异(P <0.05);与I/R组比较,G-CSF和EPO单独或联合治疗均可降低脑组织Bax表达,但三个治疗组间Bax表达无明显差异。
     3、I/R组脑组织p-Akt活性明显升高;与I/R组比较,三个治疗组均可增加p-Akt的活性,联合治疗组较各单独治疗组p-Akt的活性明显增加(P <0.05);G-CSF组与EPO组比较, p-Akt活性无明显差异。
     结论:G-CSF联合EPO治疗显著减少缺血再灌注引起的神经细胞凋亡,增加缺血周围脑组织Bcl-2的表达、抑制Bax、Caspase-3的表达;联合治疗可能部分通过激活PI-3K/Akt途径发挥协同的抗凋亡作用。EPO在抑制神经细胞凋亡方面作用显著。
     第四部分粒细胞集落刺激因子联合促红细胞生成素对脑缺血再灌注大鼠神经再生作用的研究
     目的:观察G-CSF和EPO单独或联合治疗对脑缺血再灌注大鼠神经细胞增殖、分化及神经营养因子表达的影响。
     方法:通过Brdu标记增殖细胞,分别于再灌注1d、3d、7d、14d时,采用荧光单染法检测各组大鼠缺血周围脑组织Brdu阳性细胞数;免疫荧光双标法检测Brdu/NeuN、Brdu/GFAP双阳性细胞数;RT-PCR法检测神经营养因子BDNFmRNA、NGFmRNA的表达。
     结果:
     1、I/R组1d时可见散在的BrdU阳性细胞,7d时阳性细胞数达高峰,14d时下降;再灌注1d、3d时三个治疗组间及与I/R组间BrdU阳性细胞数均无明显差异;7d、14d时三个治疗组BrdU阳性细胞数均高于I/R组,联合治疗组较各单独治疗组BrdU阳性细胞数明显增加(P <0.05);再灌注7d、14d时,与EPO组比较,G-CSF组BrdU阳性细胞数明显增加(均P <0.05)。
     2、I/R组可见少量BrdU/NeuN和BrdU/GFAP双阳性细胞;三个治疗组BrdU/NeuN和BrdU/GFAP双阳性细胞数均明显高于I/R组;联合治疗组较各单独治疗组BrdU/NeuN和BrdU/GFAP双阳性细胞数均明显增加,且有统计学差异(P <0.05);与EPO组比较,G-CSF组BrdU/NeuN和BrdU/GFAP双阳性细胞数均明显增加( P <0.05)。
     3、I/R组脑组织中BDNFmRNA表达明显增加;与I/R组比较,三个治疗组BDNFmRNA表达均明显升高(P <0.05);但三个治疗组间表达无明显差异。
     4、I/R组脑组织中NGFmRNA表达明显增加;与I/R组比较,三个治疗组NGFmRNA表达均明显增加(P <0.05);联合治疗组较各单独治疗组NGFmRNA表达增加显著;与EPO组比较,G-CSF组NGFmRNA表达有显著增加(P <0.05)。
     结论:G-CSF联合EPO治疗明显促进大鼠缺血周围脑组织神经细胞的增殖,及向神经元和神经胶质细胞发生分化,同时促进神经营养因子BDNFmRNA、NGFmRNA的表达增加。G-CSF在促进神经细胞再生方面作用显著。
Background: When cerebral ischemia occurred, it is important for confining or deflating infarct volume and improving prognosis to remove obstacles from obstructive blood vessel and to recuperate hemoperfusion as early as possible. But reperfusion often aggravates brain tissue damage, that is reperfusion injury, which can induce neurocyte necrosis or apoptosis and nerve functional disturbance.
     Although supra-pristine thrombolysis, lowering brain tissue metabolism, various kinds of nerve protectants, etc may cut down the fatality of patients to some degree, the effect of improving the symptom of patients nerve function is not ideal, and problems such as transient time window of therapy and severe adverse reaction are present. The reason is that decreasing neurocyte is not avoided fundamentally.
     It is followed with interest by researchers to treat cerebral ischemia with stem cell transplantation. The transplanted nerve stem cells can migrate and proliferate in the ischemia brain tissue area. They also can differentiate to partly substitute and recover impaired neurons, thus to improve the symptom of loss of nerve function. But problems such as ethics issue, difficult source and immunological rejection, etc limit the clinical application of stem cell transplantation. MSCs are the most widely researched stem cells. But the low transformation of MSCs into nerve cells and the risk of becoming tumour after extraorgan amplification made the effect and safety of MSCs transplantation for cerebral ischemia be suspected.
     Therefore original therapy means for cerebral ischemia-reperfusion injury are needed badly to preserve and recover the function of impaired nerve cells. For the reason that the function of brain tissue relies on the quantity and quality of neurocyte to great extent, if we adopt a measure which include diminishing apoptosis of early ischemia nerve cells, preserving the quantity of neurocyte maximatily, meanwhile increasing the regeneration of postischemia neurocyte and promoting the proliferation and differentiation of nerve cells, the tissue repair and functional recovery after ischemia-reperfusion injury will profit from it inevitably. Cytokine is followed with interest by researchers because of its convenient availability, non-insult and potential effect of diminishing apoptosis and increasing the regeneration of nerve cells.
     Granulocyte-colony stimulating factor (G-CSF), which is granulocyte-colony hemopoietic growth factor, is used for various kinds of Neutropenia and autologous peripheral blood stem cell transplantation for immune diseases. Recent research showed that when cerebral ischemia happened G-CSF can deflate infarct volume and facilitate nerval function recovery. The possible mechanisms are : 1, promoting nerval regeneration; 2, promoting secretion of neurotrophic factor; 3, inhibiting cell apoptosis; 4, inhibiting inflammatory reaction; 5, promoting angiogenesis.
     Erythropoietin (EPO), which is a kind of glucoprotein hormone which can stimulate bone marrow hemopoiesis, is mainly produced by adult kidney and fetus liver. EPO is used for various kinds of anaemia, especially renal anaemia. Along with the developing of research, EPO is discovered to have neuroprotective effect in brain injury induced by ischemia through non-haemopoiesis correlated effect. The possible mechanisms are : 1, inhibiting cell apoptosis; 2, inhibiting inflammatory reaction; 3, diminishing the toxic reaction of excitatory amino acids; 4, resisting oxidization; 5, promoting neurogenesis and angiogenesis.
     Pathogenesy of cerebral ischemia is now considered complicated. It may be a result induced by the combined effects of multiple mechanisms. The best therapeutic efficacy can not be achieved through certain single drug treatment. It has become a new direction of research of cerebral ischemia nerve protection to combine different neuro-protectants, which have effect in different link after cerebral ischemia, to undertake multi-target and multi-link combined therapy.
     Therefore we attempted to combine two kinds of cytokines, which are different in structure and function, to treat cerebral ischemia-reperfusion injury. In this study, we used the model of oxygen glucose deprivation/reoxygenation of neurons of rats and the model of regional cerebral ischemia-reperfusion of rats, studied the protection effect of combining G-CSF and EPO to treat cerebral ischemia-reperfusion injury in two aspects including cell apoptosis and neural regeneration, and investigated the possible mechanism of action. This experiment content can be divided into four parts, which are summarized as follow:
     Part One Protection of Granulocyte-Colony Stimulating Factor Combined with Erythropoietin for the Model of Oxygen Glucose Deprivation of Neurons of Rats
     Objective: To establish the model of oxygen glucose deprivation/reoxygenation (OGD/R) of cortical neuron of neonate rats in vitro culture, and to observe the protection of therapy of G-CSF or EPO only or G-CSF combined with EPO.
     Method: Cortical neuron of neonate rats were cultured in vitro, oxygen glucose deprivation (4h)/reoxygenation (24h) were established; G-CSF and EPO were used in accordance with different concentration to study the protection for cortical neuron; optimized therapeutic strength was determined for the protection for cortical neuron which was gained by using G-CSF only or G-CSF combined with EPO; CCK-8 assay was used to determine cell viability and LDH outleakage was detected to measure the degree of cell injury; apoptosis rate was detected by means of Annexin V/PI method and the expression of apoptosis-associated protein such as Bcl-2, Bax and Caspase-3 was detected by means of Western-blot method.
     Results:
     1. The model of oxygen glucose deprivation/reoxygenation (OGD/R) of cortical neuron of neonate rats was established successfully.
     2. Treatment with G-CSF of 0.1μg/ml、1μg/ml and 10μg/ml can enhance cell viability,reduce LDH outleakage; the protection of G-CSF(1μg/ml subgroup) was strongest and G-CSF(10μg/ml subgroup) was a little lower.
     3. Treatment with EPO of 1U/ml、10U/ml and 100U/ml can enhance cell viability,reduce LDH outleakage; the protection of EPO(10U/ml subgroup) was similar to EPO(100U/ml subgroup).
     4. Treatment with G-CSF combined with EPO, compared with treatment with G-CSF or EPO only, obviously enhanced cell viability,reduced LDH outleakage and apoptosis rate (P<0.05). In comparison with G-CSF, EPO intervention obviously enhanced cell viability,reduced LDH outleakage and apoptosis rate (P<0.05).
     5. Treatment with G-CSF combined with EPO, compared with treatment with G-CSF or EPO only, obviously augmented the expression of Bcl-2, depressed the expression of Caspase-3. In comparison with G-CSF, EPO intervention obviously augmented the expression of Bcl-2, depressed the expression of Caspase-3 (P<0.05). Treatment with G-CSF or EPO only or G-CSF combined with EPO depressed the expression of Bax, but there was no significant difference in the three subgroups.
     Conclusions: G-CSF can lessen the injury of cortical neuron after OGD/R, the optimal treatment concentration is 1μg/ml. EPO can lessen the injury of cortical neuron after OGD/R, the optimal treatment concentration is 10U/ml. G-CSF combined with EPO can obviously inhibit cortical neuron apoptosis after OGD/R, augment the expression of Bcl-2, depress the expression of Bax and Caspase-3. EPO intervention can inhibit cortical neuron apoptosis obviously.
     Part Two Protection of Granulocyte-Colony Stimulating Factor Combined with Erythropoietin for the cerebral ischemia-reperfusion in Rats
     Objective: To establish the model of focal cerebral ischemia-reperfusion in rats, at the whole level to observe the protection of therapy of G-CSF or EPO only or G-CSF combined with EPO against the cerebral ischemia-reperfusion in rats, and to evaluate the validity and safety of therapeutic alliance.
     Method: The model of focal cerebral ischemia-reperfusion in rats was established by middle cerebral artery occlusion. Therapy of G-CSF or EPO only or G-CSF combined with EPO was administered for 5 days. After reperfusion for corresponding time, the neurological function score was evaluated, the infarct volume was measured with TTC stain, the brain tissue pathological changes were observed with HE stain, the brain edema was detected with dry-wet weight method, the peripheral hemogram was determined, and when the experiment completed the fatality of each group was calculated.
     Results:
     1. The model of focal cerebral ischemia-reperfusion in rats was established successfully, and the success rate of mold is 73.9%.
     2. The neurological function score of the three treatment groups after reperfusion for 3d, 7d,and 14d obviously exceeded that of the I/R group, and the difference was significant(P<0.05). Compared to G-CSF or EPO group, the neurological function score was significantly higher in G-CSF+EPO group (P<0.05). There was no significant difference, after each corresponding time, in the neurological function score of G-CSF group compared with that of EPO group.
     3. The cerebral infarction focus was mainly situated in cerebral cortex and basal ganglia area. After reperfusion for 3d and 7d, the infarct volume of the three treatment groups was significantly reduced compared to the I/R group. The infarct volume of G-CSF+EPO group was obviously reduced compared to that of the G-CSF or EPO group, which has significant difference (P<0.05 repectively). There was no significant difference, after each corresponding time, in the infarct volume of G-CSF group compared with that of EPO group.
     4. In I/R group, tissue HE staining showed that the brain tissue edema was obvious, the neurocyte was rarefied, the inter-space between cells became wide, the cell volume became small, the nucleus was pyknotic, the chromatospherite became not clear, cell necrosis changes such as nuclear fragmentation and caryolysis etc appeared in the center of ischemia. In each treatment group, neurocyte damage was obviously lessened, cell necrosis was reduced, and tissue edema was improved.
     5. In I/R group, the body weight of rats was reduced obviously, after 7d the weight appeared to increase and afterward continued to increase. After reperfusion for 1d and 3d, there was no significant difference in the weight of the three treatment groups compared with that of the I/R group. After reperfusion for 7d and 14d, the weight of the three treatment groups increased significantly compared to that of the I/R group (P<0.05). There was no significant difference, after each corresponding time, in the body weight of the three treatment groups when compared with each other.
     6. The fatality of the I/R group was 31.91%. The fatality of the three treatment group (G-CSF group 20.0%, EPO group 17.94% and G-CSF+EPO group 17.94%) was significantly reduced compared to that of the I/R group (P<0.05), but there was no significant difference in the fatality of the three treatment groups when compared with each other.
     7. There was no significant difference in the water content of brain tissue of the three treatment groups after reperfusion for 1d, and 3d compared with that of the I/R group. After reperfusion for 7d, the water content of brain tissue of the three treatment groups was reduced significantly compared to that of the I/R group (P<0.05). There was no significant difference, after each corresponding time, in the water content of brain tissue of the three treatment groups when compared with each other.
     8. There was no significant difference, after each corresponding time, in HB, RBC and PLT of each group when compared with each other. The WBC of I/R group began to increase after 1d, peaked after 7d and then began to decline after 14d. There was no significant difference, after each corresponding time, in the WBC of the three treatment groups when compared with each other (P>0.05); but the WBC of each treatment group was obviously more than that of control group (P<0.05).
     Conclusions: Therapy of G-CSF combined with EPO can obviously improve the neurological function symptoms of rats, reduce the infarct volume, lessen the pathological changes of brain tissue, reduce the fatality of rats and has protection against cerebral ischemia-reperfusion injury. Temporarily combining G-CSF with EPO does not has obvious effect on the blood parameters, and the dosage of the used drug is safe.
     Part Three Research of the effect of Granulocyte-Colony Stimulating Factor Combined with Erythropoietin on the neurocyte apoptosis of the cerebral ischemia-reperfusion in Rats
     Objective: To observe the effect of G-CSF or EPO only or combined treatment on the neurocyte apoptosis of the cerebral ischemia-reperfusion in rats and its mechanism.
     Method: After each corresponding time of reperfusion, the quantity of neurocyte apoptosis in the ischemia brain tissue of rats was determined by tissue TUNEL staining. The expression of apoptosis-associated protein such as Bcl-2, Bax and Caspase-3 was detected by means of Immunohistochemistry method. The activity of p-Akt was detected by means of Western-blot method.
     Results:
     1. The cell apoptosis of I/R group occurred considerably after 1d, peaked after 3d and then began to decline after 7d. There was no significant difference in the cell apoptosis quantity of the three treatment groups after reperfusion for 1d compared with that of the I/R group. After reperfusion for 3d and 7d, the cell apoptosis quantity of the three treatment groups was reduced significantly compared to that of the I/R group (P<0.05), and the cell apoptosis quantity of G-CSF+EPO group was obviously reduced compared to that of the G-CSF or EPO group, which has significant difference (P<0.05 respectively). After reperfusion for 3d and 7d, the cell apoptosis quantity of the EPO group was reduced obviously compared to that of the G-CSF group (P<0.05 respectively).
     2. The expression of Bcl-2 and Caspase-3 of the G-CSF+EPO group was obviously augmented and obviouly depressed respectively compared to that of the G-CSF group or EPO group. The expression of Bcl-2 and Caspase-3 of the EPO group was obviously augmented and obviouly depressed respectively compared to that of the G-CSF group, which has significant difference (P<0.05). Compared with I/R group, the expression of Bax of G-CSF group, EPO group and G-CSF+EPO group was depressed, but there was no significant differance in the expression of Bax of the three treatment groups when compared with each other.
     3. The activity of the brain tissue p-Akt was obviously increased in I/R group. In the three treatment groups, the activity of p-Akt was increased respectively. The activity of p-Akt of the G-CSF+EPO group was obviously increased compared to that of the G-CSF group and the EPO group (P<0.05). There was no significant difference in the activity of p-Akt when compared the G-CSF group with the EPO group.
     Conclusions: Therapy of G-CSF combined with EPO can obviously reduce the neurocyte apoptosis of the cerebral ischemia-reperfusion, augment the expression of Bcl-2 and depress the expression of Bax and Caspase-3. Combined treatment can have synergetic effect of inhibiting apoptosis partly by means of activating PI-3K/Akt signaling pathway. EPO has significant effect in respect of inhibiting neurocyte apoptosis.
     Part Four Research of the effect of Granulocyte-Colony Stimulating Factor Combined with Erythropoietin on the neural regeneration of the cerebral ischemia-reperfusion in Rats
     Objective: To observe the effect of G-CSF or EPO only or combined treatment on the neural proliferation, differentiation and the expression of neurotrophic factors of the cerebral ischemia-reperfusion in rats.
     Method: The proliferative cells were marked by Brdu. After each corresponding time of reperfusion, the Brdu positive cells of cerebral ischemia in rats of each group were detected by single fluorescent staining. The Brdu/NeuN and Brdu/GFAP both positive cells were detected by double-label immunofluorescence assays. The expression of neurotrophic factors including BDNFmRNA and NGFmRNA are detected by means of RT-PCR.
     Results:
     1. In I/R group sporadic BrdU positive cells were observed after reperfusion for 1d, the quantity of the BrdU positive cells peaked after reperfusion for 7d and began to decline after reperfusion for 14d. There was no significant difference in the BrdU positive cell quantity of the three treatment groups after reperfusion for 1d and 3d when compared with each other or compared to that of the I/R group. After reperfusion for 7d and 14d, the BrdU positive cell quantity of the three treatment groups respectively exceeded that of the I/R group significantly (P<0.05) and the BrdU positive cell quantity of G-CSF+EPO group significantly exceeded that of the G-CSF group or the EPO group respectively (P<0.05). After reperfusion for 7d and 14d, the BrdU positive cell quantity of the G-CSF group was obviously increased compared to that of the EPO group (P<0.05 respectively).
     2. The Brdu/NeuN and Brdu/GFAP both positive cells were observed in the I/R group. The Brdu/NeuN and Brdu/GFAP both positive cell quantity of the three treatment groups respectively exceeded that of the I/R group significantly (P<0.05); and the Brdu/NeuN and Brdu/GFAP both positive cell quantity of G-CSF+EPO group significantly exceeded that of the G-CSF group or the EPO group respectively (P<0.05). The Brdu/NeuN and Brdu/GFAP both positive cell quantity of the G-CSF group was obviously increased compared to that of the EPO group (P<0.05).
     3. The expression of BDNFmRNA in the I/R group was augmented obviously. The expression of BDNFmRNA of the three treatment groups respectively was augmented significantly compared to that of I/R group (P<0.05 respectively). But there was no significant differance in the expression of BDNFmRNA of the three treatment groups when compared with each other.
     4. The expression of NGFmRNA in the I/R group was augmented obviously. The expression of NGFmRNA of the three treatment groups respectively was augmented significantly compared to that of I/R group (P<0.05 respectively). The expression of NGFmRNA of the G-CSF+EPO group was augmented significantly compared to that of the G-CSF group or the EPO group. The expression of NGFmRNA of the G-CSF group was augmented significantly compared to that of the EPO group (P<0.05)
     Conclusions: Therapy of G-CSF combined with EPO can obviously promote the neural proliferation and the differentiation to neurons and glial cell of the cerebral ischemia-reperfusion in Rats, augment the expression of neurotrophic factors including BDNFmRNA and NGFmRNA. G-CSF has significant effect in respect of promoting neural regeneration.
引文
[1] KT Liou, YC Shen, CF Chen, et al. Honokiol protects rat brain from focal cerebral ischemia-reperfusion injury by inhibiting neutrophil infiltration and reactive oxygen species production. Brain Res, Dec 2003; 992(2): 159-66.
    [2] Chen J, LI Y, wang L, et al.Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats[J]. Stroke, 2001;32(4):1005-1011.
    [3] Chen J, Zhang ZG, LI Y, et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res, 2003; 92:692-699.
    [4] Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cellsdifferentiate into neural cells in vitro. Exp Neurol, 2000:164(2):247-256.
    [5] Chen J, LI Y, Katakowski M, et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. Neurosei Res, 2003;73(6):778-786.
    [6] Anel A, Martin S. Erythroleukemia cells induced to differentiate accumulation and gene expression of the transformation-associated cellular protein P53[J]. J Mol Biol, 1988, 2002(1):55-64.
    [7] Gibson CL, Bath PM, Murphy SP. G-CSF reduces infarct volume and improves functional outcome after transient focal cerebral ischemia in mice. Cereb Blood Flow Metab, 2005; 25:431-439.
    [8] Park HK, Chu K, Lee ST, et al. Granuloeyte colony-stimulating factor induces sensorimotor recovery in intracerebral hemorrhage. Brain Res, 2005; 1041(2):125-131.
    [9] Zhang ZG, Zhang L, Jiang Q, et al. Bone marrow derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res, 2002, 90:284-288.
    [10] Gibson CL, Bath PM, Murphy SP. G-CSF reduces infarct vo1ume and improves functional outcome after transient focal cerebral ischemia in mice[J] . J Cereb Blood Flow Metab, 2005, 25(4):431-439.
    [11] Digicaylioglu M, Lipton SA. Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappa B signalling cascades [J]. Nature, 2001, 412:641-647.
    [12] Kawakami M,Sekiguchi M,Sato K,et al. Erythropoietin receptor mediatedn inhibition of exocytotic glutamate release confers neuroprotection during chemical ischemia[J]. J Biol Chem, 2001, 276:39469-39475.
    [13] Solaroglu I, Solaroglu A, Kaptanoglu E, et al. Erythropoietin prevents ischemia- reperfusion from inducing oxidative damage in fetal rat brain[J]. Childs Nerv Syst, 2003, 19:19-22.
    [14] Ribatti D, Presta M, Vaeea A, et al. Human erythropoietin induces a pro-angiogenie phenotype in cultured endothelial cells and stimulates neovaseularization in vivo[J]. Blood, 1999, 93:2627-2636.
    [1] Yu AC, Sun CX, Li Q, et al. Identification of a mouse synaptic glycoprotein gene in cultured neurons [J]. Neuro chem Res, 2005, 30(10):1289-1294.
    [2] Fernández-Tomé. Inhibition of Glutamate Release via Recovery of ATP Levels Accounts for a Neurons Exposed to Oxygen-Glucose Deprivation Neuroprotective Effect of Aspirin in Rat Cortical. Stroke, 2002;33:261-267.
    [3]任历,于洪儒,王洪新.几种体外培养神经细胞缺氧模型效果的对比.辽宁医学院学报,2007;28(l):20-22.
    [4] Choi IY, Yan H, Park YK, et al. Sauchinone reduces oxygen-glucose deprivation-evoked neuronal cell death via suppression of intracellular radical production. J Arch Pharm Res. 2009, 32(11):1599-1606.
    [5]田映红,李树基,李晓文等.大鼠海马神经细胞体外缺糖缺氧模型制备方法的改进.中国组织工程研究与临床康复. 2(X)7;1l(15):2810-2813.
    [6] Bossenmeyer-PouriéC, Lièvre V, Grojean S, et al. Sequential expression patterns of apoptosis and cell cycle-related proteins in neuronal response to severe or mild transient hypoxia. Neurosicence, 2002, 114(4):869-82.
    [7] Burgess A, Metcalf D. Characterization of a serum factor stimulating the differentiation of myelomonocytic leukemia cells[J]. Int J Cancer, 1980, 26 (5):647-651.
    [8] Kuderer NM, Dale DC, Crawford J, et al. Impact of primary prophylaxis with granulocyte colony stimulating factor on febrile neutropenia and mortality in adult cancer patients receiving chemotherapy: a systematic review. J Clin Oncol. 2007 Jul 20; 25(21):3158- 3167.
    [9] Kurdi M, Booz GW. G-CSF-based stem cell therapy for the heart-unresolved issues part A: paracrine actions, mobilization and delivery. Congest Heart Fail. 2007 Jul-Aug13 (4): 221-227.
    [10] Sehara Y, Hayas hi T, Deguchi K, et al. Potentiation of neurogenesis and angiogenesis by G-CSF after focal cerebral ischemia in rats. Brain Res. 2007 Jun 2;1151:142-149.
    [11] Piscaglia AC, Shupe TD, Oh SH, et al. Granulocyte-colony stimulating factor promotes liver repair and induces oval cell migration and proliferation in rats. Gastroenterology, 2007 Aug;133(2):619-631.
    [12] Da SN, Meyer MS, Menot ML, et al. G-CSF activates STAT pathways in Kasumi- 1myeloid leukemic cells with the t (8;21) translocation: basis for potential therapeutic efficacy[J]. Cytokines Cell Mol Ther, 1997, 3(2):75-78.
    [13]陈会从,侯金才.粒细胞集落刺激因子对氧糖剥夺后培养神经元的影响.现代医学生物进展, 2008, 8(7):1205-1207.
    [14] Maiese K, Li F, Chong ZZ, et al. New avenues of exploration for Erythropoietin[J]. JAMA, 2005, 293(l):90-95.
    [15] Sinor AD, Greenberg DA. Erythropoietin protects cultured cortical neurons, but not astroglia, from hypoxia and AMPA toxicity. Neuroscience Letters, 2000, 290(3):213-215.
    [16] Morishita E, Masuda S, Nagao M, et al. Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro lutamate induced neuronal death [J]. Neuroscienee, 1997, 76(l):105-116.
    [17] Chong ZZ, Kang JQ, Maiese K, et al. Erythropoietin fosters both intrinsic and extrinsic neuronal protection through modulation of microglia, Aktl, Bad, and caspase-mediated pathways[J]. Br J Phannaeol, 2003, 138(6):1107-1118.
    [18] Chong ZZ, Kang JQ, Maiese K, et al. Apaf-1, Bcl-xL, cytochrome-c, and caspase-9 form the critical elements for cerebral vascular protection by erythropoietin[J]. J Cereb Blood Flow Metab, 2003, 23(3):320-330.
    [19] Wu C, Fujihara H, Yao J, et al. Different expression patterns of Bcl-2, Bcl-xl, and Bax proteins after sublethal forebrain ischemia in C57 Black/Crj6 Mouse Striatum[J]. Stroke, 2003, 34(7):1803-1808.
    [20] Schwarz CS, Evert BO, Seyfried J, et al.Overexpression of bcl-2 results in reduction of cytochrome c content and inhibition of complex I activity [J]. Biochem Biophys Res Commun, 2001, 280(4):1021-1027.
    [21] Orrenius S. Mitochondrial regulation of apoptotic cell death [J]. Toxicol Lett, 2004, 149 (1-3):19-23.
    [22] Hsu SY, Hsueh AJ. Tissue-specific Bcl-2 protein partners in apoptosis: An ovarian paradigm [J]. Physiol Rev, 2000, 80 (2):593-614.
    [23] Swanton E, Savory P, Cosulich S. Bcl-2 regulates a caspase-3/caspase-2 apoptotic cascade in cytosolic extracts [J]. Oncogene, 1999, 18(10):1781-1787.
    [24] Crompton M, Barksby E, Johnson N, et al. Mitochondrial intermembrane junctional complexes and their involvement in cell death[J]. Biochimie, 2000, 84(1-2):143-152.
    [25] Shimizu S, Ide T, Yanagida T, et al. Electrophysiological study of a novel large pore formed by Bax and the voltage dependent anion channel that is permeable to cytochrome c[J].J Biol Chem, 2000, 275(16):12321-12325.
    [26] Burlacu A. Regulation of apoptosis by Bcl-2 family proteins[J]. J Cell Mol Med, 2003, 7(3):249-257.
    [27] Kuwana T, Mackey MR, Perkins G, et al. Bid, Bax and lipids cooperate to form supramole- cular openings in the outer mitochondrial membrane[J]. Cell, 2002, 111(3):331-342.
    [28] Guan QH, Pei DS, Liu XM, et al. Neuroprotection against ischemic brain injury by SP600125 via suppressing the extrinsic and intrinsic pathways of apoptosis [J]. Brain Res. 2006, 1092(1):36~46.
    [29] Miao Y, Xia Q, Hou Z, et al. Ghrelin protects cortical neuron against focal ischemia reperfusion in rats[J]. Biochem Biophys Res Commun. 2007, 359(3):795-800.
    [30] Mesaeli N, Nakamura K, Zvariteh E et al. Calreticulin is essential for cardiac development [J]. J Cell Biol, 1999, 144(5):857-68.
    [1] Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20 (1):84-91.
    [2] Koizumi J, Yoshida Y, Nakazawa T, et al. Experimental studies of ischemic brain edema a new experimental model of cerebral embolism in rats in which recirculation can be induced in the ischemic area [J]. Stroke, 1986, 8 (1):1-8.
    [3] Garcia JH, Wagner S, Liu KF, et al. Neurological deficit and extent of Neuronal necrosis attributable to middle cerebral artery occlusion in rat’s statistical validation [J]. Stroke, 1995, 26:627.
    [4] Anel A, Martin S, et al. Erythroleukemia cells induced to differentiate accumulation and gene expression of the transformation-associated cellular protein P53[J]. J Mol Biol, 2002(1): 55-64.
    [5] Chen JI, Li Y, Lei WL, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke, 2001, 32:1005-1008.
    [6] Seabiz WR, Kollmar R, Sehwaninger M, et al. Neuroprotective effect of granulocyte colony stimulating factor after focal cerebral ischemia. Stroke, 2003, 34(3):745-751.
    [7] Park HK, Chu K, Lee ST, et al. Granuloeyte colony-stimulating factor induces sensorimotor recovery in intracerebral hemorrhage. Brain Res, 2005, 1041(2):125-131.
    [8] Lee ST, Chu K, Jung KH, et al. Granuloeyte colony-stimulating factor enhances angiogenesis after focal cerebral ischemia. Brain Res, 2005, 1058(1):120-128.
    [9] Muraro PA, Cassiani IR, Martin R. Hematopoietic stem cell transplantation for multiple sclerosis: current status‘and future challenges. Curr Opin Neurl, 2003, 16(3):299.
    [10] Kalka C, Asahara T, Krone W, et al. Angiogenesis and vasculogenesis therapeutic strategies for stimulation of postnatal neovascularization. Herz, 2000, 25(6):611-622.
    [11] Hu B, Yasui K. Effeets of colony stimulating factor on neutrophil apoptosis: possible roles at inflammation site. Int J Hematol, 1997, (2):179-188.
    [12]于炳新,吕传真,罗玉敏. rhG-CSF增加脑缺血周边区的nestin表达.中国临床神经科学2003, 11(2):152-154.
    [13]李竟,任力杰,韩漫夫等.粒细胞集落刺激因子治疗急性脑梗死的临床研究[J].国外医学.脑血管病手册, 2005, 13(2):106-108.
    [14]葛朝莉,白润涛,韩漫夫等.动员自体骨髓干细胞治疗急性缺血性脑卒中的临床研究[J].卒中与神经疾病, 2005, 12(3):161-163.
    [15] Shyu WC, Lin SZ, Lee CC, et al. Granulocyte colony stimulating factor for acute ischemic stroke: a randomized controlled trial [J]. CMAJ, 2006, 174(7):927-933.
    [16] MENG xiao-dong et, Effect of erythropoietin pretreatment on relative expression of bcl-xl and CytC in hippocampal CA1 subregion after transient global cerebral ischemia [J]. China Journal of Modern Medicine. 2005, Vol 15, 77-80.
    [17]曾志磊,娄季宇,苗旺等.促红细胞生成素对大鼠脑缺血再灌注损伤后缺血侧皮层神经元凋亡和Bcl-2表达的影响.实用神经疾病杂志, 2005, May,vol: 8, No2,31-32.
    [18] Villa P, Bigini P, Mennini T, et al. Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis[J]. J Exp Med, 2003, 198(6):971-975.
    [19] Digicaylioglu M, Lipton SA.Erythopoietin-mediated neuro-protection involves cross-talk between Jak-2 and NF-кB signaling ascades[J]. Nature, 2001, 412:641-647.
    [20] Kawakami M, Sekiguchi M, Sato K, et al. Erythopoietin receptor-mediated inhibition of ex-ocytotic glutamate release confers neuroprotection during chemical ischemia[J]. Biol Chem,2001, 276 :39469-39475.
    [21] Wang L, Zhang Z, Wang Y, et al. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats [J]. Stroke, 2004, 35(7):1732-1737.
    [22] D Ribatti, A Vaeea, E Crivellato, et al. Erythropoietin as an angiogenic factor. Eur. J. Clin. Invest, 2003, 33:891-896.
    [23] Ehrenreich H, Hasselblatt M, Dembowski C, et al. ErythLropoietin therapy for acute stroke is both safe and beneficial[J]. Mol Med, 2002, 8:495-505.
    [24] Squadrito F, Altavilla D, Squadrito G, et al. The effects of recombinant human granulocyte colony stimulating factor on vascular dysfunction and splanchinic ischemia-reperfusion injury. British Journal of Pharmacology, 1997, 120:333-339.
    [1] Cui J, Holmes EH, Greene TG, , et al. Oxidative DNA damage Precedes DNA fragmentation after experimental stroke in rat brain[J]. FASEB, 2000, 14(7):955-967.
    [2] Sehabitz WR, Kolmar R, Sehwaninger M, et al. Neuropretective effect of granulocyte colony stimulating factor after focal cerebral ischemia. Stroke, 2003, 34(3):745-751.
    [3] Gibson CL, Bath PM, Murphy SP. G-CSF reduces infarct volume and improves functional outcome aftert ransient focal cerebral ischemia in mice. J Cereb Blood Flow Metab, 2005, 25(4):431-439.
    [4] Graham SH, Chen J, Clark RS. Bcl-2 family gene products in cerebral ischemia and traumatic brain injury[J]. J Neurotrauma, 2000, 17:831-841.
    [5] Gibson CL, Jones NC, Prior MJ, et al. G-CSF suppresses edema formation and reduces interleukin-1βexpression after cerebral ischemia in mice[J]. J Neuropathol Exp Neurol, 2005, 64:763-769.
    [6] Lee ST, Chu K, Jung KH, et al. Granulocyte colony-stimulating factor enhances angiogenesis after focal cerebral ischemia[J]. Brain Res, 2005, 1058(1/2):120-128.
    [7] Cattaneo E, Conti L, De-Fraja. Signalling through the JAK-STAT pathway in the developing brain[J]. Trends Neurosci, 1999, 22:365-369.
    [8] Digicaylioglu M, Lipton SA. Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappa B signalling cascades[J]. Nature, 2001, 412:641-647.
    [9] Solaroglu I, Solaroglu A, Kaptanoglu E, et al. Erythropoietin prevents ischemia reperfusion from inducing oxidative damage in fetal rat brain[J]. Childs Nerv Syst, 2003, 19:19-22.
    [10] Kawakami M, Sekiguchi M, Sato K, et al. Erythropoietin receptor mediatedn inhibition of exocytotic glutamate release confers neuroprotection during chemical ischemia[J]. J Biol Chem, 2001, 276:39469-39475.
    [11] Ribatti D,Presta M.Vaeea A, et al. Human erythropoietin induces a pro-angiogeniephenotype in cultured endothelial cells and stimulates neovaseularization in vivo[J]. Blood, 1999, 93:2627-2636.
    [12]章军建,阮旭中,张苏明等.大鼠局灶性脑缺血再灌流半暗带神经细胞坏死与凋亡的动态变化[J].中华老年医学杂志, 1999, 18(3):170-173
    [13] Lawrenee, M. Agius. Interactive Dynamics of the Penumbral Zone in Neuronal Ischemia and Prosurvival[J]. Intemational Journal of Molecular Medicine and Advance Sciences, 2006, 2(l):84-89.
    [14] Wennersten A, Holmin S, MathiesenT. Charaeterization of Bax and Bcl-2 in apopotosis after experimental traumatic brain injury in the rat[J]. Acta Neuropathol. 2003, 105(3): 281-288.
    [15] Ly JD, Grubb DR, Lawen A. The mitochondrial membrane potential deltapsi (m) in apoptosis:an update[J]. Apoptosis, 2003, 8(2):115-28.
    [16] Boehning D, van Rossum DB, Patterson RL, et al. A peptide inhibitor of cytochrome-c /inositol l, 4, 5-trisphosphate receptor binding blocks intrinsic and extrinsic cell death pathways[J]. Proc Natl Acad Sci USA, 2005, 102(5):1466-71.
    [17] Yuan J, Yankner BA. Apoptosis in the nervous system[J]. Nature, 2000, 407(6805): 802-809.
    [18] Adrain C, Martin SJ. The mitochondrial apoptosome: a killer Unleashed by the cytochromes [J]. Trends Biochem Sci, 2001, 26(6):390-397.
    [19] Daniel PT.Dissecting the pathways to death[J]. Leukemia, 2000, 14(12):2035-2044.
    [20] Goonesinghe A, Mundy E, Smith M, et al. Pro-apoptotic Bid induces membrane perturbation by inserting selected lysolipids into the bilayer[J]. Biochem J, 2005, 387(1):109-118.
    [21] McConkey DJ, Nutt LK. Calcium flux measurements in apoptosis[J]. Methods Cell Biol, 2001, 66(2):229-246.
    [22] Fujimura M, Morita-Fu, Murakami K, et al. Cytosolic redistribution of Cytochrome-c after Transient focal cerebral ischemia in rats[J]. J Cereb Blood Flow, 1998, 18(11):1239-47.
    [23] Fujimura M, Morita-Fujimura Y, Kawase M, et al. Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice [J]. J Neurosci, 1999, 19(9): 3414-3422.
    [24] Green DR. Apoptotic pathway: the roads to ruin[J]. Cell, 1998, 94(6):695-698.
    [25]高唱,吴伟康. Akt信号通路在HD02抗慢性前脑缺血大鼠神经细胞凋亡中的作用.中国临床康复, 2004, 8(1):56-57.
    [26] Williams DL, Ozment-Skelton T, Li C. Modulation of the phosphoinositide-3 kinasesignaling pathway alters host response to sepsis, inflammation and ischemia/reperfusion injury. Shock, 2006, 25(5):432-9.
    [27] Jiang X, Wang X. Cytochrome C-mediated apoptosis. Annu Rev Biochem. 2004, 73:87-106.
    [28] Zong WX, Edelstein LC, Chen C, et al. The prosurvival Bcl-2 homolog Bfl-l/A1 is a direct transcriptional target of NF-KB that blocks TNFalpha induced apoptosis. Genes Dev.1999, 13(4):382-387.
    [29] Thompson JE, Thompson CB. Putting the Rap on Akt. Clin Oncol. 2004, 1522(20): 4217-26.
    [30] Annunziato L, Pignataro G, Boscia F, et al. Ncx1, ncx2, and ncx3 gene product expression and function in neuronal anoxia and brain ischemia. Ann NY Acad Sci. 2007, 1099: 413-426.
    [31] Oyadomari S, Araki E, Mori M. EndoPlasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis. 2002, 7:335-345.
    [32] Nakajima T, Iwabuehi S, Miyazaki H, et al. Preconditioning prevent ischemia-induced neu- ronal death through persistent Akt activation in the penumbra region of the rat brain. J Vet Med Sci. 2004, 66(5):521-527
    [1] Chen J, LI Y, wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemic in rats[J]. Stroke, 2001; 32(4):1005-1011.
    [2] Chen J, Zhang ZG, LI Y, et al.Intravenous administration of human bone marrow stromal cell induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res. 2003;92: 692 -699.
    [3] LI Y, Chen J, Chen XG, et al. Human marrow stromal cell therapy for stroke in rat: neurotro-phins and functional reeovery. Neurology.2002:59(4):514-523.
    [4] Garcia R, Aguiar J, Alberti E, et al. Bone marrow stroml cells produce nerve growth factor and glial cell line-derived neurotrophic factors. Biochem Biophys Res Commun. 2004: 316(3):753-754.
    [5] Chen J, LI Y, Katakowski M, et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. Neurosei Res.2003; 73(6):778-786.
    [6] Chopp M, Li Y. Treatment of neural injury with marrow stromal cells. Lancet Neurol. 2002; l (2):92-100.
    [7] Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differen-tiate into neural cells in vitro. Exp Neurol. 2000:164(2):247-256.
    [8] Gibson CL, Bath PM, Murphy SP. G-CSF reduces infarct volume and improves functional outcome after transient focal cerebral ischemia in mice.Cereb Blood Flow Metab.2005;25: 431-439.
    [9] Schabitz WR, Kolmar R, Schwaninger M, et al. Neuroprotective effect of granulocyte colony stimulating factor after focal cerebral ischemia. Stroke, 2003:34(3):745-751.
    [10] Kawada H, Takizawa S, Takanashi T, et al. Administration of hematopoietic cytokines in the subacute phase after cerebral infarction is effective for functional recovery facilitating proliferation of intrinsic neural stem/progenitor cells and transition of bone marrow- derived neuronal cells. Circulation. 2006;113(5):701-710.
    [11] Shyu WC, Lin SZ, Yang HI, et al. Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation. 2004:110(13): 1847-1854.
    [12] MENG L, San L. Effect of erythropoietin pretreatment on relative expression of bcl-xl and Cyt-C in hippocampal CA1 subregion after transient global cerebral ischemia[J]. China Journal of Modern Medicine. 2005, Vol 15,77-80.
    [13] Lu D, Mahmood A, Qu C, et al. Erythropoietin enhances neurogenesis and restores spatialmemory in rats after traumatie brain injury. J Neurotranma, 2005, 2(9):1011-1017.
    [14] Lee SM, Nguyen TH, Park MH, et al. EPO receptor-mediated ERK kinase and NF-kappa B activation in erythropoietin-promoted differentiation of astrocytes. Bioehem Biophys Res commun, 2004, 320(4):1087-1095.
    [15] Wang L, Zhang Z, Wang Y, et al. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats [J]. Stroke, 2004, 35(7):1732-1737.
    [16] Zhou HL, Yang HJ, Li YM, et al. Changes in Glial Cell Line-derived Neurotrophic Factor Expression in the Rostral and Caudal Stumps of the Transected Adult Rat Spinal Cord. Neurochem Res. 2008 May;33(5):927-37.
    [17] Wei D, Jin Z, Jarlebark L, et al. Survival, synaptogenesis and regeneration of adult mouse spiral ganglion neurons in vitro. Dev Neurobiol. 2007 Jan;67(1):108-22.
    [18] Swanson RA, Ying W, Kauppinen TM. Astrocyte Influences on ischemic neuronal Death [J]. Current Molecular Medicine, 2004, 4:193-205.
    [19] Song H, Stevens CF, Gage FH. Astroglia induce neurogenesis from adult neural stem cells [J]. Nature, 2002,417:39-44.
    [20]于炳新,吕传真,罗玉敏. rhG-CSF增加脑缺血周边区的nestin表达.中国临床神经科学. 2003, 11(2):152-154.
    [21] Legos JJ, Barone FC. Update on pharmacological strategies for stroke: prevention, acute intervention and regeneration.Curr Opin Investing Drugs, 2003, 4(7):847-859.
    [22]袁丽波,席焕久,于红.神经生长因子治疗脑缺血性疾病的研究.医学综述, 2008, 14(4): 518-520.
    [23]刘崴,程焱,王虔.脑源性神经营养因子与缺血性脑损伤.国外医学脑血管疾病分册, 2004,12(6):433-6.
    [24] Marini AM, Jiang X, Wu X, et al. Role of brain-derived neurotrophic factor and NF-kappa B in neuronal plasticity and survival: From genes to phenotype. Restor Neurol Neurosci, 2004, 22(2):121-30.
    [25] Patapoutian A, Reichardt LF. Trk receptors: mediators of neurotrophin Action. Curr Opin Neurobiol, 2001, 11(3):272-280.
    [26] Matsuzaki H, NAmikawa K, Kiyama H, et al. Brain-derived neurotrophic Factor rescues neuronal death induced by methamphetamine. Boil Psychiatry, 2004, 55(l):52-60.
    [27] Kokaia Z, Zhao Q, Kokaia M, et al. Regulation of brain-derived neurotrophic factor gene expression after transient middle cerebral artery occlusion with and without brain damage. Exp Neurol, 1995, 136(1):73-58.
    [28] Kim MW, Bang MS, Han TR, et al. Exercise increased BDNF and trkB in the contralateral hemisphere of the ischemic rat brain. Brain Res, 2005, 1052(1):16-21.
    [29] Lang EM, Asan E, Plesnila N, et al. Motoneuron survival after C7 nerve root avulsion and replantation in the adult rabbit: Effects of local ciliary neurotrophic factor and brain-derived neurotrophic factor application. Plast Reconstr Surg, 2005, 115(7):2042-50.
    [30] Han BH, D’Costa A, Back SA, et al. BDNF blocks caspase-3 activation in neonatal hypoxia ischemia. Neurobiol Dis, 2000, 7(1):38-53.
    [31] Nomura T, Honmou O, Harada K, et al. I.V.infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in acerebral ischemia model in adult rat. Neuroscience, 2005, 136(1):161-169.
    [32] Tirassa P, Manni L, Aloe L, et al.Cholecystokinin-8 and nerve growth factor: two endogen- ous molecules working for the upkeep and repair of the nervous system. Curr Drug Targets CNS Neural Disord, 2002, 1(5):495-510.
    [33] Holtzman DM, Sheldon RA, Jaffe W, et al. Nerve growth factor protects the neonatal brain against hypoxic-ischemic injury. Ann Neurol, 1996, 39(1):114-122.
    [34] Guégan C, Ceballos-Picot I, Chevalier E, et al. Reduction of ischemic damage in NGF tran- sgenic mice: correlation with enhancement of antioxidant enzyme activeties. Neurobiol Dis, 1999, 6(3):180-9.
    [35] Cheng B, McMahon DG, Mattson MP. Modulationof calcium current,intracellular calcium levels and cell survival by glucose deprivation and growth factors in hippocampal neurons. Brain Res, 1993, 607(1-2):275-85.
    [36] Lee TH, Kato H, Chen ST, et al. Expression of nerve growth factor and trkA after transient focal cerebral ischemia in rats. Stroke.1998, Aug;29(8):1687-97.
    [1] Metealf D. The molecular biology and functions of the granulocyte macrophage colony stimulating factors. Blood 1986, 67(2):257-267.
    [2] Kuderer NM, Dale DC, Crawford J,et al. Impact of primary prophylaxis with granulocyte colony-stimulating factor on febrile neutropenia and mortality in adult cancer patients receiving chemotherapy:a systematic review. J Clin Oncol, 2007, Jul ,20;25(21):3158- 3167.
    [3] Kurdi M, Booz GW. G-CSF-based stem cell therapy for the heart-unresolved issues part A: paracrine actions, mobilization, and delivery. Congest Heart Fail, 2007 Jul-Aug; 13(4): 221-227.
    [4] Shyu WC, Lin SZ, Lee CC, et al. Granulocyte colon-stimulating factor for acute ischemic stroke:a randomized controlled trial[J]. CMAJ, 2006,174:927-933.
    [5] Burgess A, Metcalf D. Characterization of a serum factor stimulating the differentiation of myelomonocytic leukemia cells. Int J Cancer, 1980, 2(5): 647-651.
    [6] Boneberg EM, Hartung T. Molecular aspects of anti-inflammatory action of G-CSF[J].Inflamm Res, 2002, 51(3):119-128.
    [7] Hoglund M.Glycosylated and non-glycosylated recombinant man granulocyte colony stimulating factor(rhG-CSF)-what difference?[J]. Med Oncol, 1998,15(4):229-233.
    [8] Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 2004, 428(6983): 664-668.
    [9] Layton JE, Hall NE. The interaction of G-CSF with its receptor[J]. Front Biosci, 2006, 1(11):3181-3189.
    [10] Kamezaki K, Shimoda K, Numata A , et al. Roles of Stat3 and ERK in G-CSF signaling. Stem Cells, 2005, 23 ( 2 ): 252-263.
    [11] Layton JE, Hall NE. The interaction of G-CSF with its receptor[J]. Front Biosci, 2006, 1(11):3181-3189.
    [12] Ohlsson AL, Johansson BB (1995). Environment influences functional outcome of cerebral infarction in rats. Stroke 26:644-649.
    [13] Kleinschnitz C, SchroeterM, Jander S, et al. Induction of granulocyte colony stimulating factor mRNA by focal cerebral ischemia and cortical spreading depression. Brain Res Mol Brain Res, 2004, 131(1-2): 73-78.
    [14] Armin Sehneider,Carola Kruger, Tobias Steigleder. The hematopoietic factor G-CSF is a neuronal 1igand that counteracts programmed cell death and drives neurogenesis. Clin Invest, 2005, 115(8):2083-98.
    [15] Schneider A, Kruger C, Steigleder T, et al. The hematopoietic factor G-CSF is a neuronal ligand that counteract sprogrammed cell death and drives neurogenesis. J Clin Invest [J]. Epub, 2005, 115(8):2083-2098.
    [16] Da SN, Meyer MS, Menot ML, et al. G-CSF activates STAT pathways in Kasumi-myeloid leukemic cells with the t(8;21) translocation: basis for potential therapeutic efficacy[J]. Cytokines Cell Mol Ther, 1997, 3(2):75-78.
    [17] Schabitz WR, Kollmar R, Schwaninger M, et al. Neuroprotective effect of granulocyte colony stimulating factor after focal cerebral ischemia[J]. Stroke, 2003, 34(3):745-751.
    [18] Schabitz WR , Kollmar R , Schwaninger M, et al. Neuro protective effect of granulocyte colony stimulating factor after focal cerebral ischemia. Stroke, 2003, 34(3):745-751.
    [19] Shyu WC, Lin SZ, Yang HI, et al. Functional recovery of stroke rat s induced by granulocyte colony stimulating factor stimulated stem cells[J]. Circulation, 2004, 110 (13) :1 847-1854.
    [20]陈运贤,陆英,钟雪云,等.粒细胞集落刺激因子动员骨髓干细胞治疗大鼠缺血性脑梗死[J].中国病理生理杂志, 2004 , 20: 560-565.
    [21]于炳新,吕传真,罗玉敏,等. RhG- CSF改变大鼠局灶性脑缺血预后的初步研究[J].中国神经科学杂志, 2004 , 20 (5): 380-383.
    [22] Park HK, Chu K, Lee ST, et al. Granulocyte colony stimulating factor induces sensorimotor recovery in intracerebral hemorrhage. Brain Res, 2005,1041(2):125-131.
    [23] Henze C, Lescot T, Traver S, et al. Granulocyte colony stimulating factor is not protective against selective dopaminergic cell death in vitro. Neurosci Lett, 2005, 383(1-2): 44-48.
    [24] Hartung T. Anti-inflammatory effects of granulocyte colony-stimulating factor. Curr Op in Hematol, 1998, 5(3): 221-225.
    [25] Zavala F, Abad S, Ezine S, et al. G-CSF therapy of ongoing experimental allergic encephalomyelitis via chemokine and cytokine based immune deviation. J Immunol, 2002 , 168(4): 2011-2019.
    [26] Chen J, LI Y, wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats[J]. Stroke, 2001; 32(4):1005-1011.
    [27] Chen J, Zhang ZG, LI Y, et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res 2003;92:692-699.
    [28] Chen J, LI Y, Katakowski M, et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. Neurosei Res. 2003; 73(6):778-786.
    [29] Chopp M, Li Y. Treatment of neural injury with marrow stromal cells. Lancet Neurol. 2002; l(2):92-100.
    [30] Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA, 2001, 98: 10344-10349.
    [31] Gu W, Brannst om T, Wester P. Cortical neurogenesis in adult rat safter reversible photo thrombotic stroke[J]. J Cereb Blood Flow Metab, 2000, 20(8):1166-1173.
    [32] Magavi SS, Leavitt BR, Macklis JD. Induction of neurogenesis in the neocortex of adult mice[J]. Nature, 2000, 405(6789):951-955.
    [33] Abe K. Therapeutic potential of neurotrophic factors and neural stem cells against ischemic brain injury[J]. J Cereb Blood Flow Metab, 2000, 20(10):1393-1408.
    [34] Shyu WC, Lin SZ, Yang HI, et al. Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation. 2004;110(13):1847-1854.
    [35] Sehara Y, Hayashi T, Deguchi K, et al. Potentiation of neurogenesis and angiogenesis by G-CSF after focal cerebral ischemia in rats. Brain Res. 2007 Jun 2; 1151:142-149.
    [36]邓均,艾国平,粟永萍. C3H10T1/2细胞向神经元诱导分化的方法研究.中国修复重建外科杂志, 2007; 21(6):638-641.
    [37]邓均,艾国平,粟永萍. G-CSF动员循环间充质干细胞及其对颅脑损伤修复的可行性分析.第三军医大学学报. 2007; 29(12):1131-1134.
    [38]赵嫣,葛均波.骨髓干细胞移植治疗心肌梗死最佳时间段的选择[J].中国临床医学, 2005, 12(2):192-195.
    [39]杨敏,闫纯英.干细胞因子动员骨髓干细胞归巢梗死心肌的特性变化[J].中国临床康复, 2005, 9(26):67-70.
    [40]赵菁,高波,张志明.粒细胞集落刺激因子动员骨髓干细胞治疗脑梗死时间窗的研究[J].天津医药, 2009, 37(5):396-399.
    [41] Cohen-Cory S, Fraser SE. Effects of brain-derived neurotrophic factor on optic axon branc-hing and remodelling in vivo. Nature, 1995, 378:192-196.
    [42] Lachmund A, Gehrke D, Krieglstein K, et al. Trophic factors from chromaffin granules promote survival of peripheral and central nervous system neurous[J]. Neuro science, 1994, 62:361-370.
    [43]赵延欣,吕传真,罗玉敏. rhG- CSF增加脑缺血周边区脑源性神经营养因子的表达[J].中国神经科学杂志, 2004, 20(4): 295 - 299.
    [44] Schabitz WR , Sommer C , Zoder W ,et al . Intravenous brain derived neurot rophic factor reduces infarct size and counter regulates Bax and Bcl-2 expression after temporary focal cerebral is chemia[J]. Stroke, 2000, 31(9):2, 212 -217.
    [45] Lu P , Jones LL , Snyder EY, et al . Neural stem cells constitutively secrete neurot rophic factors and promote extensive host axonal growt h after spinal cord injury[J]. Exp Neurol 2003 ,181(2):115-129.
    [46] Majka M, Janowska-Wieczorek A, Ratajczak J, et al. Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrinemanner[J]. Blood, 2001, 97:3075-3085.
    [47] Matsuo Y, Onodera H, Shiga Y, et al. Role of cell adhesion molecules in brain injury after transient middle cerebral artery occlusion in the rat[J]. Brain Res, 1994, 656:344-352.
    [48] Alexander M,Forster C,Sugimoto K,et al:Interferon regulatory factor-1 inununorectivity in neurons and Inflanunatory cells following ischemia stroke in rodents and humans. Acta Neuropathologica 2003, 105(5):420-424.
    [49] Barone FC,Feuerstein GZ: Inflammatory mediators and stroke: new opportunities for novel therapeutics. J Cereb Blood Flow Metab, 1999, 19(8):819-834.
    [50] DirnagI U, Iadeeola C, Moskoitz MA: Pathobiology of ischemic stroke: an integrated view.Trends in neurosciences 1999, 22(9):391-397.
    [51] Whalen MJ, Carlos TM, Wisniewki SR, et al :Effect of neutropenia and granulocyte colony stimulating factor-induced neutrophilia on blood-brain barrier permeability and brain edema after traurnatic brain injury in rats. Critical care medicine , 2000, 28(11): 3710-3717.
    [52] Schabitz WR, Kollmar R, Schwaninger M, et al. Neuroprotective effect of granulocyte colony stimulating factor after focal cerebral ischemia[J]. Stroke, 2003, 34:745-751.
    [53] Lee ST, Chu K, Jung KH, et al: Granulocyte colony-stimulating factor enhances angiogenesis after focal cerebral ischemia. Brain research 2005, 1058(1-2):120-128.
    [54] Park HK, Chu K, Lee ST, et al: Granulocyt ceolony-stimulating factor induces sensorimotor recovery in intra cerebral hemorrhage. Brain research 2005, 1041(2):125- 131.
    [55] Graham SH, Chen J, Clark RS. Bcl-2 family gene products in cerebral ischemia and traumatic brain injury[J]. J Neurotrauma, 2000, 17:831-841.
    [56] Dudek H, Datta SR, Frane TF, et al. Regulation of neuronal survival by the serine threonine protein kinase Akt[J]. Science, 1997, 275:661-665.
    [57] Schneider A, Kruger C, Steigleder T, et al. The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis[J]. J Clin Invest, 2005, 115:2083-2098.
    [58] Lee ST, Chu K, Jung KH, et al. Granulocyte colony-stimulating factor enhances angiogenesis after focal cerebral ischemia. Brain Res, 2005, 1058(1-2):120-128.
    [59] Lee ST, Chu K, Jung KH, et al. Granulocyte colony-stimulating factor enhances angiogene- sis after focal cerebral ischemla. Brain Res1058:120-128.
    [60] KocherA A, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces re- modeling and improves cardiac function. NatMed, 2001,7:430-436.
    [61] Corti S, Locatelli F, Strazer S, et al. Modulated generation of neuronal cells from bone mar- row by expansion and mobilization of circulating stem cells with in vivo cytokine treatment [J]. Exp Neurol, 2002, 177(2):443-452.
    [62] Ohgushi H, Caplan AI. Stem cell technology and bioceramice:from cell to gene engineering [J]. J Biomed Mater Res, 1999, 48(6):913-927.
    [63] Lataillade JJ, Clay D, Dupuy C, et al. Chemokine SDF-1 enhances circulating CD34(+)cell proliferation in synergy with cytokines:possible role in progenitor survival[J]. Blood, 2000, 95:756-768.
    [64] Lachmund A, Gehrke D, Krieglstein K, et al. Trophic factors from chromaffin granules promote survival of peripheral and central nervous system neurous [J]. Neuroscience, 1994,62:361-370.
    [65] Li Y, Chen J, Chen XG, et al. Human marrow stromal cell therapy for stroke in rat:neurotro-phins and functional recovery[J]. Neurology, 2002, 59:514-523.
    [66] Murry CE, Wiseman RW, Schwartz SM, et al. Skeleta myoblast transplantation for repair of myocardial necrosis[J]. J Clin Invest, 1996, 98:2512-2523.
    [67] Kajstura J, Leri A, Finato N, et al. Myocyte p roliferation in endstage cardiac failure in humans [J]. Proc Natl Acad Sci USA,1998,2195(15):8801-8805.
    [68] Beltermi AP, Urbanek, Kajstura J, et al. Evidence that human cardiacmyocytes divide after myocardial infarction[J]. Nengl J Med, 2001, 344(23):1750-1774.
    [69] Kuethe F, Figulla HR, Voth M, et al. Mobilization of stem cells by granulocyte colony stimulating factor for there generation of myocardial tissue after myocardial infarction[J]. Dtsch Med Wochenschr, 2004, 129(9):424-428.
    [70] Ren G, Dewald O, Frangogiannis NG.. Inflammatory mechanisms in myoeardial in farction [J]. Curr Drug Targets Inflamm Allergy 2003, 2(3):242-256.
    [71] Orlic D, Kajstua J, Chimenti S, et al. Mobilized bone marrow cells repair the infraeted heart,improving function and survival. Proc NailAcad Sci USA, 2001; 98(18):10344-49.
    [72] Bussolino F, Wang M, Defilippi P, et al. Granuloeyte and Granulocyte macrophage colony stimulating faotor induce human endothelial cells to migrate and proliferate[J]. Nature 1989,337(6206):471-3.
    [73] Bussolino F, Ziche M, Wang GM, et al. In vitro and in vivo activation of endothelial cells by colony-stimulating faotors[J]. J Clin Invest 1991, 87(3):986-95.
    [74] Pelletier L, Rcgnard J, Fellmann D, et al. An in vitro model for the study of human bone marrow angiogenesis: role of hematopoietic cytokines [J]. Lab invest, 2000,80(4):501-11.
    [75] Kanollalds P, SlatCr NJ, Du XJ, et al. granuloeyte-colony stimulating faotor and stem cell factor improve endogenous repair after myocardial infarction[J]. Cardiovase Res, 2006, 70(l):117-25.
    [76] Loe M,Aoki M, Kondo T, et al. Therapeutic angiogenesis with intramuscular injection of low dose recombinant granuloeyte-colony stimulating faotor[J]. Arteriosoler Thromb Vasc Biol, 2005, 25(12):2535-41.
    [77] Harada M,Qin Y, Takano H, et al. G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-stat pathway in cardiomyocytes[J]. Nat Med, 2005,11(3): 305-11.
    [78] Hamamoto M, Tomita S, Nakatani T, et al. Granuloeyte-colony stimulating factor directly enhances proliferation of human troponin-positive cells derived from idiopathic dilated cardiomyopathy through specific receptors[J]. J Heart Lung Transplant, 2004, 23(12):1430-7.
    [79] Braunwald E, Bristow MR. Congestive heart failure:fifty years of Progress[J]. Circulation,2000, 102:IV-14.
    [80] Minatoguchi S, Takemura G, Chen XH, et al. Acceleratlon of the healing proeess and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granuloeyte colony-stimulating factor treatment [J]. Circ, 2004, 109:2572-2580.
    [81] Lee MS, Lill M, Makkar RR. Stem cell transplantation in myoeardial infarction. Rev Cardiovasc Med, 2004;5:82-98.
    [82] Lee MS,Makkar RR. Stem cell transplantation in myoeardial infarction.:a status report. Ann intem Med. 2004:140:729-738.
    [83] Tang YL, ZhaoQ, Qin X, et al. Paraerineaction enhance the effetes of autologous mesenchymal stem cell transplantation on vascular regeneration in ratmodel of myocardial infarction [J]. Ann Thoracsurg, 2005, 801:229-236.
    [84] Kamihata H, Matsubara H, Nishiue T, et al. ImPlantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side sup- ply of angioblasts angiogenic ligands and cytokines[J]. Circ, 2001, 104:1046- 1052.
    [85] Koeher AA, Sehuster MD, Szaboles MJ, et al. Neovascularization of ischemic myocardium by human bone marrow derived angioblasts prevents cardiomyoeyte apoptosis, reduces re- modeling and improves cardiac function[J]. NatMed, 2001, 7:430-436.
    [86] Hassink RJ, Brutel dela , Reviere A, et al. Transplation of cell for cardiacrepair. J Am Coll Cardiol. 2003; 41:711-717.
    [87] Takahahi T, Kalka C, Masuda H, et al. Ischemia and cytokine induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization[J]. Nat Med , 1999, 5(4):434-8.
    [88] Ohki Y, Hcissig B, Sato Y, et al. Granuloeyte colony-stimulating factor promotes neovascu-larization by releasing vascular endothelial growth factor from neutrophils[J]. Faseb J, 2005, 19(14):2005-7.
    [89] Urbich C, Aiohcr A, Hceschen C, et al. Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells[J]. J Mol Cell Cardiol, 2005, 39(5):733-42.
    [90] Stratos I, Rotter R, Eipel C, et al. Granulocyte-colony stimulating factor(G-CSF) enhances muscle proliferation and strength following skeletal muscle injury in rats. J App I Physiol. 2007, Aug 23.
    [91] Dirsch O, Chi H, Gu YL, et al. Influence of stem cell mobilization and liver regeneration on hepatic parenchymal chimerism in the rat. Transplantation. 2006 Jun, 27;81(12): 1695-1699.
    [92] Sotnikova NV, Stavrova LA, Gur'antseva LA, et al. Mechanisms of the effects of G-CSF on tissue reparation during chronic CCl4-induced damage to the liver. Bull Exp Biol Med.2005 Nov;140(5):644-647.
    [93] Lombaert IM, Wierenga P, Kok T, et al. Mobilization of bone marrow stem cells by G-CSF ameliorates radiation-induced damage to salivary glands. Clin Cancer Res. 2006 Mar 15;12 (6):1804-1812.
    [94] Hadaya K, Kared H, Masson A, et al. G-CSF treatment prevents cycle phosphophamide acceleration of autoimmune diabetes in the NOD mouse[J]. J Auto Irnmun, 2005, 24(2):125-34.
    [95] Kared H, Masson A, Adle-Biassette H, et al. Treatment with granulocyte colony stimulating factor prevents diabetes in NOD mice by recruiting plasmacytoid dendritic cells and functional CD4(+)CD25(+) regulatory T-cells[J]. Diabetes, 2005, 54(l):78-84.