骨髓基质细胞结合VEGF猪心内膜注射治疗慢性心肌缺血以及VEGF在心肌保护中作用的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     缺血性心脏病严重威胁人们的健康。阐明缺血性心脏病的发病机理,寻求合理的治疗措施,是当今医学界亟待攻克的重要课题。已有研究证实干细胞移植和基因治疗可能促进心梗后心肌的再生及促进新生血管生成,在一定程度上改善心功能。骨髓基质细胞(BMSCs)自体移植技术以及血管内皮生长因子(VEGF)的“基因搭桥技术”已被许多研究证实各自的安全性和有效性,但VEGF并不能挽救瘢痕区的心肌,对于已经凋亡和变性的心肌细胞无法弥补或者逆转,而BMSCs移植后,虽然可以增加瘢痕区的新生心肌细胞,但缺血心肌内缺血缺氧环境使得移植细胞的存活率较低。同时BMSCs和VEGF都具有促进血管新生的功能,将两种治疗方法联合应用是否可以弥补两者各自的不足,达到促进血管新生和心肌细胞再生,进一步改善心功能的目的,尚需要进一步的研究。而且,VEGF在缺血性心肌病治疗研究中的作用表现,仅仅用促进血管新生来解释是不够的,是否存在额外的心肌保护作用,需要进行进一步的机制方面的研究。
     实验目的
     本研究第一部分采用猪慢性心肌梗死模型,应用左室心内膜电机械标测系统及NOGA注射导管,利用不同的检测指标,观察BMSCs结合VEGF165心内膜心肌内注射对心肌梗死的疗效。
     研究第二部分针对VEGF的表现,观察VEGF是否存在心肌细胞的直接保护作用,并探讨VEGF是否在心肌中作为SDF-1α/CXCR4轴和VEGF/VEGFR通路中的一种存活因子,通过PI3K/Akt/SDF-1α通路参与了对H2O2诱导的心肌细胞死亡的保护作用。
     实验方法
     第一部分:通过建立猪心肌梗死模型,胸骨穿刺抽取骨髓,分离培养BMSCs,部分细胞进行VEGF165基因转染。模型建立成功4周后,进行左室心内膜电机械标测并行心肌膜注射等操作,按照注射成分不同分为3组,联合组(n=8)注射转染VEGF165基因的BMSCs,细胞组(n=8)注射BMSCs,对照组(n=6)注射生理盐水。于细胞移植前及移植后4周分别进行左室心内膜电机械标测、选择性冠脉造影及超声心动图检查。
     第二部分:细胞水平研究,分离新生鼠的心室肌细胞,H2O2诱导心肌细胞损伤,培养上清中分别加入VEGF和SDF-1α分子,收集细胞样品,提取蛋白或mRNA,免疫印迹电泳方法检测培养细胞的SDF-1α、CXCR4和Akt表达水平以及Akt磷酸化水平。利用实时定量PCR方法和ELISA方法检测和VEGF的蛋白及mRNA表达水平,细胞活性和损伤检测通过胎盘蓝染色及LDH活性检测进行。
     实验结果:
     第一部分研究结果显示:术后4周时联合组较细胞组及对照组的心梗面积明显缩小,侧支循环、心脏泵血功能以及心肌收缩力改善更加明显。
     第二部分研究结果显示:H2O2可诱导分离培养的心肌细胞损伤,胎盘蓝染色及LDH活性测定显示细胞培养上清中加入VEGF可显著增加细胞活力,促进细胞存活。WB结果显示Akt磷酸化水平增加,SDF-1α和CXCR4表达上调,此作用可被PI3K特异性抑制剂消除。培养上清中加入SDF-1α,可显著增加心肌细胞VEGF的表达,此作用与CXCR4-PI3K/Akt的激活相关。结论
    
     上述结果表明,自体BMSCs结合VEGF165基因治疗心肌梗死效果显著。VEGF可减少H2O2诱导的细胞死亡,保护心肌细胞,其保护作用的机制可能与PI3K/Akt信号和SDF-1α/CXCR4轴和VEGF/VEGFR通路在心肌中的正反馈相关。
Background: Ischemic heart disease is the major cause of morbility and mortality in the world. Although myocardial salvage due to early reperfusion therapy has significantly reduced early mortality rates, postinfarction heart failure resulting from ventricular remodeling remains a problem.One possible approach to reversing postinfarction heart failure is enhancement of the regeneration of cardiac myocytes as well as stimulation of neovascularization within the infarcted area. The purpose of this study is to evaluate the efficacy of t ransplantation of vascular endothelial growth factor (VEGF) - expressing bone marrow st romal cells (BMSCs) into ischemic swine myocardium .The cardiomyocyte protection effect of VEGF and the mechanism involved will also be studied.
     Methods and results: A swine model of chronic myocardial ischemia was made in this study. BMSCs were obtained f rom swines′breastbone marrow and cultured in vitro, then BMSCs were t ransfected with the human VEGF165 gene. Four weeks later, VEGF - expressing BMSCs (Combo group, n = 8), BMSCs (BMSCs cont rol group, n = 8) or saline water only (Control group, n = 6) was injected into swine heart s using lef t vent ricular elect romechanical (NOGA) mapping system and injection catheter. NOGA mapping, coronary angiography and echocardiography were conducted before and 4 weeks after cell transplantation. Rat neonatal ventricular myocytes were isolated and cultured in DMEM with 10% fetal bovine serum. Cardiomyocytes death was induced with H2O2 and VEGF was added to the culture medium. Expression of CXCR4c-20 and Akt and Akt phosphoratliation were was detected with Western blotting. Protein level and mRNA expression of SDF-1αand VEGF were detected with qRT-PCR and ELISA respectively. Cytoactivity and cell injury were measured with trypan blue dying assay and LDH activity detection. This study show that after four weeks after cell transplantation, combination therapy resulted in superior improvement in all indexes of perfusion and function compared with other two treatment groups (P < 0.05). Treatment of neonatal rat ventricular myocytes with VEGF stimulated phosphorylation of Akt in dose- and Flk-1- dependent manner. VEGF attenuated H2O2-induced cardiomyocytes death. LY294002, PI3K/Akt inhibitor and Flk-1 antibody abolished the beneficial effect of VEGF. Concomitantly, SDF-1αand its receptor, CXCR4, were up-regulated by VEGF through the PI3K-Akt signaling pathway, contributing to the protective effect of VEGF on H2O2-induced cell death. Furthermore, through the PI3K-Akt pathway, SDF-1αalso stimulated in vitro VEGF production, and prevented H2O2-induced cardiomyocyte death. In conclusion, these results suggest an Akt-centered loop, with VEGF and SDF-1αplaying critical roles in cardiomyocytes survival.
     Conclusion: These results provide the first evidence that that combined strategy of bone marrow stromal cell transplantation with VEGF gene therapy could be of importance for the treatment of myocardial infarction. And a crosstalk between VEGF and SDF-1αthrough PI3K-Akt serves a survival role in cardiomyocytes in vitro.
引文
[1] Eriksson H. Heart failure: a growing public health problem. J Intern Med 1995;237:135-141.
    [2] McGill CJ, Brooks G. Cell cycle control mechanisms and their role in cardiac growth. Cardiovasc Res 1995;30:557-569.
    [3] Assmus B, Honold J, Schachinger V, Britten MB, Fischer-Rasokat U, Lehmann R, et al. Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 2006;355:1222-1232.
    [4] Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001;344:1750-1757.
    [5] Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami CA, Anversa P. Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci U S A 1998;95:8801-8805.
    [6] Tang YL, Tang Y, Zhang YC, Qian K, Shen L, Phillips MI. Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol 2005;46:1339-1350.
    [7] Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature 2008;451:937-942.
    [8] Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 2004;428:668-673.
    [9] Ohlstein B, Kai T, Decotto E, Spradling A. The stem cell niche: theme and variations. Curr Opin Cell Biol 2004;16:693-699.
    [10] Passier R, Mummery C. Cardiomyocyte differentiation from embryonicand adult stem cells. Curr Opin Biotechnol 2005;16:498-502.
    [11] Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM. Adult bone marrow is a rich source of human mesenchymal 'stem' cells but umbilical cord and mobilized adult blood are not. Br J Haematol 2003;121:368-374.
    [12] Markel TA, Wang Y, Herrmann JL, Crisostomo PR, Wang M, Novotny NM, et al. VEGF is critical for stem cell-mediated cardioprotection and a crucial paracrine factor for defining the age threshold in adult and neonatal stem cell function. Am J Physiol Heart Circ Physiol 2008;295:H2308-2314.
    [13] Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 2006;355:1210-1221.
    [14] Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 1999;103:697-705.
    [15] Tomita S, Mickle DA, Weisel RD, Jia ZQ, Tumiati LC, Allidina Y, et al. Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg 2002;123:1132-1140.
    [16] Wang JS, Shum-Tim D, Galipeau J, Chedrawy E, Eliopoulos N, Chiu RC. Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages. J Thorac Cardiovasc Surg 2000;120:999-1005.
    [17] Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001;410:701-705.
    [18] Kuethe F, Figulla HR, Voth M, Richartz BM, Opfermann T, Sayer HG, et al.[Mobilization of stem cells by granulocyte colony-stimulating factor for the regeneration of myocardial tissue after myocardial infarction]. Dtsch Med Wochenschr 2004;129:424-428.
    [19] Saito T, Kuang JQ, Lin CC, Chiu RC. Transcoronary implantation of bone marrow stromal cells ameliorates cardiac function after myocardial infarction. J Thorac Cardiovasc Surg 2003;126:114-123.
    [20] Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H, et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 2003;361:45-46.
    [21] Undale AH, Westendorf JJ, Yaszemski MJ, Khosla S. Mesenchymal stem cells for bone repair and metabolic bone diseases. Mayo Clin Proc 2009;84:893-902.
    [22] Mazhari R, Hare JM. Mechanisms of action of mesenchymal stem cells in cardiac repair: potential influences on the cardiac stem cell niche. Nat Clin Pract Cardiovasc Med 2007;4 Suppl 1:S21-26.
    [23] Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 1968;6:230-247.
    [24] Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997;276:71-74.
    [25] Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002;105:93-98.
    [26] Schuleri KH, Boyle AJ, Centola M, Amado LC, Evers R, Zimmet JM, et al. The adult Gottingen minipig as a model for chronic heart failure after myocardial infarction: focus on cardiovascular imaging and regenerativetherapies. Comp Med 2008;58:568-579.
    [27] Trotha R, Hanck T, Konig W, Konig B. Rapid ribosequencing--an effective diagnostic tool for detecting microbial infection. Infection 2001;29:12-16.
    [28] Hakuno D, Fukuda K, Makino S, Konishi F, Tomita Y, Manabe T, et al. Bone marrow-derived regenerated cardiomyocytes (CMG Cells) express functional adrenergic and muscarinic receptors. Circulation 2002;105:380-386.
    [29] Cui Q, Wang Y, Saleh KJ, Wang GJ, Balian G. Alcohol-induced adipogenesis in a cloned bone-marrow stem cell. J Bone Joint Surg Am 2006;88 Suppl 3:148-154.
    [30] Berger MG, Veyrat-Masson R, Rapatel C, Descamps S, Chassagne J, Boiret-Dupre N. Cell culture medium composition and translational adult bone marrow-derived stem cell research. Stem Cells 2006;24:2888-2890.
    [31] Dimarakis I, Levicar N. Cell culture medium composition and translational adult bone marrow-derived stem cell research. Stem Cells 2006;24:1407-1408.
    [32] Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002;106:1913-1918.
    [33] Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 2000;28:875-884.
    [34] Iwaguro H, Yamaguchi J, Kalka C, Murasawa S, Masuda H, Hayashi S, et al. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation 2002;105:732-738.
    [35] Fuchs S, Baffour R, Zhou YF, Shou M, Pierre A, Tio FO, et al.Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol 2001;37:1726-1732.
    [36] Strauer BE, Brehm M, Zeus T, Gattermann N, Hernandez A, Sorg RV, et al. [Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction]. Dtsch Med Wochenschr 2001;126:932-938.
    [37] Qyang Y, Senyei G. Regeneration of a heart cell. Yale J Biol Med 2009;82:117-119.
    [38] Matsumoto T, Mugishima H. [Basic research for cardiovascular regeneration]. Nippon Rinsho 2006;64 Suppl 5:547-551.
    [39] Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001;7:430-436.
    [40] Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003;101:3722-3729.
    [41] Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003;102:3837-3844.
    [42] Li RK, Mickle DA, Weisel RD, Rao V, Jia ZQ. Optimal time for cardiomyocyte transplantation to maximize myocardial function after left ventricular injury. Ann Thorac Surg 2001;72:1957-1963.
    [43] Tefferi A. Treatment approaches in myelofibrosis with myeloid metaplasia: the old and the new. Semin Hematol 2003;40:18-21.
    [44] Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P. Transplanted adult bone marrow cells repair myocardial infarcts in mice. Ann N Y Acad Sci 2001;938:221-229; discussion 229-230.
    [45] Stamm C, Kleine HD, Westphal B, Petzsch M, Kittner C, Nienaber CA, et al. CABG and bone marrow stem cell transplantation after myocardial infarction. Thorac Cardiovasc Surg 2004;52:152-158.
    [46] Makkar RR, Price MJ, Lill M, Frantzen M, Takizawa K, Kleisli T, et al. Intramyocardial injection of allogenic bone marrow-derived mesenchymal stem cells without immunosuppression preserves cardiac function in a porcine model of myocardial infarction. J Cardiovasc Pharmacol Ther 2005;10:225-233.
    [47] Fuchs S, Satler LF, Kornowski R, Okubagzi P, Weisz G, Baffour R, et al. Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease: a feasibility study. J Am Coll Cardiol 2003;41:1721-1724.
    [48] Hoefer IE, Piek JJ, Pasterkamp G. Pharmaceutical interventions to influence arteriogenesis: new concepts to treat ischemic heart disease. Curr Med Chem 2006;13:979-987.
    [49] Korpisalo P, Rissanen TT, Bengtsson T, Liimatainen T, Laidinen S, Karvinen H, et al. Therapeutic angiogenesis with placental growth factor improves exercise tolerance of ischaemic rabbit hindlimbs. Cardiovasc Res 2008;80:263-270.
    [50] Cao Y, Hong A, Schulten H, Post MJ. Update on therapeutic neovascularization. Cardiovasc Res 2005;65:639-648.
    [51] Heissig B, Rafii S, Akiyama H, Ohki Y, Sato Y, Rafael T, et al. Low-dose irradiation promotes tissue revascularization through VEGF release from mast cells and MMP-9-mediated progenitor cell mobilization. J Exp Med 2005;202:739-750.
    [52] Gerhardt H, Betsholtz C. How do endothelial cells orientate? EXS 2005:3-15.
    [53] Roy H, Bhardwaj S, Babu M, Jauhiainen S, Herzig KH, Bellu AR, et al. Adenovirus-mediated gene transfer of placental growth factor to perivascular tissue induces angiogenesis via upregulation of the expression of endogenous vascular endothelial growth factor-A. Hum Gene Ther 2005;16:1422-1428.
    [54] Rissanen TT, Markkanen JE, Arve K, Rutanen J, Kettunen MI, Vajanto I, et al. Fibroblast growth factor 4 induces vascular permeability, angiogenesis and arteriogenesis in a rabbit hindlimb ischemia model. FASEB J 2003;17:100-102.
    [55] Robinson CJ, Stringer SE. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci 2001;114:853-865.
    [56] Yu J, Lei L, Liang Y, Hinh L, Hickey RP, Huang Y, et al. An engineered VEGF-activating zinc finger protein transcription factor improves blood flow and limb salvage in advanced-age mice. FASEB J 2006;20:479-481.
    [57] Vale PR, Losordo DW, Milliken CE, Maysky M, Esakof DD, Symes JF, et al. Left ventricular electromechanical mapping to assess efficacy of phVEGF(165) gene transfer for therapeutic angiogenesis in chronic myocardial ischemia. Circulation 2000;102:965-974.
    [58] Giordano FJ, Ping P, McKirnan MD, Nozaki S, DeMaria AN, Dillmann WH, et al. Intracoronary gene transfer of fibroblast growth factor-5increases blood flow and contractile function in an ischemic region of the heart. Nat Med 1996;2:534-539.
    [59] Matsumoto T, Claesson-Welsh L. VEGF receptor signal transduction. Sci STKE 2001;2001:re21.
    [60] Esquibies AE, Bazzy-Asaad A, Ghassemi F, Nishio H, Karihaloo A, Cantley LG. VEGF attenuates hyperoxic injury through decreased apoptosis in explanted rat embryonic lung. Pediatr Res 2008;63:20-25.
    [61] Abadie Y, Bregeon F, Papazian L, Lange F, Chailley-Heu B, Thomas P, et al. Decreased VEGF concentration in lung tissue and vascular injury during ARDS. Eur Respir J 2005;25:139-146.
    [62] Stewart DJ, Kutryk MJ, Fitchett D, Freeman M, Camack N, Su Y, et al. VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN trial. Mol Ther 2009;17:1109-1115.
    [63] Zygalaki E, Kaklamanis L, Nikolaou NI, Kyrzopoulos S, Houri M, Kyriakides Z, et al. Expression profile of total VEGF, VEGF splice variants and VEGF receptors in the myocardium and arterial vasculature of diabetic and non-diabetic patients with coronary artery disease. Clin Biochem 2008;41:82-87.
    [64] Kijowski J, Baj-Krzyworzeka M, Majka M, Reca R, Marquez LA, Christofidou-Solomidou M, et al. The SDF-1-CXCR4 axis stimulates VEGF secretion and activates integrins but does not affect proliferation and survival in lymphohematopoietic cells. Stem Cells 2001;19:453-466.
    [65] Hong X, Jiang F, Kalkanis SN, Zhang ZG, Zhang XP, DeCarvalho AC, et al. SDF-1 and CXCR4 are up-regulated by VEGF and contribute to glioma cell invasion. Cancer Lett 2006;236:39-45.
    [66] Yla-Herttuala S, Rissanen TT, Vajanto I, Hartikainen J. Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. J Am Coll Cardiol 2007;49:1015-1026.
    [67] Zachary I, Mathur A, Yla-Herttuala S, Martin J. Vascular protection: A novel nonangiogenic cardiovascular role for vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 2000;20:1512-1520.
    [68] Annex BH, Simons M. Growth factor-induced therapeutic angiogenesis in the heart: protein therapy. Cardiovasc Res 2005;65:649-655.
    [69] Dor Y, Djonov V, Abramovitch R, Itin A, Fishman GI, Carmeliet P, et al. Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. EMBO J 2002;21:1939-1947.
    [70] Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Jung S, et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 2006;124:175-189.
    [71] Laitinen M, Yla-Herttuala S. Vascular gene transfer for the treatment of restenosis and atherosclerosis. Curr Opin Lipidol 1998;9:465-469.
    [72] Puumalainen AM, Vapalahti M, Agrawal RS, Kossila M, Laukkanen J, Lehtolainen P, et al. Beta-galactosidase gene transfer to human malignant glioma in vivo using replication-deficient retroviruses and adenoviruses. Hum Gene Ther 1998;9:1769-1774.
    [73] Lee RJ, Springer ML, Blanco-Bose WE, Shaw R, Ursell PC, Blau HM. VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation 2000;102:898-901.
    [74] Schuleri KH, Boyle AJ, Hare JM. Mesenchymal stem cells for cardiac regenerative therapy. Handb Exp Pharmacol 2007:195-218.
    [75] Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature 2005;438:946-953.
    [76] Wollert KC, Drexler H. Mesenchymal stem cells for myocardial infarction: promises and pitfalls. Circulation 2005;112:151-153.
    [77] Markkanen JE, Rissanen TT, Kivela A, Yla-Herttuala S. Growth factor-induced therapeutic angiogenesis and arteriogenesis in the heart--gene therapy. Cardiovasc Res 2005;65:656-664.
    [78] Korpisalo P, Karvinen H, Rissanen TT, Kilpijoki J, Marjomaki V, Baluk P, et al. Vascular endothelial growth factor-A and platelet-derived growth factor-B combination gene therapy prolongs angiogenic effects via recruitment of interstitial mononuclear cells and paracrine effects rather than improved pericyte coverage of angiogenic vessels. Circ Res 2008;103:1092-1099.
    [79] Szulc J, Wiznerowicz M, Sauvain MO, Trono D, Aebischer P. A versatile tool for conditional gene expression and knockdown. Nat Methods 2006;3:109-116.
    [80] Yasuda S, Goto Y, Baba T, Satoh T, Sumida H, Miyazaki S, et al. Enhanced secretion of cardiac hepatocyte growth factor from an infarct region is associated with less severe ventricular enlargement and improved cardiac function. J Am Coll Cardiol 2000;36:115-121.
    [81] Mao X, Peng H, Ling J, Friis T, Whittaker AK, Crawford R, et al. Enhanced human bone marrow stromal cell affinity for modified poly(L-lactide) surfaces by the upregulation of adhesion molecular genes. Biomaterials 2009;30:6903-6911.
    [82] Thieme S, Ryser M, Gentsch M, Navratiel K, Brenner S, Stiehler M, et al. Stromal cell-derived factor-1alpha-directed chemoattraction of transientlyCXCR4-overexpressing bone marrow stromal cells into functionalized three-dimensional biomimetic scaffolds. Tissue Eng Part C Methods 2009;15:687-696.
    [83] Chan CK, Liao S, Li B, Lareu RR, Larrick JW, Ramakrishna S, et al. Early adhesive behavior of bone-marrow-derived mesenchymal stem cells on collagen electrospun fibers. Biomed Mater 2009;4:035006.
    [84] Zhang Y, Wang W. Effects of Bone Marrow Mesenchymal Stem Cells Transplantation on Light-Damaged Retina. Invest Ophthalmol Vis Sci.
    [85] Sun XJ, Wang F, Tan MQ, Lu GX. [Transduction efficiency of recombinant adeno-associated virus 2 in human bone marrow CD34+ hematopoietic stem/progenitor cells and mesenchyme stem cells]. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2006;31:19-23.
    [86] Sun YL, Yin SY, Xie HY, Zhou L, Xue F, Wu LM, et al. Stem-like cells in hepatitis B virus-associated cirrhotic livers and adjacent tissue to hepatocellular carcinomas possess the capacity of tumorigenicity. J Gastroenterol Hepatol 2008;23:1280-1286.
    [87] Kutschka I, Kofidis T, Chen IY, von Degenfeld G, Zwierzchoniewska M, Hoyt G, et al. Adenoviral human BCL-2 transgene expression attenuates early donor cell death after cardiomyoblast transplantation into ischemic rat hearts. Circulation 2006;114:I174-180.
    [88] Yau L, Lukes H, McDiarmid H, Werner J, Zahradka P. Insulin-like growth factor-I (IGF-I)-dependent activation of pp42/44 mitogen-activated protein kinase occurs independently of IGF-I receptor kinase activation and IRS-1 tyrosine phosphorylation. Eur J Biochem 1999;266:1147-1157.
    [89] Fujimura T, Yamagishi S, Ueda S, Fukami K, Shibata R, Matsumoto Y, et al. Administration of pigment epithelium-derived factor (PEDF) reducesproteinuria by suppressing decreased nephrin and increased VEGF expression in the glomeruli of adriamycin-injected rats. Nephrol Dial Transplant 2009;24:1397-1406.
    [90] Tang J, Wang J, Yang J, Kong X, Zheng F, Guo L, et al. Mesenchymal stem cells over-expressing SDF-1 promote angiogenesis and improve heart function in experimental myocardial infarction in rats. Eur J Cardiothorac Surg 2009;36:644-650.
    [91] Ben-Haim SA, Osadchy D, Schuster I, Gepstein L, Hayam G, Josephson ME. Nonfluoroscopic, in vivo navigation and mapping technology. Nat Med 1996;2:1393-1395.
    [92] Soonpaa MH, Koh GY, Klug MG, Field LJ. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 1994;264:98-101.
    [93] Suzuki K, Murtuza B, Smolenski RT, Sammut IA, Suzuki N, Kaneda Y, et al. Cell transplantation for the treatment of acute myocardial infarction using vascular endothelial growth factor-expressing skeletal myoblasts. Circulation 2001;104:I207-212.
    [94] Sugimoto T, Inui K, Shimazaki Y. Gene therapy for myocardial angiogenesis: with direct intramuscular gene transfer of naked deoxyribonucleic acid encoding vascular endothelial growth factor and cell transplantation of vascular endothelial growth factor transfected H9c2 myoblast. Jpn J Thorac Cardiovasc Surg 2003;51:192-197.
    [95] Yau TM, Fung K, Weisel RD, Fujii T, Mickle DA, Li RK. Enhanced myocardial angiogenesis by gene transfer with transplanted cells. Circulation 2001;104:I218-222.
    [96] Gao F, Gao E, Yue TL, Ohlstein EH, Lopez BL, Christopher TA, et al.Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion: the roles of PI3-kinase, Akt, and endothelial nitric oxide synthase phosphorylation. Circulation 2002;105:1497-1502.