内皮祖细胞联合间充质干细胞治疗异丙肾上腺素损伤性心肌病效果与机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:干细胞治疗是新兴的治疗心血管疾病的方法,为心肌病的治疗提供了新的策略。内皮祖细胞(EPCs)和间充质干细胞(MSCs)是骨髓干细胞最重要的组成成分,是干细胞研究和组织工程学研究的重要种子细胞。目前国内外绝大部分基础和临床研究均选用单一的内皮祖细胞或间充质干细胞,在治疗缺血性心肌病或扩张型心肌病的研究中,取得了令人鼓舞的结果。EPCs和MSCs具有不同的生物学行为:实验证实前者在体外培养或移植到体内可分化为内皮细胞,可以修复受损的血管内皮并参与血管新生;而后者具有多向分化潜能,与心肌细胞共同培养及用5氮杂胞苷诱导在体外可以分化为心肌细胞,移植到体内4周就可以表达心肌细胞的特异性标志,并可以和原有的心肌细胞形成连接,将其移植到心肌内可以弥补丢失的心肌细胞。大剂量的儿茶酚胺类药物具有心肌细胞毒性,可引起心肌细胞的坏死并进而发展为心肌病。异丙肾上腺素(ISO)皮下注射诱导的心肌病是经典的儿茶酚胺类药物中毒性心肌病模型,我们研究的目的是将EPCs和MSCs联合移植于ISO损伤的大鼠心肌,观察其对心功能、血流动力学指标和心肌局部血流的影响,并探讨其对儿茶酚胺类药物中毒性心肌病的治疗效果和可能的相关机制,为心肌病的治疗寻找新的思路,并为EPCs和MSCs联合移植治疗的临床应用提供线索和依据。
     方法:骨髓细胞悬液取自SD大鼠的股骨和胫股,用Ficoll分离液和差速贴壁法分离雄性SD大鼠的骨髓单个核细胞,分别用EGM-2和DMEM培养液培养EPCs和MSCs,用于细胞移植的干细胞为原代培养的EPCs和第三代MSCs。90只雌性SD大鼠,通过腹股沟皮下注射ISO(250mg/kg)制作儿茶酚胺类药物中毒性心肌病模型。将65只模型成功的大鼠随机分为五组,假手术组(开胸手术并注射生理盐水)、对照组(只注射EBM-2培养液)、MSCs组(注射2×106个MSCs)、EPCs组(注射2×106个EPCs)、MSCs+EPCs组(注射1×106个EPCs和1×106个MSCs),在直视下分5点将干细胞直接注射到大鼠的心肌内。在注射ISO前、注射药物四周和细胞移植三个月后,分别做心脏超声测量其左室舒张末期内径(LVEDD)、左室收缩期末期内径(LVESD)、室间隔厚度(IVST)、左室前壁厚度(LVAWT)、后壁厚度(LVPWT),计算左室收缩末期容积(LVESV)、左室舒张末期容积(LVEDV)、左室射血分数(EF)、短轴缩短率(FS)。在细胞移植后三个月,处死动物之前,通过颈动脉插管到左心室,测量左室收缩期压力上升和下降的最大速度(±dp/dt),左室舒张期末压力(LVEDP);应用彩色微球技术评估心肌局部血流(RMBF);Y染色体原位杂交和免疫荧光技术确定雌性大鼠心肌标本中移植的雄性干细胞的定位和分化;应用免疫组化技术通过vWF染色半定量分析心肌组织内毛细血管密度;Massion’s染色分析心肌组织纤维化程度;Tunel染色评价心肌细胞凋亡的比率。同时测量心肌组织内血管内皮生长因子(VEGF),碱性成纤维生长因子(b-FGF)及血管生成素2(Ang-2)的浓度及其mRNA的表达情况。
     结果:90只雌性大鼠注射ISO四周后有71存活,其中有6只因EF下降未超过20%被排除,其余65只大鼠被随机分为五组(每组13只),手术及干细胞移植后各组均有大鼠死亡,终点时每组存活的大鼠:假手术组11只、对照组11只、MSCs组10只、EPCs组9只、MSCs+EPCs组11只。药物注射后4周,与基线比较大鼠的EF、FS明显下降(P<0.05);LVEDD、LVESV、LVEDV明显增加(P<0.05)。细胞移植3月后,接受细胞治疗的三组(MSCs组、EPCs组和EPCs+MSCs组)EF、FS较细胞移植前明显改善(P<0.05);LVEDD、LVESV、LVEDV较移植前有明显的缩小(P<0.05);细胞移植组与对照组和假手术组比较也有明显差异(P<0.05);而假手术组和对照组与手术前比较,各项指标都没有明显变化,两组间比较也没有明显差异(P<0.05)。细胞移植后三个月,接受细胞移植三组动物的血流动力学指标:±dp/dt、LVEDP较假手术组和对照组有明显的改善,表现为±dp/dt加快, LVEDP降低(P<0.05)。更重要的是EPCs+MSCs组与MSCs组、EPCs组比较,除LVEDD外的各项心功能指标及血流动力学指标改善得更为明显(P<0.05);但是MSCs组和EPCs组比较没有明显差别(P>0.05)。LVEDD在接受细胞治疗的三组中比较没有明显差异(P>0.05)。彩色微球技术测定RMBF是评价心肌血流灌注的金指标,我们的实验发现EPCs+MSCs组和EPCs组的RMBF在五组中是最高的(P<0.05);MSCs组也高于对照组和假手术组(P<0.05);但EPCs+MSCs组与EPCs组比较没有显著性差异(P>0.05)。心肌内毛细血管密度检测结果解释了RMBF在各组间出现差异的原因,EPCs+MSCs组和EPCs组心肌内毛细血管密度明显高于MSCs组、对照组和假手术组(P<0.05);EPCs+MSCs组和EPCs组比较、对照组和假手术组比较均没有达到统计学差异(P>0.05)。Y染色体原位杂交能检测到雌性大鼠心肌内移植的雄性干细胞,结果显示:EPCs+MSCs组和MSCs组心肌细胞、血管和间质组织内可以观察到Sry阳性细胞;而EPCs组只能在血管壁内看到Sry阳性细胞。假手术组和对照组没有发现阳性细胞。为了明确移植细胞的分化方向,我们应用免疫荧光技术,结果发现EPCs组移植的细胞表达内皮细胞表面标志(vWF),而MSCs组一些移植的细胞表达心肌细胞表面标志(troponin T)。其次无论是单独移植还是两种细胞联合移植都减轻了心肌纤维化程度和心肌细胞的调亡比率(P<0.05),而EPCs+MSCs组减轻的程度明显大于其它四组(P<0.05)。我们的研究还证实心功能的改善、心肌血流灌注和心肌内血管密度的增加与心肌内血管生长因子:VEGF、b-FGF、Ang-2分泌增多有关,而它们的分泌与其mRNA转录水平增高是一致的。MSCs组心肌组织内VEGF,b-FGF及Ang-2蛋白的浓度与假手组和对照组相比明显升高(P<0.05),但比EPCs+MSCs组和EPCs组低(P<0.05),对照组与假手术之间比较没有统计学差异(P>0.05)。值得提到的是:EPCs组的b-FGF水平较EPCs+MSCs组更高,P<0.05。QRT-PCR分析显示EPCs+MSCs组和EPCs组VEGF、b-FGF、Ang-2mRNA的转录高于MSCs组、假手术组和对照组(P<0.05)。但b-FGFmRNA的表达在EPCs组和EPCs+MSCs组没有明显差别(P>0.05),假手术组和对照组三种细胞因子mRNA的比较均没有达到统计学差异(P>0.05)。
     结论:EPCs和MSCs联合移植治疗ISO损伤性心肌病,3个月后,移植的细胞可以分化为心肌细胞和内皮细胞或整合于心肌细胞和内皮细胞内,明显改善了心功能和血流动力学指标,增加心肌的血流灌注,其机制与EPCs联合MSCs移植诱导心肌内血管新生、减少心肌细胞的纤维化程度和心肌细胞的凋亡数量及移植细胞所引起的自分泌和旁分泌多种生长因子有关。EPCs和MSCs联合移植为儿茶酚胺类药物中毒性心肌病的治疗提供了一种的新方法和实验依据。
Objective Stem cell transplantation is emerging as a potential therapeutic approach to treating cardiac diseases, and providing a new method for various cardiomyopathies. Endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) are important components of stem cells derived from bone marrow. Some studies showed they had the capacities to either repair damaged endothelium and generate new blood vessels, or regenerate new cardiocytes in the ischemic area of myocardium. While EPCs and MSCs have different biologic properties, their potential synergetic role in treating degenerative disease or damage myocardium might have better results. In this study, we aimed to investigate whether simultaneous implantation of MSCs and EPCs into the myocardium in rats with isoproterenol injured cardiomyopathy could enhance regional myocardium blood flow (RMBF) and improve cardiac function.
     Methods Bone marrow mononuclear cells (BMNCs) of 50 male rats were separated by Ficoll density gradient centrifugation, and EPCs and MSCs were cultured in EGM-2 and DMEM, respectively. The primary passage of EPCs and the third passage of MSCs were used for cells transplantation. 90 female rats (150-220g) received inguinal subcutaneous injections of ISO (250mg/kg) for two consecutive days. Before injection of ISO and 4 weeks after injection of ISO, heart function was assessed by transthoracic echocardiography to confirm the successful models (EF decreasing by 20% with the dilation of left ventricular). These successful models were then randomly divided into five groups: sham group, control group, MSCs group, EPCs group and EPCs+MSCs group. 2×106 EPCs, 2×106 MSCs and mixture of 1×106 EPCs and 1×106 MSCs resolved in 200μL EBM-2 were given evenly to left ventricular free wall for EPCs group, MSCs group and EPCs+MSCs group, respectively. Another vehicle group only received 200μL EBM-2 to test the effect of EBM-2 medium. And the sham control group was given saline. Echocardiography examination was repeated at 3 months after cell therapy for left ventricular end diastolic diameter (LVEDD), left ventricular anterior wall thickness (LVAWT), left ventricular posterior wall thickness (LVPWT) and interventricular septum thickness (IVST). Left ventricular end diastolic volume (LVEDV), left ventricular end systolic volume (LVESV), ejection factors (EF), fractional shortening ratio (FS) were calculated by an independent investigator. The left ventricular end-diastolic pressure (LVEDP), the maximal rate of pressure rise (+dp/dtmax), the maximal rate of pressure fall (-dp/dtmax) were analyzed a right carotid artery catheter. RMBF was measured by colored micro spheres (CM) on the last day of the study. Fluorescence in situ hybridization (FISH) was performed to detect male cells in the female rat hearts. Immunofluorescence staining was performed with monoclonal mouse anticardiac troponin T, and polyclonal rabbit anti–von Willebrand factor (vWF) was used to assay the differentiation of transplanted cells. To detect fibrosis in myocardium, Masson’s trichrome staining was performed on the left ventricle tissue. To detect capillary density in the myocardium, immunohistochemical staining of endothelial cells was performed using an antibody against vWF. The ratio of apoptosis cell in myocardium was analyzed by Tunel staining. The protein expression of vascular endothelial growth factor (VEGF), basic-fibroblast growth factor (b-FGF) and angiopoietin 2 (Ang-2) were measured by ELISA assay. Quantitative real time polymerase chain reaction(QRT-PCR), using SYBR? Green I as a dye, was performed to analyze the mRNA expression of VEGF, b-FGF and Ang-2.
     Results 71 of 90 female rats survived from the ISO injection intervention. Whereas, the 6 female rats didn’t manifest the significant decrease of cardiac function, and were excluded from the study. These 65 rats were then randomly divided into five groups (13 rats in each group). At the completion of 3-month cell therapy treatment, there were 11 rats in sham group, 11 rats in control group, 10 rats in MSCs group, 9 rats in EPCs group and 11 rats in MSCs+EPCs group to survive. 4 weeks after ISO injection, compared with baseline, the cardiac function showed decrease in EF and FS (P<0.05). However, LVEDD, LVESV and LVEDV were increased significantly (P<0.05). 3 months after cell transplantation, MSCs group, EPCs group and EPCs+MSCs group were improved in EF, FS, LVESV, LVEDV, +dp/dt, -dp/dt and LVEDP (P<0.05). There were no difference between sham group and the control group (P>0.05). However, there showed no statistical difference in LVEDD between EPCs+MSCs group and single stem cells treatment groups (P>0.05). Besides LVEDD, EPCs+MSCs group demonstrated even better cardiac function than either MSCs group or EPCs group (P<0.05). The combination of MSCs and EPCs induced greater RMBF comparing as the other three groups (sham group, control group and MSCs group, P<0.05), but was not significantly greater than EPCs group (P>0.05). Total capillary density in the myocardial tissue had the similar results with RMBF. The Sry positive cells detected in cardiac tissue in EPCs+MSCs group and MSCs group, however, in EPCs group they only were found in blood vessels. No Sry positive cell was presented in the sham group and control group. Immunofluorescence staining demonstrated that some of Sry positive MSCs were positive for the cardiac markers (cardiac troponin T) and some of EPCs were positive for vWF. EPCs+MSCs group had lest collagen deposition compared with the other four groups (P<0.05). There are less the ratio of apoptosis cell in EPCs+MSCs group than the other four groups (P<0.05). VEGF, b-FGF and Ang-2 protein levels slightly increased in MSCs group compared with sham group and control group (P<0.05). Both EPCs+MSCs group and EPCs group demonstrated further increase in protein expression level than MSCs group (P<0.05). Interestingly, EPCs group had higher protein expressions of b-FGF than the EPCs+MSCs groups (P<0.05). QRT-PCR analysis demonstrated that higher mRNA expressions of were found in the EPCs+MSCs group and EPCs group than either MSCs group or sham group or control group (P<0.05). But, mRNA expression of b-FGF was not different between the EPCs group and the EPCs+MSCs group (P>0.05).
     Conclusion The transplantation of EPCs combined with MSCs can significantly improve the cardiac function and myocardium flow for the rats with isoproterenol injured cardiomyopathy, as comparing with MSCs or EPCs transplantation. The effects are related to increase neovascularization, decrease fibrosis and apoptosis cardiocytes in cardiac tissue. The transplanted EPCs and MSCs can differentiate into cardiocytes and endothelial cells, and promote the expression of various growth factors such as VEGF, b-FGF and Ang-2. This study provided a novel treatment method for isoproterenol injured cardiomyopathy and presented experimental data for the application of combined transplantation of two kinds of stem cell.
引文
[1]. O'Connor CM, Velazquez EJ, Gardner LH, et al. Comparison of coronary artery bypass grafting versus medical therapy on long-term outcome in patients with ischemic cardiomyopathy (a 25-year experience from the Duke Cardiovascular Disease Databank). Am J Cardiol. 2002;90(2):101-107.
    [2]. Hassink RJ, Dowell JD, Brutel de la Riviere A, et al. Stem cell therapy for ischemic heart disease. Trends Mol Med. 2003;9(10):436-441.
    [3]. Wei L, Keogh CL, Whitaker VR, et al. Angiogenesis and stem cell transplantation as potential treatments of cerebral ischemic stroke. Pathophysiology. 2005;12(1):47-62.
    [4]. Xiao LJ, Li YJ, Yu YM, et al. Effect of autologous bone marrow stem cell transplantation on renal function following renal ischemic-reperfusion in rabbits. Nan Fang Yi Ke Da Xue Xue Bao. 2006;26(5):561-563.
    [5]. Yamamoto K, Kondo T, Suzuki S, et al. Molecular evaluation of endothelial progenitor cells in patients with ischemic limbs: therapeutic effect by stem cell transplantation. Arterioscler Thromb Vasc Biol. 2004;24(12):e192-196.
    [6]. Ozbaran M, Omay SB, Nalbantgil S, et al. Autologous peripheral stem cell transplantation in patients with congestive heart failure due to ischemic heart disease. Eur J Cardiothorac Surg. 2004;25(3):342-350.
    [7]. Mariani MA, D'Alfonso A, Croccia M, et al. Stem cell transplantation for ischemic myocardium. Ital Heart J. 2004;5(5):340-342.
    [8]. Braile DM, Godoy MF. Stem cell therapy. A new perspective for the treatment of ischemic heart failure. Arq Bras Cardiol. 2005;84(5):357-359.
    [9]. Dai W, Hale SL, Martin BJ, et al. Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation. 2005;112(2):214-223.
    [10]. Kawamoto A, Tkebuchava T, Yamaguchi J, et al. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation. 2003;107(3):461-468.
    [11]. Tatsumi T, Matsubara H. Therapeutic angiogenesis for peripheral arterial disease and ischemic heart disease by autologous bone marrow cells implantation. Nippon Rinsho. 2006;64(11):2126-2134.
    [12]. Lyngbaek S, Schneider M, Hansen JL, et al. Cardiac regeneration by resident stem and progenitor cells in the adult heart. Basic Res Cardiol. 2007;102(2):101-114.
    [13]. Swijnenburg RJ, Tanaka M, Vogel H, et al. Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation.2005;112(9 Suppl):I166-172.
    [14]. Li Z, Wu JC, Sheikh AY, et al. Differentiation, survival, and function of embryonic stem cell derived endothelial cells for ischemic heart disease. Circulation. 2007;116(11 Suppl):I46-54.
    [15]. Pouzet B, Vilquin JT, Hagege AA, et al. Intramyocardial transplantation of autologous myoblasts: can tissue processing be optimized? Circulation. 2000;102(19 Suppl 3):III210-215.
    [16]. Guarita-Souza LC, Carvalho KA, Woitowicz V, et al. Simultaneous autologous transplantation of cocultured mesenchymal stem cells and skeletal myoblasts improves ventricular function in a murine model of Chagas disease. Circulation. 2006;114(1 Suppl):I120-124.
    [17]. Li RK, Jia ZQ, Weisel RD, et al. Smooth muscle cell transplantation into myocardial scar tissue improves heart function. J Mol Cell Cardiol. 1999;31(3):513-522.
    [18]. Merx MW, Zernecke A, Liehn EA, et al. Transplantation of human umbilical vein endothelial cells improves left ventricular function in a rat model of myocardial infarction. Basic Res Cardiol. 2005;100(3):208-216.
    [19]. Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001;7(4):430-436.
    [20]. Gao F, He T, Wang H, et al. A promising strategy for the treatment of ischemic heart disease: Mesenchymal stem cell-mediated vascular endothelial growth factorgene transfer in rats. Can J Cardiol. 2007;23(11):891-898.
    [21]. Cho HJ, Lee J, Wecker A, et al. Bone marrow-derived stem cell therapy in ischemic heart disease. Regen Med. 2006;1(3):337-345.
    [22]. Kawamura A, Horie T, Tsuda I, et al. Clinical study of therapeutic angiogenesis by autologous peripheral blood stem cell (PBSC) transplantation in 92 patients with critically ischemic limbs. J Artif Organs. 2006;9(4):226-233.
    [23]. Payne TR, Oshima H, Okada M, et al. A relationship between vascular endothelial growth factor, angiogenesis, and cardiac repair after muscle stem cell transplantation into ischemic hearts. J Am Coll Cardiol. 2007;50(17):1677-1684.
    [24]. Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med. 2001;344(23):1750-1757.
    [25]. Losordo DW, Schatz RA, White CJ, et al. Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial. Circulation. 2007;115(25):3165-3172.
    [26]. Mohyeddin-Bonab M, Mohamad-Hassani MR, Alimoghaddam K, et al. Autologous in vitro expanded mesenchymal stem cell therapy for human old myocardial infarction. Arch Iran Med. 2007;10(4):467-473.
    [27]. Torrente Y, Belicchi M, Marchesi C, et al. Autologous transplantation of muscle-derived CD133+ stem cells in Duchenne muscle patients. Cell Transplant. 2007;16(6):563-577.
    [28]. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418(6893):41-49.
    [29]. Graf T. Differentiation plasticity of hematopoietic cells. Blood. 2002;99(9):3089-3101.
    [30]. Fukuda K, Fujita J. Mesenchymal, but not hematopoietic, stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction in mice. Kidney Int. 2005;68(5):1940-1943.
    [31]. Plotnikov EY, Khryapenkova TG, Vasileva AK, et al. Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in coculture. J Cell Mol Med. Dec 14 2007.
    [32]. Zhang FB, Yang HT. Plasticity of bone marrow mesenchymal stem cells differentiating into cardiomyocytes and the potential of cardiac therapeutics. Sheng Li Ke Xue Jin Zhan. 2006;37(3):199-204.
    [33]. Grinnemo KH, Mansson-Broberg A, Leblanc K, et al. Human mesenchymal stem cells do not differentiate into cardiomyocytes in a cardiac ischemic xenomodel. Ann Med. 2006;38(2):144-153.
    [34]. Badorff C, Brandes RP, Popp R, et al. Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation. 2003;107(7):1024-1032.
    [35]. Gruh I, Beilner J, Blomer U, et al. No evidence of transdifferentiation of human endothelial progenitor cells into cardiomyocytes after coculture with neonatal rat cardiomyocytes. Circulation. 2006;113(10):1326-1334.
    [36]. Katritsis DG, Sotiropoulou PA, Karvouni E, et al. Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc Interv. 2005;65(3):321-329.
    [37]. Suuronen EJ, Price J, Veinot JP, et al. Comparative effects of mesenchymal progenitor cells, endothelial progenitor cells, or their combination on myocardial infarct regeneration and cardiac function. J Thorac Cardiovasc Surg. 2007;134(5):1249-1258.
    [38]. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964-967.
    [39]. Massa M, Rosti V, Ramajoli I, et al. Circulating CD34+, CD133+, and vascular endothelial growth factor receptor 2-positive endothelial progenitor cells in myelofibrosis with myeloid metaplasia. J Clin Oncol. 2005;23(24):5688-5695.
    [40]. Khan SS, Solomon MA, McCoy JP, Jr. Detection of circulating endothelial cells and endothelial progenitor cells by flow cytometry. Cytometry B Clin Cytom. 2005;64(1):1-8.
    [41]. J G, Cq W, Hh F, et al. Effects of resveratrol on endothelial progenitor cells and their contributions to reendothelialization in intima-injured rats. J Cardiovasc Pharmacol. 2006;47(5):711-721.
    [42]. Werner L, Deutsch V, Barshack I, et al. Transfer of endothelial progenitor cells improves myocardial performance in rats with dilated cardiomyopathy induced following experimental myocarditis. J Mol Cell Cardiol. 2005;39(4):691-697.
    [43]. Yang C, Zhang ZH, Li ZJ, et al. Enhancement of neovascularization with cord blood CD133+ cell-derived endothelial progenitor cell transplantation. Thromb Haemost. 2004;91(6):1202-1212.
    [44]. Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000;95(3):952-958.
    [45]. Koyanagi M, Urbich C, Chavakis E, et al. Differentiation of circulating endothelial progenitor cells to a cardiomyogenic phenotype depends on E-cadherin. FEBS Lett. 2005;579(27):6060-6066.
    [46]. Murayama T, Tepper OM, Silver M, et al. Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Exp Hematol. 2002;30(8):967-972.
    [47]. Graf T. Differentiation plasticity of hematopoietic cells. Blood. 2002;99(9):3089-3101.
    [48]. Tropel P, Noel D, Platet N, et al. Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Exp Cell Res. 2004;295(2):395-406.
    [49]. Covas DT, Siufi JL, Silva AR, et al. Isolation and culture of umbilical vein mesenchymal stem cells. Braz J Med Biol Res. 2003;36(9):1179-1183.
    [50]. Yanada S, Ochi M, Adachi N, et al. Effects of CD44 antibody-- or RGDS peptide--immobilized magnetic beads on cell proliferation and chondrogenesis of mesenchymal stem cells. J Biomed Mater Res A. 2006;77(4):773-784.
    [51]. He NH, Zhao WL, Wang YM. Isolation, cultivation and biological identification of human fetal marrow mesenchymal stem cells. Zhonghua Gan Zang Bing Za Zhi. 2005;13(3):213-217.
    [52]. Sugawara J, Mitsui-Saito M, Hayashi C, et al. Decrease and senescence of endothelial progenitor cells in patients with preeclampsia. J Clin Endocrinol Metab. 2005;90(9):5329-5332.
    [53]. Carlsten A, Ekholm R, Ericson LE, et al. Ultrastructural and functional aspects of frog heart lesions after isoproterenol. Acta Pathol Microbiol Scand [A]. 1977;85A(2):251-262.
    [54]. Chappel CI, Rona G, Balazs T, et al. Severe myocardial necrosis produced by isoproterenol in the rat. Arch Int Pharmacodyn Ther. 1959;122:123-128.
    [55]. Zbinden G, Bagdon RE. Isoproterenol-Induced Heart Necrosis, an Experimental Model for the Study of Angina Pectoris and Myocardial Infarct. Rev Can Biol. 1963;22:257-263.
    [56]. Ostadal B, Rychterova V, Poupa O. Isoproterenol-induced acute experimental cardiac necrosis in the turtle (Testudo Horsfieldi). Am Heart J. 1968;76(5):645-649.
    [57]. Kawada T, Masui F, Tezuka A, et al. A novel scheme of dystrophin disruption for the progression of advanced heart failure. Biochim Biophys Acta. 2005;1751(1):73-81.
    [58]. Pinelli A, Trivulzio S, Tomasoni L, et al. Myocardial infarction non-invasively induced in rabbits by administering isoproterenol and vasopressin: protective effects exerted by verapamil. Fundam Clin Pharmacol. 2004;18(6):657-667.
    [59]. Rona G, Chappel CI, Balazs T, et al. An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat. AMA Arch Pathol. 1959;67(4):443-455.
    [60]. Teerlink JR, Pfeffer JM, Pfeffer MA. Progressive ventricular remodeling in response to diffuse isoproterenol-induced myocardial necrosis in rats. Circ Res. 1994;75(1):105-113.
    [61]. Murad N, Tucci PJ. Isoproterenol-induced hypertrophy may result in distinct left ventricular changes. Clin Exp Pharmacol Physiol. 2000;27(5-6):352-357.
    [62]. Baldwin KM, Ernst SB, Mullin WJ, et al. Exercise capacity and cardiac function of rats with drug-induced cardiac enlargement. J Appl Physiol. Mar 1982;52(3):591-595.
    [63]. Tang L, Taylor PB. Altered contractile function in isoproterenol-induced hypertrophied rat heart. J Hypertens. 1996;14(6):751-757.
    [64]. Taylor PB, Helbing RK, Rourke S, et al. Effect of catecholamine-induced cardiachypertrophy on the force-interval relationship. Can J Physiol Pharmacol. 1989;67(1):40-46.
    [65]. Singal PK, Kapur N, Dhillon KS, et al. Role of free radicals in catecholamine-induced cardiomyopathy. Can J Physiol Pharmacol. 1982;60(11):1390-1397.
    [66]. Diaz-Munoz M, Alvarez-Perez MA, Yanez L, et al. Correlation between oxidative stress and alteration of intracellular calcium handling in isoproterenol-induced myocardial infarction. Mol Cell Biochem. 2006;289(1-2):125-136.
    [67]. Fleckenstein A, Janke J, Doring HJ, et al. Myocardial fiber necrosis due to intracellular Ca overload-a new principle in cardiac pathophysiology. Recent Adv Stud Cardiac Struct Metab. 1974;4:563-580.
    [68]. Boluyt MO, Long X, Eschenhagen T, et al. Isoproterenol infusion induces alterations in expression of hypertrophy-associated genes in rat heart. Am J Physiol. 1995;269(2 Pt 2):H638-647.
    [69]. Assmus B, Schachinger V, Teupe C, et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation. 2002;106(24):3009-3017.
    [70]. Fujiyama S, Amano K, Uehira K, et al. Bone marrow monocyte lineage cells adhere on injured endothelium in a monocyte chemoattractant protein-1-dependent manner and accelerate reendothelialization as endothelial progenitor cells. Circ Res. 2003;93(10):980-989.
    [71]. Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999;85(3):221-228.
    [72]. Urbich C, Heeschen C, Aicher A, et al. Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation. 2003;108(20):2511-2516.
    [73]. Saito T, Kuang JQ, Bittira B, et al. Xenotransplant cardiac chimera: immune tolerance of adult stem cells. Ann Thorac Surg. Jul 2002;74(1):19-24; discussion 24.
    [74]. Hattan N, Kawaguchi H, Ando K, et al. Purified cardiomyocytes from bone marrowmesenchymal stem cells produce stable intracardiac grafts in mice. Cardiovasc Res. 2005;65(2):334-344.
    [75]. Jiang XX, Zhang Y, Liu B, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood. 2005;105(10):4120-4126.
    [76]. Rehman J, Li J, Orschell CM, et al. Peripheral blood "endothelial progenitor cells" are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation. 2003;107(8):1164-1169.
    [77]. Zhou WW, Hu JG, Yang JF, et al. Angiogenic effect of bone marrow mesenchymal stem cells transfected with human VEGF gene on myocardial infarcts in rats. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2006;31(5):763-766, 771.
    [78]. Sadat S, Gehmert S, Song YH, et al. The cardioprotective effect of mesenchymal stem cells is mediated by IGF-I and VEGF. Biochem Biophys Res Commun. 2007;363(3):674-679.
    [79]. Solchaga LA, Penick K, Porter JD, et al. FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J Cell Physiol. 2005;203(2):398-409.
    [80]. Neuss S, Becher E, Woltje M, et al. Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells. 2004;22(3):405-414.
    [81]. Jo J, Nagaya N, Miyahara Y, et al. Transplantation of genetically engineered mesenchymal stem cells improves cardiac function in rats with myocardial infarction: benefit of a novel nonviral vector, cationized dextran. Tissue Eng. 2007;13(2):313-322.
    [82]. Cao R, Eriksson A, Kubo H, Alitalo K, Cao Y, Thyberg J. Comparative evaluation of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circ Res 2004; 94(5): 664-70.
    [83]. Efthimiadou A, Asimakopoulos B, Nikolettos N, et al. The angiogenetic effect of intramuscular administration of b-FGF and a-FGF on cardiac muscle: the influence of exercise on muscle angiogenesis. J Sports Sci 2006; 24: 849-54.
    [84]. Nakamae A, Sunagawa T, Ishida O, Suzuki O, Yasunaga Y, Hachisuka H, Ochi M. Acceleration of surgical angiogenesis in necrotic bone with a single injection of fibroblast growth factor-2 (FGF-2). J Orthop Res 2004; 22(3): 509-13.
    [85]. Fiedler U, Augustin HG. Angiopoietins: a link between angiogenesis and inflammation. Trends Immunol 2006; 27(12): 552-8.
    [86]. Solheim S, Seljeflot I, Lunde K, et al. Inflammatory responses after intracoronary injection of autologous mononuclear bone marrow cells in patients with acute myocardial infarction. Am Heart J. 2008;155(1):55 e51-59.
    [87]. Schuh A, Liehn EA, Sasse A, et al. Transplantation of endothelial progenitor cells improves neovascularization and left ventricular function after myocardial infarction in a rat model. Basic Res Cardiol. 2008;103(1):69-77.
    [88]. Takahashi T, Kalka C, Masuda H, et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med. 1999;5(4):434-438.
    [89]. Patel AN, Geffner L, Vina RF, et al. Surgical treatment for congestive heart failure with autologous adult stem cell transplantation: a prospective randomized study. J Thorac Cardiovasc Surg. 2005;130(6):1631-1638.
    [90]. Lunde K, Solheim S, Aakhus S, et al. Exercise capacity and quality of life after intracoronary injection of autologous mononuclear bone marrow cells in acute myocardial infarction: results from the Autologous Stem cell Transplantation in Acute Myocardial Infarction (ASTAMI) randomized controlled trial. Am Heart J. 2007;154(4):710 e711-718.
    [91]. Steinwender C, Hofmann R, Kammler J, et al. Effects of peripheral blood stem cell mobilization with granulocyte-colony stimulating factor and their transcoronary transplantation after primary stent implantation for acute myocardial infarction. Am Heart J. 2006;151(6):1296 e1297-1213.
    [92]. Choi JH, Choi J, Lee WS, et al. Lack of additional benefit of intracoronary transplantation of autologous peripheral blood stem cell in patients with acute myocardial infarction. Circ J. 2007;71(4):486-494.
    [93]. Yao K, Huang RC, Ge L, et al. Observation on the safety: clinical trail onintracoronary autologous bone marrow mononuclear cells transplantation for acute myocardial infarction. Zhonghua Xin Xue Guan Bing Za Zhi. 2006;34(7):577-581.
    [94]. Ge J, Li Y, Qian J, et al. Efficacy of emergent transcatheter transplantation of stem cells for treatment of acute myocardial infarction (TCT-STAMI). Heart. 2006;92(12):1764-1767.
    [95]. Brehm M. Myocardial infarct trial of Dusseldorf. Short- and long-term results after intracoronary stem cell transplantation in acute and chronic myocardial infarction. Med Klin (Munich). 2006;101 Suppl 1:193-194.
    [96]. Wollert KC, Meyer GP, Lotz J, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004;364(9429):141-148.
    [97]. Kuethe F, Figulla HR, Voth M, et al. [Mobilization of stem cells by granulocyte colony-stimulating factor for the regeneration of myocardial tissue after myocardial infarction]. Dtsch Med Wochenschr. Feb 27 2004;129(9):424-428.
    [98]. Wang NY, Lu CJ, Chen XH. [Study on effect of ginsenoside Rg1 in promoting myocardiac vascular endothelial cell regeneration through induction on bone marrow stem cell's migration and differentiation in rabbits of myocardial infarction]. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2005;25(10):916-919.
    [99]. Handgretinger R, Gordon PR, Leimig T, et al. Biology and plasticity of CD133+ hematopoietic stem cells. Ann N Y Acad Sci. 2003;996:141-151.
    [100]. Friedrich EB, Walenta K, Scharlau J, et al. CD34-/CD133+/VEGFR-2+ endothelial progenitor cell subpopulation with potent vasoregenerative capacities. Circ Res. 2006;98(3):e20-25.
    [101]. Suuronen EJ, Wong S, Kapila V, et al. Generation of CD133+ cells from CD133- peripheral blood mononuclear cells and their properties. Cardiovasc Res. 2006;70(1):126-135.
    [102]. Kim SY, Park SY, Kim JM, et al. Differentiation of endothelial cells from human umbilical cord blood AC133-CD14+ cells. Ann Hematol. 2005;84(7):417-422.
    [103]. Ben-Shoshan J, Keren G, George J. Endothelial progenitor cells (EPCs)--new tools for diagnosis and therapy. Harefuah. 2006;145(5):362-366, 397.
    [104]. Wang X, Zhu J, Chen J, et al. Effects of nicotine on the number and activity of circulating endothelial progenitor cells. J Clin Pharmacol. 2004;44(8):881-889.
    [105]. Laufs U, Werner N, Link A, et al. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation. 2004;109(2):220-226.
    [106]. Iwakura A, Shastry S, Luedemann C, et al. Estradiol enhances recovery after myocardial infarction by augmenting incorporation of bone marrow-derived endothelial progenitor cells into sites of ischemia-induced neovascularization via endothelial nitric oxide synthase-mediated activation of matrix metalloproteinase-9. Circulation. 2006;113(12):1605-1614.
    [107]. Rauscher FM, Goldschmidt-Clermont PJ, Davis BH, et al. Aging, progenitor cell exhaustion, and atherosclerosis. Circulation. 2003;108(4):457-463.
    [108]. Karra R, Vemullapalli S, Dong C, et al. Molecular evidence for arterial repair in atherosclerosis. Proc Natl Acad Sci U S A. 2005;102(46):16789-16794.
    [109]. Werner N, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med. 2005;353(10):999-1007.
    [110]. Takamiya M, Okigaki M, Jin D, et al. Granulocyte colony-stimulating factor-mobilized circulating c-Kit+/Flk-1+ progenitor cells regenerate endothelium and inhibit neointimal hyperplasia after vascular injury. Arterioscler Thromb Vasc Biol . 2006;26(4):751-757.
    [111]. George J, Herz I, Goldstein E, et al. Number and adhesive properties of circulating endothelial progenitor cells in patients with in-stent restenosis. Arterioscler Thromb Vasc Biol. 2003;23(12):e57-60.
    [112]. Aoki J, Serruys PW, van Beusekom H, et al. Endothelial progenitor cell capture by stents coated with antibody against CD34: the HEALING-FIM (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First In Man) Registry. J Am Coll Cardiol. 2005;45(10):1574-1579.
    [113]. Walter DH, Cejna M, Diaz-Sandoval L, et al. Local gene transfer of phVEGF-2 plasmid by gene-eluting stents: an alternative strategy for inhibition of restenosis. Circulation. 2004;110(1):36-45.
    [114]. Blindt R, Vogt F, Astafieva I, et al. A novel drug-eluting stent coated with an integrin-binding cyclic Arg-Gly-Asp peptide inhibits neointimal hyperplasia by recruiting endothelial progenitor cells. J Am Coll Cardiol. 2006;47(9):1786-1795.
    [115]. Hu Y, Davison F, Zhang Z, et al. Endothelial replacement and angiogenesis in arteriosclerotic lesions of allografts are contributed by circulating progenitor cells. Circulation. 2003;108(25):3122-3127.
    [116]. Zhang H, Vakil V, Braunstein M, et al. Circulating endothelial progenitor cells in multiple myeloma: implications and significance. Blood. 2005;105(8):3286-3294.
    [117]. Friedenstein AJ, Piatetzky S, II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966;16(3):381-390.
    [118]. Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet. 1987;20(3):263-272.
    [119]. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143-147.
    [120]. Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A. 2001;98(18):10344-10349.
    [121]. Yoon J, Min BG, Kim YH, et al. Differentiation, engraftment and functional effects of pre-treated mesenchymal stem cells in a rat myocardial infarct model. Acta Cardiol. 2005;60(3):277-284.
    [122]. Ripa RS, Haack-Sorensen M, Wang Y, et al. Bone marrow derived mesenchymal cell mobilization by granulocyte-colony stimulating factor after acute myocardial infarction: results from the Stem Cells in Myocardial Infarction (STEMMI) trial. Circulation. 2007;116(11 Suppl):I24-30.
    [123]. Chen S, Liu Z, Tian N, et al. Intracoronary transplantation of autologous bone marrow mesenchymal stem cells for ischemic cardiomyopathy due to isolated chronic occluded left anterior descending artery. J Invasive Cardiol. 2006;18(11):552-556.