非致命性创伤后心肌缺血/再灌注损伤加重的分子机制及脂联素的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     非致命性创伤(如交通事故引起的机械损伤)一直是医学界广泛关注的重要课题。随着医疗护理水平的提高,由创伤本身所引起的直接损伤危害逐年减少,而其继发的创伤后脏器功能衰竭正日益受到重视。近年来多项临床研究显示,非致命性创伤后的患者在未发生冠脉夹层和直接心肌损伤的情况下,其心肌梗死(MI)和继发性心功能不全的发病率均明显增加,但其机制尚不清楚。
     在对小鼠建立创伤性休克模型的研究中我们发现,可导致大鼠死亡的创伤强度不能使小鼠出现全身脏器损伤。小鼠在创伤完全恢复后(创伤7天后)若发生心肌缺血,其损伤程度远重于未经受创伤的动物。既往研究表明,创伤使全身循环中肿瘤坏死因子α(TNF-α)以及其他炎性因子升高,但创伤后炎性因子的升高是一过性的,因此用TNF-α等炎性因子直接加重在创伤后远期出现的心肌缺血性损伤解释不通,提示最大的可能性为:创伤后TNF-α等炎性因子升高诱发了机体的某种继发反应,而这种继发反应可能是导致创伤远期心肌出现缺血性损伤时损伤程度加重的直接原因。但TNF-α等诱发了何种继发性反应因而加重缺血性损伤,目前仍是未解之谜。
     脂联素是脂肪细胞分泌的细胞因子。研究表明,血浆脂联素水平与缺血性心肌病发病呈高度负相关,脂联素可通过减轻氧化/硝化应激等机制对心肌缺血/再灌注(MI/R)损伤具有明确的保护作用。基础和临床研究均已证实,TNF-α等炎性因子与脂联素在一系列病理生理活动中具有相互拮抗关系。炎性因子的升高可抑制脂联素分泌,降低血浆脂联素水平。因此我们设想:非致命性创伤所导致的TNF-α等一过性升高所致的继发性脂联素水平下降可能是创伤远期心肌缺血性损伤加重的重要原因。本研究拟对该假设进行验证,并进而阐明非致命创伤后心肌缺血性损伤加重的分子机制,为深入认识创伤后所发生的病理改变、进一步揭示创伤继发的心肌缺血性损伤机制提供实验依据。
     研究目的
     (1)观察非致命性创伤对MI/R损伤严重程度(梗死面积、心功能和心肌细胞凋亡)的影响。
     (2)明确创伤后血浆TNF-α的时相变化及其对血浆脂联素水平的调节关系。
     (3)观察脂联素水平变化对心肌氧化/硝化应激及MI/R损伤严重程度的影响,进一步阐明脂联素水平变化在小鼠非致命性创伤后MI/R损伤加重中的作用及其分子机制。
     实验方法
     (1)小鼠创伤模型:用戊巴比妥钠(40 mg/kg, i.p.)麻醉雄性C57B16/J小鼠或脂联素基因敲除小鼠(Adp-/-小鼠,20 - 25g)。将麻醉完全的小鼠置于Noble-Collip鼓中,以40 rpm的速率共200转诱导全身非致命性创伤模型。假创伤小鼠采用同样的转速和转数,但小鼠用胶带粘于鼓的内壁上,因此避免了创伤。
     (2)小鼠MI/R模型:用6-0丝线在小鼠冠脉左前降支中点处打一活结造成心肌缺血,30 min后,将活结打开行再灌注。再灌注3 h后进行心肌细胞凋亡及氧化/硝化应激指标检测,再灌注24 h后检测心梗面积及心功能。假手术组采用同样的方法处理,只是LAD不行结扎。
     (3)心室插管检测小鼠心功能:经左侧颈动脉将1.4F Millar-tip导管换能器插入左室腔。用计算机算法和交互式视频图像程序(Po-Ne-Mah Physiology Platform P3 Plus, Gould Instrument Systems, Inc.)得出心率、左室舒张末压(LVEDP)、左室压最大上升速率的正值和负值( +dP/dtmax和-dP/dtmax)。
     (4)心梗面积测定:伊文氏蓝/三苯四唑氯盐(TTC)双染色法。
     (5)心肌细胞凋亡检测:①末端脱氧核苷酸转移酶介导的dUTP缺口末端标记(TUNEL)法;②Caspase-3活性测定。
     (6)血浆TNF-α及脂联素水平:采用ELISA检测。
     (7)诱导型一氧化氮合酶(iNOS)表达:采用Western Blot检测。
     (8)一氧化氮(NO)及其在体代谢产物(NO2和NO3),统称为NOx,采用硝酸还原酶法检测。
     (9) ?O2?生成采用荧光素增强的化学发光法和原位二氢乙啶(DHE)染色法检测。
     (10)心肌ONOO-水平:采用竞争ELISA法检测及免疫组织化学方法检测。
     实验结果
     (1)与假创伤+ MI/R组(假创伤7 d后行MI/R)相比,创伤+ MI/R组(创伤7 d后行MI/R)小鼠的心梗面积增加(P < 0.05)、LVEDP进一步增大(P < 0.01)而±dP/dtmax进一步减小(P < 0.05)、心肌细胞凋亡指数(AI)及caspase-3活性进一步增加(P < 0.01)。
     (2)创伤后3 h血浆TNF-α达到峰值(P < 0.01 vs. 0时间点组),此后迅速降低,未再出现第二个峰值。创伤后血浆脂联素水平逐渐下降,至创伤后3 d达到谷值(P < 0.01 vs. 0时间点组),之后较快恢复到正常水平。在创伤前给予TNF-α抑制剂etanercep(t创伤前16 h和1 h,8 mg/kg×2)可阻断脂联素水平的时相变化。
     (3)用etanercept抑制TNF-α可减轻创伤7 d后MI/R所造成的心肌梗死、心功能下降及心肌细胞凋亡。再灌注前10 min给予小鼠腹腔注射脂联素球状片段(gAd,0.5 mg/kg)或在创伤3 d后给予gAd也可明显抑制MI/R所造成的心肌损伤。
     (4)创伤可使MI/R后心肌?O2?生成增加~1.6倍(P < 0.01 vs.假创伤)。在创伤前用etanercept抑制TNF-α、或再灌注前10 min给予gAd,或在创伤3 d后给予gAd均可使MI/R后心肌?O2 ̄生成显著减少(P < 0.01~0.05 vs.假创伤)。
     (5)创伤可使MI/R后心肌iNOS表达增强,NOx的生成增加(~1.5倍,P < 0.05 vs.假创伤)。在创伤前用etanercept抑制TNF-α、创伤3 d后或创伤7 d后再灌注前10 min给小鼠腹腔注射gAd均可使MI/R后心肌NOx生成显著减少(P < 0.01~0.05 vs.假创伤)。
     (6)创伤+ MI/R组小鼠心肌过氧化亚硝酸盐免疫组化信号增强,ONOO-生成显著增加(~ 5倍,P < 0.05 vs.假创伤+ MI/R组)。在创伤前用etanercept抑制TNF-α、创伤3 d后或创伤7 d后再灌注前10 min给小鼠腹腔注射gAd均可使MI/R后心肌过氧化亚硝酸盐免疫组化信号减弱及ONOO-生成明显减少(P < 0.01~0.05 vs.假创伤)。
     (7)在再灌注前10 min给予Mn(III)TBAP(?O2 ̄清除剂,10 mg/kg)或EUK134(ONOO-清除剂,5 mg/kg)可缩小创伤+ MI/R后的心梗面积、改善心功能,同时抑制心肌细胞凋亡及caspase-3激活。
     (8) Etanercept仅可轻度缩小创伤+ MI/R诱导的Adp-/-小鼠心梗面积(12.4%,P = 0.046 vs. vehicle),而补充外源性gAd可缩小创伤+ MI/R诱导的心梗面积达37.8%(P < 0.01 vs. vehicle)。但etanercept不能改善创伤+ MI/R组Adp-/-小鼠的±dp/dtmax降低(P >0.05 vs. vehicle),只有补充外源性gAd对其具有改善作用(P < 0.01 vs. vehicle)。
     结论
     (1)非致命性创伤可使小鼠MI/R损伤加重,创伤可能是心肌缺血性损伤加重的“隐性杀手”。
     (2)创伤后血浆TNF-α升高可继发性抑制脂联素水平。抑制TNF-α或直接补充脂联素(gAd)可减轻创伤对MI/R损伤的增敏作用,提示TNF-α诱导的脂联素减少很有可能参与创伤后MI/R损伤加重。
     (3)创伤后TNF-α升高可通过降低脂联素水平导致MI/R后心肌氧化/硝化应激增加,进而增加心肌对I/R损伤的敏感性。
     (4)补充外源性脂联素(而非给予etanercept)可明显改善Adp-/-小鼠创伤后MI/R诱导的心肌梗死和心功能下降,证实TNF-α诱导的脂联素水平下降是创伤后MI/R损伤加重的重要因素。
Background
     Non-lethal trauma (e.g. traffic accidents-induced mechanical trauma) has always been one of the most concerned issues in the medical world. With the development of medical care provisions, direct hazards rendered by trauma per se have been substantially reduced, whereas secondary organ failure induced by trauma is increasingly recognised. Recent multi-hospital evidence showed that the prevalence of myocardial infarction (MI) and secondary heart failure was significantly increased in post-traumatic patients even in the absence of coronary artery dissection and direct myocardial injury. However, the mechanisms remain elusive.
     In a recent study employing a mouse traumatic shock model we found that the intensity of traumatic injury leathal to rats failed to induce multi-organ injury in mice. Mice fully recovered from trauma (7 days after trauma) sustained far more severe myocardial injury when subjected to myocardial ischemia. Studies have shown that trauma can induce the elevation of plasma tumor necrosis factorα(TNF-α) and other inflammatory cytokines. However, the elevation of these inflammatory cytokines are only transient and are unlikely to directly enhance myocardial ischemic injury long after trauma. This prompted us to speculate that a secondary change might be induced by these cytokines, which can serve as a more direct injury-inducing factor that enhances post-traumatic myocardial ischemic injury. However, it still remains an enigma as to the validity and nature of this secondary change induced by inflammatory cytokines that increases myocardial ischemic injury.
     Adiponectin is a cytokine secreted by adipocytes and is present in high abundance in the circulation. Studies showed that plasma adiponectin is conversely related to the morbidity of ischemic cardiac injury, and adiponectin can protect myocardium against ischemia/reperfusion injury (MI/R) by attenuating oxidative/nitrative stress. Basic and clinical studied both confirmed that reciprocal regulations exist between adiponectin and TNF-α(and possibly several other inflammatory cytokines). The elevation of inflammatory cytokines can inhibit the secretion of adiponectin and decrease its plasma level. Therefore, we hypothesized that the decrease in the plasma adiponectin level secondary to the temporary elevation of TNF-αand other inflammatory cytokines induced by non-lethal trauma might be an important reason that sensitizes post-traumatic myocardium to ischemic injury. In the present study, we aimed to test this hypothesis and further to elucidate the molecular mechanisms responsible for the aggravation of post-traumatic myocardial ischemia injury. Our study might shed light to trauma-induced pathological changes and further provide experimental basis for the mechanisms underlying trauma-induced secondary ischemic cardiac injury.
     Objectives
     (1) To investigate the effects of non-lethal trauma on the the serevity of MI/R injury (myocardial infarction, cardiac function and cardiomyocyte apoptosis).
     (2) To ascertain the time-course changes of plasma TNF-αafter trauma and to verify the possible existance of a modulatory effect between TNF-αand adiponectin.
     (3) To observe the effects of the changes in plasma adiponectin level on myocardial oxidative/nitrative stress and the serevity of MI/R injury. Meanwhile, to further define the role of the changes in plasma adiponectin level in the aggravation of post-traumatic MI/R injury and to elucidate the underlying mechanisms.
     Methods
     (1) Mice traumatic injury model: Male C57B16/J mice or adiponectin knockout mice (Adp-/-, 20 - 25g) were fully anesthetized with sodium pentobarbital (40 mg/kg, i.p.) and placed in a Noble-Collip drum apparatus. Whole-body non-lethal trauma was induced by a total of 200 revolutions at a rate of 40 rpm. Sham traumatized mice were subjected to the same revolution but the animals were taped on the inner wall of drum, thus avoiding traumatic injury.
     (2) Mice MI/R model: A slipknot was placed at the halfway point of the left anterior descending artery (LAD) with 6-0 silk sutures and ischemia was induced by ligation of the slipknot. Reperfusion was performed by releasing the slipknot 30 min after the ligation. Cardiomyocyte apoptosis and oxidative/nitrative stress were determined at 3 h, and myocardial infarction and cardiac function determined at 24 h, after the conclusion of the reperfusion. Sham operation was performed in a same manner except that the LAD will be left unligated.
     (3) Determination of cardiac function by intraventricular catheterization: A 1.4F Millar-tip catheter transducer was inserted to the left ventricular cavity through the left carotid artery. Heart rate, left ventricular end diastolic pressure (LVEDP), maximal positive and negative values of the instantaneous first derivative of LVP (+dP/dtmax and -dP/dtmax) were obtained using computer algorithms and an interactive videographics program (Po-Ne-Mah Physiology Platform P3 Plus, Gould Instrument Systems, Inc.).
     (4) Determination of myocardial infarction: Myocardial infarct size was determined by Evans blue/2,3,5-triphenyl tetrazolium chloride (TTC) double staining.
     (5) Determination of myocardial apoptosis: Myocardial apoptosis was determined by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling staining (TUNEL) and caspase-3 activity assay.
     (6) Plasma TNF-αand adiponectin assays: Plasma TNF-αand adiponectin levels were determined by enzyme-linked-immunosorbent-assay (ELISA).
     (7) Expression of inducible nitric oxide synthase (iNOS): Expression of iNOS was determined by Western blotting.
     (8) Contents of nitric oxide (NO) and its in vivo metabolites NO2 and NO3 (collectively termed as NOx) were determined using nitrate reductase method.
     (9) ?O2? production was determined by lucigenin-enhanced luminescence and in situ dihydroethidium (DHE) staining.
     (10) Myocardial ONOO- formation was determined by competitive ELISA and immunohistochemistry.
     Results
     (1) Mice in the trauma + MI/R group (MI/R induced 7 d after trauma) showed increased myocardial infarct size as compared to those in sham truam + MI/R group (MI/R induced 7 d after sham trauma) (P < 0.05). Meanwhile, mice in the former group had increased LVEDP (P < 0.01) and decreased±dP/dtmax (P < 0.05). Cardiomyocyte apoptosis index (AI) and caspase-3 activity were also enhanced in mice subjected to trauma + MI/R (P < 0.01 vs. sham truam + MI/R).
     (2) Plasma TNF-αlevel peaked 3 h after trauma (P < 0.01 vs. time point 0) and swiftly declined thereafter, without showing a second peak. Plasma adiponectin level gradually decreased and reached the lowest level 3 d after trauma (P < 0.01 vs. time point 0) and was quickly restored to basal level. The time-course change of adiponectin was abolished by the administration of TNF-αinhibitor etanercept (16 h and 1 h before trauma, 8 mg/kg×2).
     (3) Blockade of TNF-αby etanercept alleviated myocardial infarction, cardiac dysfunction and cardiomyocyte apoptosis induced by MI/R 7 d post-truama. Globular domain of adiponectin (gAd, 0.5 mg/kg) intraperitoneally administered at both 10 min before reperfusion at the 7th day post-trauma and at the 3rd day post-trauma markedly alleviated MI/R injury.
     (4) Myocardial ?O2? production was significantly enchanced in mice subjected to MI/R injury after trauma (P < 0.01 vs. sham trauma). Blockade of TNF-αwith etanercept, or intraperitoneal administration of gAd at both 10 min before reperfusion at the 7th day post-trauma and at the 3rd day post-trauma all markedly decreased myocardial ?O2? production (P < 0.01~0.05 vs. sham trauma).
     (5) Myocardial iNOS expression was enhanced and NOx production increased (~ 1.5 fold, P < 0.05 vs. sham trauma) in mice subjected to MI/R injury after trauma. Blockade of TNF-αwith etanercept, or intraperitoneal administration of gAd at both 10 min before reperfusion at the 7th day post-trauma and at the 3rd day post-trauma all markedly decreased myocardial iNOS expression and NOx production (P < 0.01~0.05 vs. sham trauma).
     (6) Myocardial histochemistry signal of nitrotyrosine was enhanced and ONOO- formation increased (~ 5 fold, P < 0.05 vs. sham trauma) in mice subjected to MI/R injury after trauma. Blockade of TNF-αwith etanercept, or intraperitoneal administration of gAd at both 10 min before reperfusion at the 7th day post-trauma and at the 3rd day post-trauma all markedly decreased myocardial histochemistry signal of nitrotyrosine and ONOO- formation (P < 0.01~0.05 vs. sham trauma).
     (7) Intraperitoneal administration of Mn(III)TBAP (?O2? scavenger, 10 mg/kg) or EUK134(ONOO- scavenger, 5 mg/kg)attenuated myocardial infarction, cardiac dysfunction and cardiomyocyte apoptosis and caspase-3 activity induced by MI/R at the 7th day post-truama.
     (8) The replenishment of exogenous gAd reduced myocardial infarct size by 37.8% in Adp-/- mice subjected to MI/R injury 7 days after trauma (P < 0.01 vs. vehicle), whereas etanercept only mildly reduced the infarct size by (12.4%, P = 0.046 vs. vehicle). Meanwhile, gAd significantly alleviate the decline in±dp/dtmax in such an animal model (P < 0.01 vs. vehicle), but etanercept failed to alleviate such a decline (P > 0.05 vs. vehicle).
     Conclusions
     (1) Non-lethal trauma can aggravate MI/R injury in mice and may serve as a‘silent killer’that renders myocardium more susceptible to ischemic injury.
     (2) Elevation in plasma TNF-αcan induce a secondary decline in adiponectin concentraion. Blockade of TNF-αor direct replenishment of exogenous gAd can reduce the susceptibility of myocardium to post-traumatic MI/R injury, indicating that the decrease in plasma adiponectin level induced by elevated TNF-αmight play a role in the aggravation of MI/R injury after trauma.
     (3) Decreased plasma adiponectin induced by elevated TNF-αcan enhance myocardial oxidative/nitrative stress after MI/R and, therefore, increase the susceptibility of myocardium to I/R injury.
     (4) Replenishment of exogenous gAd, but not the administration of etanercept, can attenuate myocardial infarction and cardiac dysfunction induced by post-traumatic MI/R injury in Adp-/- mice, thus implicating the decrease in plasma adiponectin level secondary to elevated TNF-αas an important factor in the aggravation of post-traumatic MI/R injury.
引文
1. Moore FA, Sauaia A, Moore EE, et al. Postinjury multiple organ failure: a bimodal phenomenon. J Trauma 1996;40:501-510; discussion 510-502.
    2. Ciesla DJ, Moore EE, Johnson JL, et al. A 12-year prospective study of postinjury multiple organ failure: has anything changed? Arch Surg 2005;140:432-438; discussion 438-440.
    3. Ciesla DJ, Moore EE, Johnson JL, et al. The role of the lung in postinjury multiple organ failure. Surgery 2005;138:749-757; discussion 757-748.
    4. Sauaia A, Moore FA, Moore EE, et al. Epidemiology of trauma deaths: a reassessment. J Trauma 1995;38:185-193.
    5. Dewar D, Moore FA, Moore EE, et al. Postinjury multiple organ failure. Injury 2009;40:912-918.
    6. Sauaia A, Moore FA, Moore EE, et al. Multiple organ failure can be predicted as early as 12 hours after injury. J Trauma 1998;45:291-301; discussion 301-293.
    7. Ulvik A, Kvale R, Wentzel-Larsen T, et al. Multiple organ failure after trauma affects even long-term survival and functional status. Crit Care 2007;11:R95.
    8. Moore EE, Moore FA, Harken AH, et al. The two-event construct of postinjury multiple organ failure. Shock 2005;24 Suppl 1:71-74.
    9. Niu CY, Li JC, Zhao ZG, et al. Effect of intestinal lymphatic circulation blockage in two-hit rats. World J Gastroenterol 2006;12:5805-5812.
    10. Senthil M, Brown M, Xu DZ, et al. Gut-lymph hypothesis of systemic inflammatory response syndrome/multiple-organ dysfunction syndrome: validating studies in a porcine model. J Trauma 2006;60:958-965; discussion 965-957.
    11. Upperman JS, Deitch EA, Guo W, et al. Post-hemorrhagic shock mesenteric lymph is cytotoxic to endothelial cells and activates neutrophils. Shock 1998;10:407-414.
    12. Botha AJ, Moore FA, Moore EE, et al. Early neutrophil sequestration after injury: a pathogenic mechanism for multiple organ failure. J Trauma 1995;39:411-417.
    13. Maier B, Lefering R, Lehnert M, et al. Early versus late onset of multiple organ failure is associated with differing patterns of plasma cytokine biomarker expression and outcome after severe trauma. Shock 2007;28:668-674.
    14. Adams JM, Hauser CJ, Livingston DH, et al. Early trauma polymorphonuclear neutrophil responses to chemokines are associated with development of sepsis, pneumonia, and organ failure. J Trauma 2001;51:452-456; discussion 456-457.
    15. Frink M, Pape HC, van Griensven M, et al. Influence of sex and age on mods and cytokines after multiple injuries. Shock 2007;27:151-156.
    16. Sperry JL, Frankel HL, Vanek SL, et al. Early hyperglycemia predicts multiple organ failure and mortality but not infection. J Trauma 2007;63:487-493; discussion 493-484.
    17. Dunne JR, Malone DL, Tracy JK, et al. Allogenic blood transfusion in the first 24 hours after trauma is associated with increased systemic inflammatory response syndrome (SIRS) and death. Surg Infect (Larchmt) 2004;5:395-404.
    18. Hebert PC, Wells G, Blajchman MA, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med 1999;340:409-417.
    19. Stack G, Baril L, Napychank P, et al. Cytokine generation in stored, white cell-reduced, and bacterially contaminated units of red cells. Transfusion 1995;35:199-203.
    20. Zallen G, Offner PJ, Moore EE, et al. Age of transfused blood is an independent risk factor for postinjury multiple organ failure. Am J Surg 1999;178:570-572.
    21. Rezende-Neto JB, Moore EE, Masuno T, et al. The abdominal compartment syndrome as a second insult during systemic neutrophil priming provokes multiple organ injury.Shock 2003;20:303-308.
    22. Pretre R, Chilcott M. Blunt trauma to the heart and great vessels. N Engl J Med 1997;336:626-632.
    23. Parmley LF, Manion WC, Mattingly TW. Nonpenetrating traumatic injury of the heart. Circulation 1958;18:371-396.
    24. Zhao ZQ, Velez DA, Wang NP, et al. Progressively developed myocardial apoptotic cell death during late phase of reperfusion. Apoptosis 2001;6:279-290.
    25. Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol 2010;72:19-44.
    26. Del Re DP, Sadoshima J. Optimizing cell-based therapy for cardiac regeneration. Circulation 2009;120:831-834.
    27. Brenner C, Kroemer G. Apoptosis. Mitochondria--the death signal integrators. Science 2000;289:1150-1151.
    28. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281:1309-1312.
    29. Tafani M, Karpinich NO, Hurster KA, et al. Cytochrome c release upon Fas receptor activation depends on translocation of full-length bid and the induction of the mitochondrial permeability transition. J Biol Chem 2002;277:10073-10082.
    30. Guo Y, Srinivasula SM, Druilhe A, et al. Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J Biol Chem 2002;277:13430-13437.
    31. Morishima N, Nakanishi K, Takenouchi H, et al. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem 2002;277:34287-34294.
    32. Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 2000;403:98-103.
    33. Arnoult D, Parone P, Martinou JC, et al. Mitochondrial release of apoptosis-inducing factor occurs downstream of cytochrome c release in response to several proapoptotic stimuli. J Cell Biol 2002;159:923-929.
    34. Cande C, Cohen I, Daugas E, et al. Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie 2002;84:215-222.
    35. Lorenzo HK, Susin SA, Penninger J, et al. Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. Cell Death Differ 1999;6:516-524.
    36. Yamamoto K, Ichijo H, Korsmeyer SJ. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol 1999;19:8469-8478.
    37. Buckley S, Driscoll B, Barsky L, et al. ERK activation protects against DNA damage and apoptosis in hyperoxic rat AEC2. Am J Physiol 1999;277:L159-166.
    38. Scheid MP, Schubert KM, Duronio V. Regulation of bad phosphorylation and association with Bcl-x(L) by the MAPK/Erk kinase. J Biol Chem 1999;274:31108-31113.
    39. Saraste A. Morphologic criteria and detection of apoptosis. Herz 1999;24:189-195.
    40. Saraste A, Pulkki K. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res 2000;45:528-537.
    41. Kanoh M, Takemura G, Misao J, et al. Significance of myocytes with positive DNA in situ nick end-labeling (TUNEL) in hearts with dilated cardiomyopathy: not apoptosis but DNA repair. Circulation 1999;99:2757-2764.
    42. Zhao ZQ, Nakamura M, Wang NP, et al. Reperfusion induces myocardial apoptotic cell death. Cardiovasc Res 2000;45:651-660.
    43. Freude B, Masters TN, Robicsek F, et al. Apoptosis is initiated by myocardial ischemia and executed during reperfusion. J Mol Cell Cardiol 2000;32:197-208.
    44. Saraste A, Pulkki K, Kallajoki M, et al. Apoptosis in human acute myocardial infarction. Circulation 1997;95:320-323.
    45. James TN. Apoptosis in cardiac disease. Am J Med 1999;107:606-620.
    46. Narula J, Haider N, Virmani R, et al. Apoptosis in myocytes in end-stage heart failure. N Engl J Med 1996;335:1182-1189.
    47. Guerra S, Leri A, Wang X, et al. Myocyte death in the failing human heart is gender dependent. Circ Res 1999;85:856-866.
    48. Kavantzas NG, Lazaris AC, Agapitos EV, et al. Histological assessment of apoptotic cell death in cardiomyopathies. Pathology 2000;32:176-180.
    49. Akyurek O, Akyurek N, Sayin T, et al. Association between the severity of heart failure and the susceptibility of myocytes to apoptosis in patients with idiopathic dilated cardiomyopathy. Int J Cardiol 2001;80:29-36.
    50. Rayment NB, Haven AJ, Madden B, et al. Myocyte loss in chronic heart failure. J Pathol 1999;188:213-219.
    51. Narula J, Pandey P, Arbustini E, et al. Apoptosis in heart failure: release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci U S A 1999;96:8144-8149.
    52. Knaapen MW, Davies MJ, De Bie M, et al. Apoptotic versus autophagic cell death in heart failure. Cardiovasc Res 2001;51:304-312.
    53. Kitanaka C, Kuchino Y. Caspase-independent programmed cell death with necrotic morphology. Cell Death Differ 1999;6:508-515.
    54. Koseki T, Inohara N, Chen S, et al. ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases. Proc Natl Acad Sci US A 1998;95:5156-5160.
    55. Ekhterae D, Lin Z, Lundberg MS, et al. ARC inhibits cytochrome c release from mitochondria and protects against hypoxia-induced apoptosis in heart-derived H9c2 cells. Circ Res 1999;85:e70-77.
    56. Yaoita H, Ogawa K, Maehara K, et al. Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation 1998;97:276-281.
    57. Gottlieb RA, Gruol DL, Zhu JY, et al. Preconditioning rabbit cardiomyocytes: role of pH, vacuolar proton ATPase, and apoptosis. J Clin Invest 1996;97:2391-2398.
    58. Yaoita H, Ogawa K, Maehara K, et al. Apoptosis in relevant clinical situations: contribution of apoptosis in myocardial infarction. Cardiovasc Res 2000;45:630-641.
    59. Okamura T, Miura T, Takemura G, et al. Effect of caspase inhibitors on myocardial infarct size and myocyte DNA fragmentation in the ischemia-reperfused rat heart. Cardiovasc Res 2000;45:642-650.
    60. Mocanu MM, Baxter GF, Yellon DM. Caspase inhibition and limitation of myocardial infarct size: protection against lethal reperfusion injury. Br J Pharmacol 2000;130:197-200.
    61. Condorelli G, Morisco C, Stassi G, et al. Increased cardiomyocyte apoptosis and changes in proapoptotic and antiapoptotic genes bax and bcl-2 during left ventricular adaptations to chronic pressure overload in the rat. Circulation 1999;99:3071-3078.
    62. von Harsdorf R, Li PF, Dietz R. Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 1999;99:2934-2941.
    63. Latif N, Khan MA, Birks E, et al. Upregulation of the Bcl-2 family of proteins in end stage heart failure. J Am Coll Cardiol 2000;35:1769-1777.
    64. Kirshenbaum LA, de Moissac D. The bcl-2 gene product prevents programmed cell death of ventricular myocytes. Circulation 1997;96:1580-1585.
    65. Buerke M, Murohara T, Skurk C, et al. Cardioprotective effect of insulin-like growth factor I in myocardial ischemia followed by reperfusion. Proc Natl Acad Sci U S A 1995;92:8031-8035.
    66. Wang L, Ma W, Markovich R, et al. Regulation of cardiomyocyte apoptotic signaling by insulin-like growth factor I. Circ Res 1998;83:516-522.
    67. Li Q, Li B, Wang X, et al. Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. J Clin Invest 1997;100:1991-1999.
    68. Fujio Y, Nguyen T, Wencker D, et al. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation 2000;101:660-667.
    69. Yin Z, Gao H, Wang H, et al. Ischaemic post-conditioning protects both adult and aged Sprague-Dawley rat heart from ischaemia-reperfusion injury through the phosphatidylinositol 3-kinase-AKT and glycogen synthase kinase-3beta pathways. Clin Exp Pharmacol Physiol 2009;36:756-763.
    70. Lee WL, Chen JW, Ting CT, et al. Insulin-like growth factor I improves cardiovascular function and suppresses apoptosis of cardiomyocytes in dilated cardiomyopathy. Endocrinology 1999;140:4831-4840.
    71. Samali A, Orrenius S. Heat shock proteins: regulators of stress response and apoptosis. Cell Stress Chaperones 1998;3:228-236.
    72. Stephanou A, Brar B, Heads R, et al. Cardiotrophin-1 induces heat shock protein accumulation in cultured cardiac cells and protects them from stressful stimuli. J Mol Cell Cardiol 1998;30:849-855.
    73. Conde AG, Lau SS, Dillmann WH, et al. Induction of heat shock proteins by tyrosine kinase inhibitors in rat cardiomyocytes and myogenic cells confers protection againstsimulated ischemia. J Mol Cell Cardiol 1997;29:1927-1938.
    74. Su CY, Chong KY, Owen OE, et al. Constitutive and inducible hsp70s are involved in oxidative resistance evoked by heat shock or ethanol. J Mol Cell Cardiol 1998;30:587-598.
    75. Brar BK, Stephanou A, Wagstaff MJ, et al. Heat shock proteins delivered with a virus vector can protect cardiac cells against apoptosis as well as against thermal or hypoxic stress. J Mol Cell Cardiol 1999;31:135-146.
    76. Li CY, Lee JS, Ko YG, et al. Heat shock protein 70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activation. J Biol Chem 2000;275:25665-25671.
    77. Beere HM, Wolf BB, Cain K, et al. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2000;2:469-475.
    78. Concannon CG, Orrenius S, Samali A. Hsp27 inhibits cytochrome c-mediated caspase activation by sequestering both pro-caspase-3 and cytochrome c. Gene Expr 2001;9:195-201.
    79. Bruey JM, Ducasse C, Bonniaud P, et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2000;2:645-652.
    80. Lin KM, Lin B, Lian IY, et al. Combined and individual mitochondrial HSP60 and HSP10 expression in cardiac myocytes protects mitochondrial function and prevents apoptotic cell deaths induced by simulated ischemia-reoxygenation. Circulation 2001;103:1787-1792.
    81. Gray CC, Amrani M, Yacoub MH. Heat stress proteins and myocardial protection: experimental model or potential clinical tool? Int J Biochem Cell Biol 1999;31:559-573.
    82. McConkey DJ, Orrenius S. The role of calcium in the regulation of apoptosis. Biochem Biophys Res Commun 1997;239:357-366.
    83. Wang HG, Pathan N, Ethell IM, et al. Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 1999;284:339-343.
    84. Wood DE, Newcomb EW. Cleavage of Bax enhances its cell death function. Exp Cell Res 2000;256:375-382.
    85. Halestrap AP. The mitochondrial permeability transition: its molecular mechanism and role in reperfusion injury. Biochem Soc Symp 1999;66:181-203.
    86. Iwamoto H, Miura T, Okamura T, et al. Calpain inhibitor-1 reduces infarct size and DNA fragmentation of myocardium in ischemic/reperfused rat heart. J Cardiovasc Pharmacol 1999;33:580-586.
    87. Saito S, Hiroi Y, Zou Y, et al. beta-Adrenergic pathway induces apoptosis through calcineurin activation in cardiac myocytes. J Biol Chem 2000;275:34528-34533.
    88. Taigen T, De Windt LJ, Lim HW, et al. Targeted inhibition of calcineurin prevents agonist-induced cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A 2000;97:1196-1201.
    89. De Windt LJ, Lim HW, Taigen T, et al. Calcineurin-mediated hypertrophy protects cardiomyocytes from apoptosis in vitro and in vivo: An apoptosis-independent model of dilated heart failure. Circ Res 2000;86:255-263.
    90. Rabkin SW, Kong JY. Nifedipine does not induce but rather prevents apoptosis in cardiomyocytes. Eur J Pharmacol 2000;388:209-217.
    91. Chandra J, Samali A, Orrenius S. Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med 2000;29:323-333.
    92. Dhalla NS, Elmoselhi AB, Hata T, et al. Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res 2000;47:446-456.
    93. Maulik N, Yoshida T, Das DK. Regulation of cardiomyocyte apoptosis in ischemic reperfused mouse heart by glutathione peroxidase. Mol Cell Biochem 1999;196:13-21.
    94. Chen Z, Siu B, Ho YS, et al. Overexpression of MnSOD protects against myocardial ischemia/reperfusion injury in transgenic mice. J Mol Cell Cardiol 1998;30:2281-2289.
    95. Siveski-Iliskovic N, Hill M, Chow DA, et al. Probucol protects against adriamycin cardiomyopathy without interfering with its antitumor effect. Circulation 1995;91:10-15.
    96. Goldstein BJ, Scalia R. Adipokines and vascular disease in diabetes. Curr Diab Rep 2007;7:25-33.
    97. Zhu W, Cheng KK, Vanhoutte PM, et al. Vascular effects of adiponectin: molecular mechanisms and potential therapeutic intervention. Clin Sci (Lond) 2008;114:361-374.
    98. Jay D, Hitomi H, Griendling KK. Oxidative stress and diabetic cardiovascular complications. Free Radic Biol Med 2006;40:183-192.
    99. Granger DN, Vowinkel T, Petnehazy T. Modulation of the inflammatory response in cardiovascular disease. Hypertension 2004;43:924-931.
    100. Fernandez-Real JM, Castro A, Vazquez G, et al. Adiponectin is associated with vascular function independent of insulin sensitivity. Diabetes Care 2004;27:739-745.
    101. Tan KC, Xu A, Chow WS, et al. Hypoadiponectinemia is associated with impaired endothelium-dependent vasodilation. J Clin Endocrinol Metab 2004;89:765-769.
    102. Ouchi N, Ohishi M, Kihara S, et al. Association of hypoadiponectinemia with impaired vasoreactivity. Hypertension 2003;42:231-234.
    103. Shimabukuro M, Higa N, Asahi T, et al. Hypoadiponectinemia is closely linked to endothelial dysfunction in man. J Clin Endocrinol Metab 2003;88:3236-3240.
    104. Halperin F, Beckman JA, Patti ME, et al. The role of total and high-molecular-weightcomplex of adiponectin in vascular function in offspring whose parents both had type 2 diabetes. Diabetologia 2005;48:2147-2154.
    105. Matsuda M, Shimomura I, Sata M, et al. Role of adiponectin in preventing vascular stenosis. The missing link of adipo-vascular axis. J Biol Chem 2002;277:37487-37491.
    106. Kubota N, Terauchi Y, Yamauchi T, et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem 2002;277:25863-25866.
    107. Okamoto Y, Arita Y, Nishida M, et al. An adipocyte-derived plasma protein, adiponectin, adheres to injured vascular walls. Horm Metab Res 2000;32:47-50.
    108. Tao L, Gao E, Jiao X, et al. Adiponectin cardioprotection after myocardial ischemia/reperfusion involves the reduction of oxidative/nitrative stress. Circulation 2007;115:1408-1416.
    109. Shibata R, Sato K, Pimentel DR, et al. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat Med 2005;11:1096-1103.
    110. Scherer PE. Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes 2006;55:1537-1545.
    111. Wang Y, Xu A, Knight C, et al. Hydroxylation and glycosylation of the four conserved lysine residues in the collagenous domain of adiponectin. Potential role in the modulation of its insulin-sensitizing activity. J Biol Chem 2002;277:19521-19529.
    112. Pajvani UB, Du X, Combs TP, et al. Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity. J Biol Chem 2003;278:9073-9085.
    113. Schraw T, Wang ZV, Halberg N, et al. Plasma adiponectin complexes have distinct biochemical characteristics. Endocrinology 2008;149:2270-2282.
    114. Neumeier M, Weigert J, Schaffler A, et al. Different effects of adiponectin isoforms inhuman monocytic cells. J Leukoc Biol 2006;79:803-808.
    115. Fruebis J, Tsao TS, Javorschi S, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A 2001;98:2005-2010.
    116. Ouedraogo R, Gong Y, Berzins B, et al. Adiponectin deficiency increases leukocyte-endothelium interactions via upregulation of endothelial cell adhesion molecules in vivo. J Clin Invest 2007;117:1718-1726.
    117. Hopkins TA, Ouchi N, Shibata R, et al. Adiponectin actions in the cardiovascular system. Cardiovasc Res 2007;74:11-18.
    118. Waki H, Yamauchi T, Kamon J, et al. Generation of globular fragment of adiponectin by leukocyte elastase secreted by monocytic cell line THP-1. Endocrinology 2005;146:790-796.
    119. Kadowaki T, Yamauchi T, Kubota N, et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 2006;116:1784-1792.
    120. Ouedraogo R, Wu X, Xu SQ, et al. Adiponectin suppression of high-glucose-induced reactive oxygen species in vascular endothelial cells: evidence for involvement of a cAMP signaling pathway. Diabetes 2006;55:1840-1846.
    121. Ding G, Qin Q, He N, et al. Adiponectin and its receptors are expressed in adult ventricular cardiomyocytes and upregulated by activation of peroxisome proliferator-activated receptor gamma. J Mol Cell Cardiol 2007;43:73-84.
    122. Motoshima H, Wu X, Mahadev K, et al. Adiponectin suppresses proliferation and superoxide generation and enhances eNOS activity in endothelial cells treated with oxidized LDL. Biochem Biophys Res Commun 2004;315:264-271.
    123. Hug C, Wang J, Ahmad NS, et al. T-cadherin is a receptor for hexameric andhigh-molecular-weight forms of Acrp30/adiponectin. Proc Natl Acad Sci U S A 2004;101:10308-10313.
    124. Moulton KS. Angiogenesis in atherosclerosis: gathering evidence beyond speculation. Curr Opin Lipidol 2006;17:548-555.
    125. Libby P. Inflammation in atherosclerosis. Nature 2002;420:868-874.
    126. Lautamaki R, Ronnemaa T, Huupponen R, et al. Low serum adiponectin is associated with high circulating oxidized low-density lipoprotein in patients with type 2 diabetes mellitus and coronary artery disease. Metabolism 2007;56:881-886.
    127. Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 2004;114:1752-1761.
    128. Ouchi N, Kihara S, Arita Y, et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 1999;100:2473-2476.
    129. Ouchi N, Kihara S, Arita Y, et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 2000;102:1296-1301.
    130. Xu SQ, Mahadev K, Wu X, et al. Adiponectin protects against angiotensin II or tumor necrosis factor alpha-induced endothelial cell monolayer hyperpermeability: role of cAMP/PKA signaling. Arterioscler Thromb Vasc Biol 2008;28:899-905.
    131. Chen H, Montagnani M, Funahashi T, et al. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem 2003;278:45021-45026.
    132. Hattori Y, Suzuki M, Hattori S, et al. Globular adiponectin upregulates nitric oxide production in vascular endothelial cells. Diabetologia 2003;46:1543-1549.
    133. Xi W, Satoh H, Kase H, et al. Stimulated HSP90 binding to eNOS and activation of the PI3-Akt pathway contribute to globular adiponectin-induced NO production: vasorelaxation in response to globular adiponectin. Biochem Biophys Res Commun2005;332:200-205.
    134. Kadowaki T, Yamauchi T, Kubota N. The physiological and pathophysiological role of adiponectin and adiponectin receptors in the peripheral tissues and CNS. FEBS Lett 2008;582:74-80.
    135. Kobayashi H, Ouchi N, Kihara S, et al. Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ Res 2004;94:e27-31.
    136. Ouchi N, Kobayashi H, Kihara S, et al. Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J Biol Chem 2004;279:1304-1309.
    137. Goldstein BJ, Scalia R. Adiponectin: A novel adipokine linking adipocytes and vascular function. J Clin Endocrinol Metab 2004;89:2563-2568.
    138. Wu X, Mahadev K, Fuchsel L, et al. Adiponectin suppresses IkappaB kinase activation induced by tumor necrosis factor-alpha or high glucose in endothelial cells: role of cAMP and AMP kinase signaling. Am J Physiol Endocrinol Metab 2007;293:E1836-1844.
    139. Mahadev K, Wu X, Donnelly S, et al. Adiponectin inhibits vascular endothelial growth factor-induced migration of human coronary artery endothelial cells. Cardiovasc Res 2008;78:376-384.
    140. Collins SP, Reoma JL, Gamm DM, et al. LKB1, a novel serine/threonine protein kinase and potential tumour suppressor, is phosphorylated by cAMP-dependent protein kinase (PKA) and prenylated in vivo. Biochem J 2000;345 Pt 3:673-680.
    141. Shibata R, Ouchi N, Kihara S, et al. Adiponectin stimulates angiogenesis in response to tissue ischemia through stimulation of amp-activated protein kinase signaling. J Biol Chem 2004;279:28670-28674.
    142. Brakenhielm E, Veitonmaki N, Cao R, et al. Adiponectin-induced antiangiogenesis andantitumor activity involve caspase-mediated endothelial cell apoptosis. Proc Natl Acad Sci U S A 2004;101:2476-2481.
    143. Bora PS, Kaliappan S, Lyzogubov VV, et al. Expression of adiponectin in choroidal tissue and inhibition of laser induced choroidal neovascularization by adiponectin. FEBS Lett 2007;581:1977-1982.
    144. Natarajan R, Salloum FN, Fisher BJ, et al. Hypoxia inducible factor-1 upregulates adiponectin in diabetic mouse hearts and attenuates post-ischemic injury. J Cardiovasc Pharmacol 2008;51:178-187.
    145. Date H, Imamura T, Ideguchi T, et al. Adiponectin produced in coronary circulation regulates coronary flow reserve in nondiabetic patients with angiographically normal coronary arteries. Clin Cardiol 2006;29:211-214.
    146. Sharma K, Ramachandrarao S, Qiu G, et al. Adiponectin regulates albuminuria and podocyte function in mice. J Clin Invest 2008;118:1645-1656.
    147. Frystyk J, Tarnow L, Hansen TK, et al. Increased serum adiponectin levels in type 1 diabetic patients with microvascular complications. Diabetologia 2005;48:1911-1918.
    148. Schalkwijk CG, Chaturvedi N, Schram MT, et al. Adiponectin is inversely associated with renal function in type 1 diabetic patients. J Clin Endocrinol Metab 2006;91:129-135.
    149. Koshimura J, Fujita H, Narita T, et al. Urinary adiponectin excretion is increased in patients with overt diabetic nephropathy. Biochem Biophys Res Commun 2004;316:165-169.
    150. Shinmura K, Tamaki K, Saito K, et al. Cardioprotective effects of short-term caloric restriction are mediated by adiponectin via activation of AMP-activated protein kinase. Circulation 2007;116:2809-2817.
    151. Ikeda Y, Ohashi K, Shibata R, et al. Cyclooxygenase-2 induction by adiponectin isregulated by a sphingosine kinase-1 dependent mechanism in cardiac myocytes. FEBS Lett 2008;582:1147-1150.
    152. Gao F, Gao E, Yue TL, et al. Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion: the roles of PI3-kinase, Akt, and endothelial nitric oxide synthase phosphorylation. Circulation 2002;105:1497-1502.
    153. Li R, Wang WQ, Zhang H, et al. Adiponectin improves endothelial function in hyperlipidemic rats by reducing oxidative/nitrative stress and differential regulation of eNOS/iNOS activity. Am J Physiol Endocrinol Metab 2007;293:E1703-1708.
    154. Kim YM, Bombeck CA, Billiar TR. Nitric oxide as a bifunctional regulator of apoptosis. Circ Res 1999;84:253-256.
    155. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1996;271:C1424-1437.
    156. Suganami T, Nishida J, Ogawa Y. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 2005;25:2062-2068.
    157. Ouchi N, Kihara S, Funahashi T, et al. Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation 2003;107:671-674.
    158. Yujiri T, Ware M, Widmann C, et al. MEK kinase 1 gene disruption alters cell migration and c-Jun NH2-terminal kinase regulation but does not cause a measurable defect in NF-κB activation. Proceedings of the National Academy of Sciences of the United States of America 2000;97:7272-7277.
    159. Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. The Journal of Clinical Investigation 2006;116:1793-1801.
    160. Janella BL, Pinto RJ, Pena HP, et al. Acute myocardial infarction related to blunt thoracic trauma. Arq Bras Cardiol 2006;87:e239-242.
    161. Grozieux de Laguerenne N, Pretorian EM, Jaboureck O, et al. [A case of chest trauma-induced acute myocardial infarction]. Ann Cardiol Angeiol (Paris) 2007;56:211-215.
    162. Ismailov RM, Ness RB, Weiss HB, et al. Trauma associated with acute myocardial infarction in a multi-state hospitalized population. Int J Cardiol 2005;105:141-146.
    163. Tao L, Liu HR, Gao F, et al. Mechanical traumatic injury without circulatory shock causes cardiomyocyte apoptosis: role of reactive nitrogen and reactive oxygen species. Am J Physiol Heart Circ Physiol 2005;288:H2811-2818.
    164. Bergovec M, Mihatov S, Prpic H, et al. Acute myocardial infarction among civilians in Zagreb city area. Lancet 1992;339:303.
    165.朱妙章,吴博威,裴建明,等.心血管肾脏生理学实验技术方法及其进展.西安,第四军医大学出版社,2010;146-148.
    166. Chatterjee S, Bish LT, Jayasankar V, et al. Blocking the development of postischemic cardiomyopathy with viral gene transfer of the apoptosis repressor with caspase recruitment domain. J Thorac Cardiovasc Surg 2003;125:1461-1469.
    167. Abbate A, Biondi-Zoccai GG, Baldi A. Pathophysiologic role of myocardial apoptosis in post-infarction left ventricular remodeling. J Cell Physiol 2002;193:145-153.
    168. Li S, Jiao X, Tao L, et al. Tumor necrosis factor-alpha in mechanic trauma plasma mediates cardiomyocyte apoptosis. Am J Physiol Heart Circ Physiol 2007;293:H1847-1852.
    169. Cavusoglu E, Ruwende C, Chopra V, et al. Adiponectin is an independent predictor of all-cause mortality, cardiac mortality, and myocardial infarction in patients presenting with chest pain. Eur Heart J 2006;27:2300-2309.
    170. van Berge Henegouwen MI, van der Poll T, van Deventer SJ, et al. Peritoneal cytokine release after elective gastrointestinal surgery and postoperative complications. Am JSurg 1998;175:311-316.
    171. Li S, Tao L, Jiao X, et al. TNFalpha-initiated oxidative/nitrative stress mediates cardiomyocyte apoptosis in traumatic animals. Apoptosis 2007;12:1795-1802.
    172. Simons PJ, van den Pangaart PS, Aerts JM, et al. Pro-inflammatory delipidizing cytokines reduce adiponectin secretion from human adipocytes without affecting adiponectin oligomerization. J Endocrinol 2007;192:289-299.
    173. Degawa-Yamauchi M, Moss KA, Bovenkerk JE, et al. Regulation of adiponectin expression in human adipocytes: effects of adiposity, glucocorticoids, and tumor necrosis factor alpha. Obes Res 2005;13:662-669.
    174. Wang B, Jenkins JR, Trayhurn P. Expression and secretion of inflammation-related adipokines by human adipocytes differentiated in culture: integrated response to TNF-alpha. Am J Physiol Endocrinol Metab 2005;288:E731-740.
    175. Bruun JM, Lihn AS, Verdich C, et al. Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans. Am J Physiol Endocrinol Metab 2003;285:E527-533.
    176. Kappes A, Loffler G. Influences of ionomycin, dibutyryl-cycloAMP and tumour necrosis factor-alpha on intracellular amount and secretion of apM1 in differentiating primary human preadipocytes. Horm Metab Res 2000;32:548-554.
    177. Liu BH, Wang YC, Wu SC, et al. Insulin regulates the expression of adiponectin and adiponectin receptors in porcine adipocytes. Domest Anim Endocrinol 2008;34:352-359.
    178. Wang Y, Zhou M, Lam KS, et al. Protective roles of adiponectin in obesity-related fatty liver diseases: mechanisms and therapeutic implications. Arq Bras Endocrinol Metabol 2009;53:201-212.
    179. Zhou M, Xu A, Tam PK, et al. Mitochondrial dysfunction contributes to the increasedvulnerabilities of adiponectin knockout mice to liver injury. Hepatology 2008;48:1087-1096.
    180. Beckman JS, Estevez AG, Crow JP, et al. Superoxide dismutase and the death of motoneurons in ALS. Trends Neurosci 2001;24:S15-S20.
    181. Pryor WA, Squadrito GL. The chemistry of peroxynitrite: A product from the reaction of nitric oxide with superoxide. AmJPhysiolLung CellMolPhysiol 1995;268:L699-L722.
    182. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and the ugly. AmJPhysiolCell Physiol 1996;271:C1424-C1437.
    183. Kamat JP. Peroxynitrite: a potent oxidizing and nitrating agent. Indian J Exp Biol 2006;44:436-447.
    184. Aulak KS, Koeck T, Crabb JW, et al. Dynamics of protein nitration in cells and mitochondria. Am J Physiol Heart Circ Physiol 2004;286:H30-38.
    185. Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001;7:941-946.
    186. Paulus WJ. The role of nitric oxide in the failing heart. Heart FailRev 2001;6:105-118.
    187. Marletta MA, Maxey KM. Nitric oxide: function,formation and therapeutic potential. Cayman Chemical 1995;1.
    188. Lin KT, Xue JY, Nomen M, et al. Peroxynitrite-induced apoptosis in HL-60 cells. JBiolChem 1995;270:16487-16490.
    189. Lee VY, McClintock DS, Santore MT, et al. Hypoxia sensitizes cells to nitric oxide-induced apoptosis. J BiolChem 2002;277:16067-16074.
    190. Walford GA, Moussignac RL, Scribner AW, et al. Hypoxia Potentiates Nitric Oxide-mediated Apoptosis in Endothelial Cells via Peroxynitrite-induced Activation ofMitochondria-dependent and -independent Pathways. JBiolChem 2004;279:4425-4432.
    191. Buerke M, Weyrich AS, Lefer AM. Isolated cardiac myocytes are sensitized by hypoxia-reoxygenation to neutrophil-released mediators. Am J Physiol Heart Circ Physiol 1994;266:H128-H136.
    192. Ma K, Cabrero A, Saha PK, et al. Increased beta -oxidation but no insulin resistance or glucose intolerance in mice lacking adiponectin. J Biol Chem 2002;277:34658-34661.