TGF-β1信号通路和Wnt信号通路阻断对大鼠心梗后心肌纤维化过程的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心肌梗死(myocardial infarction, MI)是因冠状动脉或其分支阻塞而引起的缺血性心肌病,可导致心室重构,并可逐步进展为心力衰竭(heart failure, HF),严重威胁人类的健康和生命。心肌纤维化(myocardial fibrosis, MF)是多种心脏疾病发展到一定阶段的共同病理改变,是最具特征性的结构改变之一,为MI后心室重构的主要表现之一,可促进心肌收缩和舒张功能失调。心肌成纤维细胞(cardiac fibroblasts,CFs)的长期激活,即增强的细胞增殖、肌成纤维细胞分化和伴随的细胞外基质(extracellular matrix, ECM)分泌,可导致心肌纤维化。
     转化生长因子-p1(transforming growth factor-β1, TGF-β1)是最重要的促纤维化生长因子,为诸多因素所致MF的共同通路。MI后TGF-β1的表达显著性升高;而体内基因转染TGF-β1可诱导MF。为深入了解TGF-β1信号通路抑制对MI后MF过程的调控机制,本研究首先从细胞水平探讨了该信号通路抑制与CFs的生物学效应之间的关系。
     培养新生大鼠的CFs,随机分为四组:PBS组、TGF-β1组、可溶性转化生长因子一β1Ⅱ型受体(soluble transforming growth factor-β1 receptorⅡ, sTβRⅡ)组和TGF-β1+sTβRⅡ组。MTT法检测CFs的增殖。α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)免疫细胞化学染色检测肌成纤维细胞分化。免疫细胞化学染色和Western blot分析检测TGF-β1信号通路中关键的信号分子P-Smad2和Smad2/Smad3蛋白的表达水平。结果表明,与PBS组相比较,TGF-β1组CFs的增殖、肌成纤维细胞分化和P-Smad2蛋白的表达均显著性升高(P<0.01);与TGF-β1组相比较,TGF-β1+sTβRⅡ组CFs的增殖、肌成纤维细胞分化和P-Smad2蛋白的表达均显著性降低(P<0.01);各组间Smad2/Smad3总蛋白的表达水平无显著性差异(P>0.05)。以上结果提示,TGF-β1可激活Smad信号,诱导CFs的增殖和肌成纤维细胞分化;sTβRⅡ预处理可抑制TGF-β1诱导的Smad信号的激活和下游事件,即CFs增殖和肌成纤维细胞分化,从而抑制CFs的功能。
     此外,Wnt信号通路是脊椎动物发育过程中起关键作用的信号通路之一,参与了胚胎心脏的发育过程。而心脏病理过程中胚胎基因的重新表达是一种被普遍观察到的现象。研究表明,Wnt信号通路参与了MI后的组织修复过程。为深入了解Wnt信号通路抑制对MI后MF过程的调控机制,本研究进而探讨了该信号通路抑制与CFs的生物学效应之间的关系。
     培养新生大鼠的CFs,随机分为四组:PBS组、Wnt-1组、分泌型卷曲相关蛋白-1(secreted frizzled related protein-1, sFRP-1)组和Wnt-1+sFRP-1组。MTT法检测CFs的增殖。α-SMA免疫细胞化学染色检测肌成纤维细胞分化。免疫细胞化学染色和Western blot分析检测Wnt信号通路中的两个关键性信号分子dishevelled-1(DVL-1)和β-连环蛋白(p-catenin)的表达水平。结果表明,与PBS组相比较,Wnt-1组CFs的增殖、肌成纤维细胞分化、DVL-1和β-catenin的表达均显著性升高(P<0.01);与Wnt-1组相比较,Wnt-1+sFRP-1组CFs的增殖明显降低(P<0.05)、肌成纤维细胞分化、DVL-1和β-catenin的表达均显著性降低(P<0.01)。以上结果提示,Wnt-1可激活Wnt信号通路,诱导CFs增殖和肌成纤维细胞分化;而sFRP-1预处理可拮抗Wnt-1的作用,抑制Wnt信号通路的激活和下游事件,即CFs增殖和肌成纤维细胞分化,抑制CFs的生物学功能。
     为了进一步阐明TGF-β1信号通路和Wnt信号通路阻断对MI后MF过程的调控机制,我们通过结扎大鼠左冠状动脉前降支制作MI模型,4天后存活的大鼠随机进行处理并分组:假手术组(给予等量PBS,n=10)、MI组(给予等量PBS,n=10)、MI+sTβRⅡ组(在梗死区和梗死边缘区注射100ng sTβRⅡ/20μl PBS, n=10)、MI+sFRP-1组(在梗死区和梗死边缘区注射100ng sFRP-4/20μl PBS, n=10)和MI+sTβRⅡ+sFRP-1组(给予100ng sTβRⅡ/10μl PBS和100ng sFRP-1/10μl PBS,n=10)。2周后,4只/组大鼠被处死,冰冻切片,a-SMA免疫组化染色检测肌成纤维细胞分化;4周后,测量血流动力学指标评价心功能,并计算重量参数和梗死面积。结果表明,与MI组相比较,MI+sTβRⅡ、MI+sFRP-1和MI+sTβRⅡ+sFRP-1组肌成纤维细胞分化显著性减少(P<0.01),左心室收缩压明显升高、左心室末期舒张压明显降低、左心室最大变化速率明显升高(P<0.01),心脏重/体重、左心室重/体重明显减轻(P<0.05),梗死面积显著性减少(P<0.05)。而MI+sTβRⅡ+sFRP-1组的变化最为显著。以上结果提示,联合应用sTβRⅡ和sFRP-1同时阻断TGF-β1信号通路和Wnt信号通路,可抑制肌成纤维细胞分化,有效缓解MF和左心室重构,改善缺血性心肌功能。
     综上所述,本研究从体内和体外两方面证实了TGF-β1和Wnt信号通路阻断对心梗后MF过程的调控,为将来可能进行的临床干预提供了新的思路。
Myocardial infarction (MI), an ischemic cardiomyopathy caused by occlusion of coronary arteries or its branches, often leads to left ventricular remodeling, advances on heart failure (HF) gradually, and is a threat against human health and lives. Myocardial fibrosis (MF), one of the most characteristic structural changes, is the common pathologic change of multiple heart diseases and one of the principal manifestations of left ventricular remodeling, and contributes to both systolic and diastolic dysfunction. Prolonged activation of cardiac fibroblasts (CFs), defined by increased cell proliferation, myofibroblast differentiation and subsequent extracellular matrix (ECM) secretion, leads to myocardial fibrosis.
     Transforming growth factor-β1 (TGF-β1), the major contributor to tissue fibrosis, is the mutual pathway of myocardial fibrosis caused by a variety of factors. The expression of TGF-β1 is markedly increased in both infarcted and non-infarcted areas of the hearts after MI. In vivo gene transfer of TGF-β1 can induce myocardial fibrosis. To clarify the regulatory mechanism of TGF-β1 signaling inhibition on myocardial fibrosis after MI, we first designed in vitro experiments.
     CFs were cultured and treated respectively with PBS, TGF-β1, soluble transforming growth factor-β1 receptorⅡ(sTβRⅡ), and TGF-β1+sTβRⅡ. CFs proliferation was measured by MTT assay. Myofibroblast differentiation was examined by a-smooth muscle actin (a-SMA) immunocytochemical staining. The expression of P-Smad2 and Smad2/Smad3, the critical signaling molecules, were determined by immunocyto-chemical staining and Western blot analysis. Results demonstrated that TGF-β1 significantly increased CFs proliferation, myofibroblast differentiation and the expression of P-Smad2 compared with PBS group (P<0.01); CFs proliferation, myofibroblast differentiation and the expression of P-Smad2 in TGF-β1+sTβRⅡgroup were reduced markedly compared with TGF-β1 group (P<0.01). There were no significant differences in the expression of total Smad2/Smad3 among the 4 groups (P>0.05). These results showed that TGF-β1 induced the activation of Smad signaling, CFs proliferation and myofibroblast differentiation; while pretreatment with sTβRⅡinhibited TGF-β1-induced the activation of Smad signaling and its downstream events, I.e. cell proliferation and myofibroblast differentiation, and consequently inhibited CFs function.
     In addition, Wnt signal pathway is thought to be functionally conserved in vertebrates and plays an important role in organogenesis, and is found to participate in the development of fetal heart. In cardiovascular pathology, re-expression of a fetal gene expression pattern is a generally observed phenomenon. Several studies suggested that Wnt signal pathway might be involved in the repair process after MI. To illustrate the regulatory mechanism of Wnt signaling inhibition on myocardial fibrosis after MI, we designed the following experiments in vitro.
     CFs were cultured and treated respectively with PBS, Wnt-1, secreted frizzled related protein-1 (sFRP-1), and Wnt-1+sFRP-1. Cell proliferation was measured by MTT assay. Myofibroblast differentiation was examined byα-SMA immunocytochemical staining. The expression of dishevelled-1 (DVL-1) andβ-catenin, two critical signaling molecules, were determined by immunocytochemical staining and Western blot analysis. Results demonstrated that Wnt-1 significantly increased CFs proliferation, myofibroblast differentiation, and the expression of DVL-1 andβ-catenin compared with PBS group (P <0.01); CFs proliferation (P<0.05), myofibroblast differentiation, and the expression of DVL-1 andβ-catenin in Wnt-l+sFRP-1 group were reduced markedly compared with Wnt-1 group (P<0.01). These results indicated that Wnt-1 induced the activation of Wnt signal pathway, CFs proliferation and myofibroblast differentiation; whereas pretreatment with sFRP-1 antagonized the action of Wnt-1, inhibited the activation of Wnt signal pathway and its downstream events, that is CFs proliferation and myofibroblast differentiation, and thus inhibited CFs function.
     To clarify the mechanism that blockade of TGF-β1 signal pathway and Wnt signal pathway may control the process of myocardial fibrosis after MI, we prepared MI model by ligation of the left anterior descending coronary artery.4 days after the coronary ligation, MI rats that had survived were treated and divided into groups at random: Sham-operated group (equal PBS, n=10), MI group (equal PBS, n=10), MI+sTβRⅡgroup (100ng sTβRⅡ/20μl PBS was injected into the infarct myocardium border and the infarct area, n=10), MI+sFRP-1 group (100ng sFRP-1/20μl PBS was injected into the infarct myocardium border and the infarct area, n=10), and MI+sTβRⅡ+sFRP-1 group (100ng sTβRⅡ/10μl PBS and 100ng sFRP-1/10μl PBS, n=10).2 weeks after treatment, 4 rats per group were killed and made frozen section, and myofibroblast differentiation was measured with a-SMA immunohistochemical staining.4 weeks after treatment, cardiac function was evaluated by hemodynamic measurement, weight parameters and infarct size were detected with a previous experimental method. Results demonstrated that compared with MI group, MI+sTβRⅡ, MI+sFRP-1, and MI+sTβRⅡ+sFRP-1 significantly reduced myofibroblast differentiation (P<0.01), improved left ventricular systolic pressure and the maximum rate of left ventricular systolic pressure rise and fall, but decreased left ventricular end-diastolic pressure (P<0.01), markedly reduced the ratio of heart weight and body weight, and the ratio of left ventricular weight and body weight (P<0.05), and significantly reduced infarct size (P<0.05). However, these changes are more significant in MI+sT(3RⅡ+sFRP-1 group. These results suggested that combination of sTβRⅡand sFRP-1 blocked TGF-β1 and Wnt signal pathway could inhibit myofibroblast differentiation, alleviate myocardial fibrosis and left ventricular remodeling, and improve ischemic cardiac function effectively.
     For all the above, the present study verified the manipulation of blockade of TGF-β1 and Wnt signal pathway to the process of myocardial fibrosis after MI both in vivo and in vitro, and thus represented a new approach for future therapeutic interventions.
引文
[1]Chambers RC, Leoni P, Kaminski N, Laurent GJ, Heller RA. Global expression profiling of fibroblast responses to transforming growth factor-betal reveals the induction of inhibitor of differentiation-1 and provides evidence of smooth muscle cell phenotypic switching[J]. Am J Pathol,2003,162 (2):533-546.
    [2]Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G. The myofibroblast:one function, multiple origins[J]. Am J Pathol,2007,170 (6): 1807-1816.
    [3]Bissell DM, Roulot D, George J. Transforming growth factor beta and the liver[J]. Hepatology,2001,34 (5):859-867.
    [4]Ammarguellat F, Larouche L, Schiffrin EL. Myocardial fibrosis in docasalt hypertensive rats effect of endothelin ETA receptor antagonism[J], Circulation, 2001,103 (2):319-324.
    [5]Zhang ML, Mei J, Archer LA, Obayashi M, Diao N, Stuyvers B, ter Keurs HE. Effects of therapy using the Celacade system on structural and functional cardiac remodelling in rats following myocardial infarction [J]. Can J Cardiol,2009,25 (7): e241-247.
    [6]Lijnen PJ, Petrov VV, Fagard RH. Induction of cardiac fibrosis by transforming growth factor-beta(l)[J]. Mol Genet Metab,2000,71 (1-2):418-435.
    [7]Yu CM, Tipoe GL, Wing-Hon Lai K, Lau CP. Effects of combination of angiotensin-converting enzyme inhibitor and angiotensin receptor antagonist on inflammatory cellular infiltration and myocardial interstitial fibrosis after acute myocardial infarction[J]. J Am Coll Cardiol,2001,38 (4):1207-1215.
    [8]French CJ, Zaman AK, Sobel BE. Cardiac fibrosis and diastolic dysfunction after myocardial infarction in apolipoprotein E knockout mice[J]. Coron Artery Dis,2009, 20 (7):479-482.
    [9]Diez J. Diagnosis and treatment of myocardial fibrosis in hypertensive heart disease. Circ J,2008,72 (Suppl A):A8-12.
    [10]Olson ER, Naugle JE, Zhang X, Bomser JA, Meszaros JG. Inhibition of cardiac fibroblast proliferation and myofibroblast differentiation by resveratrol[J]. Am J Physiol Heart Circ Physiol,2005,288 (3):H1131-1138.
    [11]Rahimi RA, Leof EB. TGF-beta signaling:a tale of two responses[J]. J Cell Biochem,2007,102 (3):593-608.
    [12]Li P, Wang D, Lucas J, Oparil S, Xing D, Cao X, Novak L, Renfrow MB, Chen YF. Atrial natriuretic peptide inhibits transforming growth factor beta-induced Smad signaling and myofibroblast transformation in mouse cardiac fibroblasts[J]. Circ Res, 2008,102(2):185-192.
    [13]Chung IM, Ueno H, Pak YK, Kim JW, Choi DH, Shin GJ, Yang WI, Jang Y. Catheter-based adenovirus-mediated local intravascular gene delivery of a soluble TGF-beta type II receptor using an infiltrator in porcine coronary arteries:efficacy and complications [J]. Exp Mol Med,2002,34 (4):299-307.
    [14]Isaka Y, Akagi Y, Ando Y, Tsujie M, Sudo T, Ohno N, Border WA, Noble NA, Kaneda Y, Hori M, Imai E. Gene therapy by transforming growth factor-beta receptor-IgG Fc chimera suppressed extracellular matrix accumulation in experimental glomerulonephritis[J]. Kidney Int,1999,55 (2):465-475.
    [15]Maira M, Long JE, Lee AY, Rubenstein JL, Stifani S. Role for TGF-beta superfamily signaling in telencephalic GABAergic neuron development[J]. J Neurodev Disord, 2010,2 (1):48-60.
    [16]Wrighton KH, Lin X, Feng XH. Phospho-control of TGF-beta superfamily signaling[J]. Cell Res,2009,19 (1):8-20.
    [17]Gordon KJ, Blobe GC. Role of transforming growth factor-beta superfamily signaling pathways in human disease[J]. Biochim Biophys Acta,2008,1782 (4): 197-228.
    [18]Bottoms SE, Howell JE, Reinhardt AK, Evans IC, McAnulty RJ. Tgf-Beta isoform' specific regulation of airway inflammation and remodelling in a murine model of asthma[J]. PLoS One,2010,5 (3):e9674.
    [19]Huh MI, Kim YH, Park JH, Bae SW, Kim MH, Chang Y, Kim SJ, Lee SR, Lee YS, Jin EJ, Sonn JK, Kang SS, Jung JC. Distribution of TGF-beta isoforms and signaling intermediates in corneal fibrotic wound repair[J]. J Cell Biochem,2009, 108 (2):476-488.
    [20]Deten A, Holzl A, Leicht M, Barth W, Zimmer HG. Changes in extracellular matrix and in transforming growth factor beta isoforms after coronary artery ligation in rats[J]. J Mol Cell Cardiol,2001,33 (6):1191-1207.
    [21]Petrov VV, Fagard RH, Lijnen PJ. Stimulation of collagen production by transforming growth factor-betal during differentiation of cardiac fibroblasts to myofibroblasts[J]. Hypertension,2002,39 (2):258-263.
    [22]Gao X, He X, Luo B, Peng L, Lin J, Zuo Z. Angiotensin Ⅱ increases collagen Ⅰ expression via transforming growth factor-betal and extracellular signal-regulated kinase in cardiac fibroblasts [J]. Eur J Pharmacol,2009,606 (1-3):115-120.
    [23]李永梅,任立群.心肌间质细胞在心肌纤维化中的作用[J].心血管病学进展,2007,28(4):600-602.
    [24]Shamhart PE, Luther DJ, Hodson BR, Koshy JC, Ohanyan V, Meszaros JG Impact of type 1 diabetes on cardiac fibroblast activation:enhanced cell cycle progression and reduced myofibroblast content in the diabetic myocardium[J]. Am J Physiol Endocrinol Metab,2009, [Epub ahead of print].
    [25]Lijnen PJ, Petrov VV. Role of intracardiac renin-angiotensin-aldosterone system in extracellular matrix remodeling[J]. Methods Find Exp Clin Pharmacol,2003,25 (7): 541-564.
    [26]Agocha A, Sigel AV, Eghbali-Webb M. Characterization of adult human heart fibroblasts in culture:a comparative study of growth, proliferation and collagen production in human and rabbit cardiac fibroblasts and their response to transforming growth factor-betal[J]. Cell Tissue Res,1997,288 (1):87-93.
    [27]Braun MU, Mochly-Rosen D. Opposing effects of delta-and zeta-protein kinase C isozymes on cardiac fibroblast proliferation:use of isozyme-selective inhibitors [J]. J Mol Cell Cardiol,2003,35 (8):895-903.
    [28]Akiyama-Uchida Y, Ashizawa N, Ohtsuru A, Seto S, Tsukazaki T, Kikuchi H, Yamashita S, Yano K. Norepinephrine enhances fibrosis mediated by TGF-beta in cardiac fibroblasts[J]. Hypertension,2002,40 (2):148-154.
    [29]Kapoun AM, Liang F, O'Young G, Damm DL, Quon D, White RT, Munson K, Lam A, Schreiner GF, Protter AA. B-type natriuretic peptide exerts broad functional opposition to transforming growth factor-beta in primary human cardiac fibroblasts: fibrosis, myo fibroblast conversion, proliferation, and inflammation[J]. Circ Res, 2004,94 (4):453-461.
    [30]Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression[J]. Nat Genet,2001,29 (2):117-129.
    [31]Ghahary A, Tredget EE, Ghahary A, Bahar MA, Telasky C. Cell proliferating effect of latent transforming growth factor-betal is cell membrane dependent[J]. Wound Repair Regen,2002,10 (5):328-335.
    [32]Denk PO, Hoppe J, Hoppe V, Knorr M. Effect of growth factors on the activation of human Tenon's capsule fibroblasts[J]. Curr Eye Res,2003,27 (1):35-44.
    [33]Lijnen PJ, Petrov VV, Fagard RH. Induction of cardiac fibrosis by transforming growth factor-beta(1)[J]. Mol Genet Metab,2000,71 (1-2):418-435.
    [34]Desmouliere A, Redard M, Darby I, Gabbiani G. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar[J]. Am J Pathol, 1995,146(1):56-66.
    [35]Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases[J]. J Pathol,2003,200 (4):500-503.
    [36]Kuwahara F, Kai H, Tokuda K, Kai M, Takeshita A, Egashira K, Imaizumi T. Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats[J]. Circulation,2002,106 (1): 130-135.
    [37]Ikeuchi M, Tsutsui H, Shiomi T, Matsusaka H, Matsushima S, Wen J, Kubota T, Takeshita A. Inhibition of TGF-beta signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction[J]. Cardiovasc Res,2004,64 (3): 526-535.
    [38]Yu L, Border WA, Anderson I, McCourt M, Huang Y, Noble NA. Combining TGF-beta inhibition and angiotensin Ⅱ blockade results in enhanced antifibrotic effect[J]. Kidney Int,2004,66 (5):1774-1784.
    [39]Huang W, Rubinstein J, Prieto AR, Wang DH. Enhanced postmyocardial infarction fibrosis via stimulation of the transforming growth factor-beta-Smad2 signaling pathway:role of transient receptor potential vanilloid type 1 channels [J]. J Hypertens,2010,28 (2):367-376.
    [40]Liu X, Sun SQ, Hassid A, Ostrom RS. cAMP inhibits transforming growth factor-beta-stimulated collagen synthesis via inhibition of extracellular signal-regulated kinase 1/2 and Smad signaling in cardiac fibroblasts[J]. Mol Pharmacol,2006,70 (6):1992-2003.
    [41]Yakymovych I, Ten Dijke P, Heldin CH, Souchelnytskyi S. Regulation of Smad signaling by protein kinase C[J]. FASEB J,2001,15 (3):553-555.
    [1]Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome[J]. Cell,1982, 31(1):99-109.
    [2]韩琳,冯新港.Wnt信号通路及其在动物生长发育过程中的作用[J].中国兽医寄生虫病,2008,16(3):47-52.
    [3]Panhuysen M, Vogt Weisenhorn DM, Blanquet V, Brodski C, Heinzmann U, Beisker W, Wurst W. Effects of Wntl signaling on proliferation in the developing mid-/hindbrain region[J]. Mol Cell Neurosci,2004,26 (1):101-111.
    [4]Daumer KM, Tufan AC, Tuan RS. Long-term in vitro analysis of limb cartilage development:involvement of Wnt signaling[J]. J Cell Biochem,2004,93 (3): 526-541.
    [5]Alfieri CM, Cheek J, Chakraborty S, Yutzey KE. Wnt signaling in heart valve development and osteogenic gene induction[J]. Dev Biol,2010,338 (2):127-135.
    [6]Munsterberg A, Yue Q. Cardiac progenitor migration and specification:The dual function of Wnts[J]. Cell Adh Migr,2008,2 (2):74-76.
    [7]Shan J, Jokela T, Skovorodkin I, Vainio S. Mapping of the fate of cell lineages generated from cells that express the Wnt4 gene by time-lapse during kidney development[J]. Differentiation,2010,79 (1):57-64.
    [8]Chen J, Lan Y, Baek JA, Gao Y, Jiang R. Wnt/beta-catenin signaling plays an essential role in activation of odontogenic mesenchyme during early tooth development[J]. Dev Biol,2009,334 (1):174-185.
    [9]Boras-Granic K, Wysolmerski JJ. Wnt signaling in breast organogenesis[J]. Organogenesis,2008,4 (2):116-122.
    [10]Hamada F. Wnt signaling and cancer[J]. Kaibogaku Zasshi,2009,84 (4):111-112.
    [11]Naik S, Dothager RS, Marasa J, Lewis CL, Piwnica-Worms D. Vascular Endothelial Growth Factor Receptor-1 Is Synthetic Lethal to Aberrant{beta}-Catenin Activation in Colon Cancer[J]. Clin Cancer Res,2009,15 (24):7529-7537.
    [12]Ojalvo LS, Whittaker CA, Condeelis JS, Pollard JW. Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors[J]. J Immunol,2010,184 (2): 702-712.
    [13]Gatcliffe TA, Monk BJ, Planutis K, Ilolcombe RF. Wnt signaling in ovarian tumorigenesis[J]. Int J Gynecol Cancer,2008,18 (5):954-962.
    [14]Boonen RA, van Tijn P, Zivkovic D. Wnt signaling in Alzheimer's disease:up or down, that is the question[J]. Ageing Res Rev,2009,8 (2):71-82.
    [15]Zhao J, Kim KA, Abo A. Tipping the balance:modulating the Wnt pathway for tissue repair[J]. Trends Biotechnol,2009,27 (3):131-136.
    [16]Zhang DL, Gu LJ, Liu L, Wang CY, Sun BS, Li Z, Sung CK. Effect of Wnt signaling pathway on wound healing[J]. Biochem Biophys Res Commun,2009,378 (2):149-151.
    [17]Mason JO, Kitajewski J, Varmus HE. Mutational analysis of mouse Wnt-1 identifies two temperature-sensitive alleles and attributes of Wnt-1 protein essential for transformation of a mammary cell line[J]. Mol Biol Cell,1992,3 (5):521-533.
    [18]Laeremans H, Rensen SS, Ottenheijm HC, Smits JF, Blankesteijn WM. Wnt/frizzled signaling modulates the migration and differentiation of immortalized cardiac fibroblasts[J]. Cardiovasc Res,2010, [Epub ahead of print].
    [19]Hahn JY, Cho HJ, Bae JW, Yuk HS, Kim KI, Park KW, Koo BK, Chae IH, Shin CS, Oh BH, Choi YS, Park YB, Kim HS. Beta-catenin overexpression reduces myocardial infarct size through differential effects on cardiomyocytes and cardiac fibroblasts[J]. J Biol Chem,2006,281 (41):30979-30989.
    [20]Grigoryan T, Wend P, Klaus A, Birchmeier W. Deciphering the function of canonical Wnt signals in development and disease:conditional loss-and gain-of-function mutations of beta-catenin in mice[J]. Genes Dev,2008,22 (17): 2308-2341.
    [21]Reya T, Clevers H. Wnt signalling in stem cells and cancer[J]. Nature,2005,434 (7035):843-850.
    [22]Ke Z, Zhou F, Wang L, Chen S, Liu F, Fan X, Tang F, Liu D, Zhao G. Down-regulation of Wnt signaling could promote bone marrow-derived mesenchymal stem cells to differentiate into hepatocytes[J]. Biochem Biophys Res Commun,2008,367 (2):342-348.
    [23]焦园园,杨桂文,安利国.CNN蛋白家族研究进展[J].山东师范大学学报(自然科学版),2005,20(3):77-79.
    [24]郑克刚,孟小倩,李云龙.动物受精过程中卵子Ca2+释放机制[J].山东师范大学学报(自然科学版),2006,21(3):120-122.
    [25]Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR 3rd, Nusse R. Wnt proteins are lipid-modified and can act as stem cell growth factors[J]. Nature,2003,423 (6938):448-452.
    [26]Klein PS, Melton DA. A molecular mechanism for the effect of lithium on development[J]. Proc Natl Acad Sci U S A,1996,93 (16):8455-8459.
    [27]罗秋育,季明芳.Wnt抑制因子-1与Wnt通路和肿瘤发生[J].医学分子生物学杂志,2006,3(6):453-455.
    [28]Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway[J]. Mol Cell Biol,2002,22 (4):1172-1183.
    [29]李永梅,任立群.心肌间质细胞在心肌纤维化中的作用[J].心血管病学进展,2007,28(4):600-602.
    [30]Shamhart PE, Luther DJ, Hodson BR, Koshy JC, Ohanyan V, Meszaros JG. Impact of type 1 diabetes on cardiac fibroblast activation:enhanced cell cycle progression and reduced myofibroblast content in the diabetic myocardium[J]. Am J Physiol Endocrinol Metab,2009, [Epub ahead of print].
    [31]Lijnen PJ, Petrov VV. Role of intracardiac renin-angiotensin-aldosterone system in extracellular matrix remodeling[J]. Methods Find Exp Clin Pharmacol,2003,25 (7): 541-564.
    [32]Chen L, Wu Q, Guo F, Xia B, Zuo J. Expression of Dishevelled-1 in wound healing after acute myocardial infarction:possible involvement in myofibroblast proliferation and migration[J]. J Cell Mol Med,2004,8 (2):257-264.
    [33]陈丽君,左伋,夏蓓莉,郭锋,王克强,葛均波.急性心梗后心肌组织(3-catenin的表达[J].中国分子心脏病学杂志,2003,3(6):326-332.
    [1]Hori M, Nishida K. Oxidative stress and left ventricular remodelling after myocardial infarction[J]. Cardiovasc Res,2009,81 (3):457-464.
    [2]Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications[J]. Circulation,1990,81 (4): 1161-1172.
    [3]Pfeffer JM, Pfeffer MA, Fletcher PJ, Braunwald E. Progressive ventricular remodeling in rat with myocardial infarction[J]. Am J Physiol,1991,260 (5 Pt 2): H1406-1414.
    [4]Rumberger JA. Ventricular dilatation and remodeling after myocardial infarction[J]. Mayo Clin Proc,1994,69 (7):664-674.
    [5]Anversa P, Olivetti G, Capasso JM. Cellular basis of ventricular remodeling after myocardial infarction[J]. Am J Cardiol,1991,68 (14):7D-16D.
    [6]Cheng W, Kajstura J, Nitahara JA, Li B, Reiss K, Liu Y, Clark WA, Krajewski S, Reed JC, Olivetti G, Anversa P. Programmed myocyte cell death affects the viable myocardium after infarction in rats[J]. Exp Cell Res,1996,226 (2):316-327.
    [7]Burlew BS, Weber KT. Cardiac fibrosis as a cause of diastolic dysfunction[J]. Herz, 2002,27 (2):92-98.
    [8]Burlew BS, Weber KT. Connective tissue and the heart. Functional significance and regulatory mechanisms[J]. Cardiol Clin,2000,18 (3):435-442.
    [9]Pinto YM, Pinto-Sietsma SJ, Philipp T, Engler S, Kossamehl P, Hocher B, Marquardt H, Sethmann S, Lauster R, Merker HJ, Paul M. Reduction in left ventricular messenger RNA for transforming growth factorβ1 attenuates left ventricular fibrosis and improves survival without lowering blood pressure in the hypertensive TGR(mRen2)27 rat [J]. Hypertension,2000,36 (5):747-754.
    [10]Sun Y, Zhang J, Zhang JQ, Ramires FJ. Local angiotensin Ⅱ and transforming growth factor-β1 in renal fibrosis of rats [J]. Hypertension,2000,35 (5):1078-1084.
    [11]Lijnen PJ, Petrov W, Fagard RH. Induction of cardiac fibrosis by transforming growth factor-beta(1)[J]. Mol Genet Metab,2000,71 (1-2):418-435.
    [12]Zhang ML, Mei J, Archer LA, Obayashi M, Diao N, Stuyvers B, ter Keurs HE. Effects of therapy using the Celacade system on structural and functional cardiac remodelling in rats following myocardial infarction[J]. Can J Cardiol,2009,25 (7): e241-247.
    [13]Deten A, Holzl A, Leicht M, Barth W, Zimmer HG. Changes in extracellular matrix and in transforming growth factor beta isoforms after coronary artery ligation in rats[J]. J Mol Cell Cardiol,2001,33 (6):1191-1207.
    [14]Zhang RY, Wang LF, Zhang L, Meng XN, Li SJ, Wang WR. Effects of angiotensin converting enzyme inhibitor, angiotensin II type I receptor blocker and their combination on postinfarcted ventricular remodeling in rats[J]. Chin Med J (Engl), 2006,119 (8):649-655.
    [15]Yu CM, Tipoe GL, Wing-Hon Lai K, Lau CP. Effects of combination of angiotensin-converting enzyme inhibitor and angiotensin receptor antagonist on inflammatory cellular infiltration and myocardial interstitial fibrosis after acute myocardial infarction[J]. J Am Coll Cardiol,2001,38 (4):1207-1215.
    [16]Blankesteijn WM, Essers-Janssen YP, Verluyten MJ, Daemen MJ, Smits JF.A homologue of Drosophila tissue polarity gene frizzled is expressed in migrating myofibroblasts in the infarcted rat heart[J]. Nat Med,1997,3 (5):541-544.
    [17]Chen L, Wu Q, Guo F, Xia B, Zuo J. Expression of Dishevelled-1 in wound healing after acute myocardial infarction:possible involvement in myofibroblast proliferation and migration[J]. J Cell Mol Med,2004,8 (2):257-264.
    [18]陈丽君,左伋,夏蓓莉,郭锋,王克强,葛均波.急性心梗后心肌组织p-catenin的表达[J].中国分子心脏病学杂志,2003,3(6):326-332.
    [19]Zhu P, Chen G, You T, Yao J, Jiang Q, Lin X, Shen X, Qiao Y, Lin L. High FFA-induced proliferation and apoptosis in human umbilical vein endothelial cell partly through Wnt/beta-catenin signal pathway[J]. Mol Cell Biochem,2009, [Epub ahead of print].
    [20]Ezan J, Leroux L, Barandon L, Dufourcq P, Jaspard B, Moreau C, Allieres C, Daret D, Couffinhal T, Duplaa C. FrzA/sFRP-1, a secreted antagonist of the Wnt-Frizzled pathway, controls vascular cell proliferation in vitro and in vivo[J]. Cardiovasc Res, 2004,63 (4):731-738.
    [21]Laeremans H, Rensen SS, Ottenheijm HC, Smits JF, Blankesteijn WM. Wnt/frizzled signaling modulates the migration and differentiation of immortalized cardiac fibroblasts[J]. Cardiovasc Res,2010, [Epub ahead of print].
    [22]Hahn JY, Cho HJ, Bae JW, Yuk HS, Kim KI, Park KW, Koo BK, Chae IH, Shin CS, Oh BH, Choi YS, Park YB, Kim HS. Beta-catenin overexpression reduces myocardial infarct size through differential effects on cardiomyocytes and cardiac fibroblasts[J]. J Biol Chem,2006,281 (41):30979-30989.
    [23]Yamamoto K, Masuyama T, Sakata Y, Nishikawa N, Mano T, Yoshida J, Miwa T, Sugawara M, Yamaguchi Y, Ookawara T, Suzuki K, Hori M. Myocardial stiffness is determined by ventricular fibrosis, but not by compensatory or excessive hypertrophy in hypertensive heart[J]. Cardiovasc Res,2002,55 (1):76-82.
    [24]刘英,廖玉华,程翔,李彬,葛洪霞,张玲,郭张强.急性心肌梗死后心脏TGF-β1的表达和心室重塑[J].中国病理生理杂志,2005,21(12):2305-2309.
    [25]Smith JD, Bryant SR, Couper LL, Vary CP, Gotwals PJ, Koteliansky VE, Lindner V. Soluble transforming growth factor-beta type Ⅱ receptor inhibits negative remodeling, fibroblast transdifferentiation, and intimal lesion formation but not endothelial growth[J]. Circ Res,1999,84 (10):1212-1222.
    [26]George J, Roulot D, Koteliansky VE, Bissell DM. In vivo inhibition of rat stellate cell activation by soluble transforming growth factor beta type Ⅱ receptor:a potential new therapy for hepatic fibrosis[J]. Proc Natl Acad Sci U S A,1999,96 (22):12719-12724.
    [27]Yata Y, Gotwals P, Koteliansky V, Rockey DC. Dose-dependent inhibition of hepatic fibrosis in mice by a TGF-beta soluble receptor:implications for antifibrotic therapy[J]. Hepatology,2002,35 (5):1022-1030.
    [28]Okada H, Takemura G, Kosai K, Li Y, Takahashi T, Esaki M, Yuge K, Miyata S, Maruyama R, Mikami A, Minatoguchi S, Fujiwara T, Fujiwara H. Postinfarction gene therapy against transforming growth factor-beta signal modulates infarct tissue dynamics and attenuates left ventricular remodeling and heart failure[J]. Circulation, 2005,111 (19):2430-2437.
    [29]韩琳,冯新港.Wnt信号通路及其在动物生长发育过程中的作用[J].中国兽医寄生虫病,2008,16(3):47-52.
    [30]Barandon L, Dufourcq P, Costet P, Moreau C, Allieres C, Daret D, Dos Santos P, Daniel Lamaziere JM, Couffinhal T, Duplaa C. Involvement of FrzA/sFRP-1 and the Wnt/frizzled pathway in ischemic preconditioning[J]. Circ Res,2005,96 (12): 1299-1306.
    [31]Barandon L, Couffinhal T, Ezan J, Dufourcq P, Costet P, Alzieu P, Leroux L, Moreau C, Dare D, Duplaa C. Reduction of infarct size and prevention of cardiac rupture in transgenic mice overexpressing FrzA[J]. Circulation,2003,108 (18):2282-2289.
    [32]Salazar KD, Lankford SM, Brody AR. Mesenchymal stem cells produce Wnt isoforms and TGF-betal that mediate proliferation and procollagen expression by lung fibroblasts[J]. Am J Physiol Lung Cell Mol Physiol,2009,297 (5):L1002-1011.
    [33]Denk PO, Hoppe J, Hoppe V, Knorr M. Effect of growth factors on the activation of human Tenon's capsule fibroblasts[J]. Curr Eye Res,2003,27 (1):35-44.
    [34]Desmouliere A, Redard M, Darby I, Gabbiani G. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar[J]. Am J Pathol, 1995,146(1):56-66.
    [35]Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases[J]. J Pathol,2003,200 (4):500-503.
    [36]Kuwahara F, Kai H, Tokuda K, Kai M, Takeshita A, Egashira K, Imaizumi T. Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats[J]. Circulation,2002,106 (1): 130-135.
    [37]Ikeuchi M, Tsutsui H, Shiomi T, Matsusaka H, Matsushima S, Wen J, Kubota T, Takeshita A. Inhibition of TGF-beta signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction[J]. Cardiovasc Res,2004,64 (3): 526-535.
    [38]Muller-Ehmsen J, Whittaker P, Kloner RA, Dow JS, Sakoda T, Long TI, Laird PW, Kedes L. Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium [J]. J Mol Cell Cardiol,2002,34 (2):107-116.
    [1]Hori M, Nishida K. Oxidative stress and left ventricular remodelling after myocardial infarction[J]. Cardiovasc Res,2009,81 (3):457-464.
    [2]Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications[J]. Circulation,1990,81 (4): 1161-1172.
    [3]Rumberger JA. Ventricular dilatation and remodeling after myocardial infarction[J]. Mayo Clin Proc,1994,69 (7):664-674.
    [4]Cheng W, Kajstura J, Nitahara JA, Li B, Reiss K, Liu Y, Clark WA, Krajewski S, Reed JC, Olivetti G, Anversa P. Programmed myocyte cell death affects the viable myocardium after infarction in rats[J]. Exp Cell Res,1996,226 (2):316-327.
    [5]Elliott M Antman, Eugene Braunwald.急性心肌梗死.陈灏珠主译.心脏病学[M].第5版.北京:人民卫生出版社,2000:1078-1079.
    [6]Yamamoto K, Masuyama T, Sakata Y, Nishikawa N, Mano T, Yoshida J, Miwa T, Sugawara M, Yamaguchi Y, Ookawara T, Suzuki K, Hori M. Myocardial stiffness is determined by ventricular fibrosis, but not by compensatory or excessive hypertrophy in hypertensive heart[J]. Cardiovasc Res,2002,55 (1):76-82.
    [7]Pfeffer MA. Left ventricular remodeling after acute myocardial infarction[J]. Annu Rev Med,1995,46:455-466.
    [8]Kolpakov V, Gordon D, Kulik TJ. Nitric oxide-generating componds inhibit total protein and collagen synthesis in cultured vascular smooth muscle cells[J]. Circ Res, 1995,76(2):305-309.
    [9]Laviades C, Varo N, Diez J. Transforming growth factor beta in hypertensives with cardiorenal damage[J]. Hypertension,2000,36 (4):517-522.
    [10]Chen MM, Lam A, Abraham JA, Schreiner GF, Joly AH. CTGF expression is induced by TGF-beta in cardiac fibroblasts and cardiac myocytes:apotential role in heart fibrosis[J]. J Mol Cell Cardiol,2000,32 (10):1805-1819.
    [11]张召才,杨英珍,陈灏珠.心肌纤维化的研究进展[J].临床心血管病杂志,2004,20(1):58-60.
    [12]李丹,范哲.心肌纤维化的调控因素[J].心血管病学进展,2004,25(4):253-257.
    [13]Samuel CS, Unemori EN, Mookerjee I, Bathgate RA, Layfield SL, Mak J, Tregear GW, Du XJ. Relaxin modulates cardiac fibroblast proliferation, differentiation, and collagen production and reverses cardiac fibrosis in vivo[J]. Endocrinology,2004, 145 (9):4125-4133.
    [14]Majno G, Gabbiani G, Hirschel BJ, Ryan GB, Statkov PR. Contraction of granulation tissue in vitro:similarity to smooth muscle[J]. Science,1971,173 (996): 548-550.
    [15]Sun Y, Weber KT. Angiotensin converting enzyme and myofibroblasts during tissue repair in the rat heart[J]. J Mol Cell Cardiol,1996,28 (5):851-858.
    [16]Li RK, Jia ZQ, Weisel RD, Merante F, Mickle DA. Smooth muscle cell transplantation into myocardial scar tissue improves heart function[J]. J Mol Cell Cardiol,1999,31 (3):513-522.
    [17]Zhang L, Hoffman JA, Ruoslahti E. Molecular profiling of heart endothelial cells[J]. Circulation,2005,112 (11):1601-1611.
    [18]Werner L, Deutsch V, Barshack I, Miller H, Keren G, George J. Transfer of endothelial progenitor cells improves myocardial performance in rats with dilated cardiomyopathy induced following experimental myocarditis[J]. J Mol Cell Cardiol, 2005,39 (4):691-697.
    [19]Sasaguri M, Noda K, Tashiro E, Notomo J, Tsuji E, Koga M, Arakawa K. The regression of left ventricular hypertrophy by imidapril and the reduction of serum procollagen type III amino-terminal peptide in hypertensive patients[J]. Hypertens Res,2000,23 (4):317-322.
    [20]Sato A, Takane H, Saruta T. High serum level of procollagen type Ⅲ amino-terminal peptide contributes to the efficacy of spironolactone and angiotensin-converting enzyme inhibitor therapy on left ventricular hypertrophy in essential hypertensive patients[J]. Hypertens Res,2001,24 (2):99-104.
    [21]Nadal JA, Scicli GM, Carbini LA, Scicli AG. Angiotensin Ⅱ stimulates migration of retinal micro vascular pericytes:involvement of TGF-beta and PDGF-BB[J]. Am J Physiol Heart Circ Physiol,2002,282 (2):H739-748.
    [22]Okada T, Nagai M, Taniguchi I, Kuno M, Imamoto S, Seki S, Taniguchi M, Mochizuki S. Combined treatment with valsartan and spironolactone prevents cardiovascular remodeling in renovascular hypertensive rats[J]. Int Heart J,2006,47 (5):783-793.
    [23]Roberts AB. Molecular and cell biology of TGF-beta[J]. Miner Electrolyte Metab, 1998,24 (2-3):111-119.
    [24]Chen W, Wahl SM. TGF-beta:receptors, signaling pathways and autoimmunity[J]. Curr Dir Autoimmun,2002,5:62-91.
    [25]Assoian RK, Komoriya A, Meyers CA, Miller DM, Sporn MB. Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization[J]. J Biol Chem,1983,258 (11):7155-7160.
    [26]Huh MI, Kim YH, Park JH, Bae SW, Kim MH, Chang Y, Kim SJ, Lee SR, Lee YS, Jin EJ, Sonn JK, Kang SS, Jung JC. Distribution of TGF-beta isoforms and signaling intermediates in corneal fibrotic wound repair[J]. J Cell Biochem,2009, 108 (2):476-488.
    [27]郭永红,罗金燕.TGF-β超家族与Smad信号转导的研究进展[J].医学综述,2005,11(8):685-688.
    [28]Huang W, Rubinstein J, Prieto AR, Wang DH. Enhanced postmyocardial infarction fibrosis via stimulation of the transforming growth factor-beta-Smad2 signaling pathway:role of transient receptor potential vanilloid type 1 channels [J]. J Hypertens,2010,28 (2):367-376.
    [29]Liu X, Sun SQ, Hassid A, Ostrom RS. cAMP inhibits transforming growth factor-beta-stimulated collagen synthesis via inhibition of extracellular signal-regulated kinase 1/2 and Smad signaling in cardiac fibroblasts[J]. Mol Pharmacol,2006,70 (6):1992-2003.
    [30]Chambers RC, Leoni P, Kaminski N, Laurent GJ, Heller RA. Global expression profiling of fibroblast responses to transforming growth factor-betal reveals the induction of inhibitor of differentiation-1 and provides evidence of smooth muscle cell phenotypic switching[J]. Am J Pathol,2003,162 (2):533-546.
    [31]Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G. The myofibroblast:one function, multiple origins[J]. Am J Pathol,2007,170 (6): 1807-1816.
    [32]Bissell DM, Roulot D, George J. Transforming growth factor beta and the liver[J]. Hepatology,2001,34 (5):859-867.
    [33]Ammarguellat F, Larouche L, Schiffrin EL. Myocardial fibrosis in docasalt hypertensive rats effect of endothelin ETA receptor antagonism[J]. Circulation, 2001,103 (2):319-324.
    [34]Pinto YM, Pinto-Sietsma SJ, Philipp T, Engler S, Kossamehl P, Hocher B, Marquardt H, Sethmann S, Lauster R, Merker HJ, Paul M. Reduction in left ventricular messenger RNA for transforming growth factorβ1 attenuates left ventricular fibrosis and improves survival without lowering blood pressure in the hypertensive TGR(mRen2)27 rat [J]. Hypertension,2000,36 (5):747-754.
    [35]Sun Y, Zhang J, Zhang JQ, Ramires FJ. Local angiotensin Ⅱ and transforming growth factor-β1 in renal fibrosis of rats [J]. Hypertension,2000,35 (5):1078-1084.
    [36]Eghbali M, Tomek R, Sukhatme VP, Woods C, Bhambi B. Differential effects of transforming growth factor-beta 1 and phorbol myristate acetate on cardiac fibroblasts. Regulation of fibrillar collagen mRNAs and expression of early transcription factors [J]. Circ Res,1991,69 (2):483-90.
    [37]Brand T, Schneider MD. The TGF beta superfamily in myocardium:ligands, receptors, transduction, and function [J]. J Mol Cell Cardiol,1995,27 (1):5-18.
    [38]Brooks WW, Conrad CH. Myocardial fibrosis in transforming growth factor beta (1) heterozygous mice [J]. J Mol Cell Cardiol,2000,32 (2):187-95.
    [39]Deten A, Holzl A, Leicht M, Barth W, Zimmer HG. Changes in extracellular matrix and in transforming growth factor beta isoforms after coronary artery ligation in rats[J]. J Mol Cell Cardiol,2001,33 (6):1191-1207.
    [40]Petrov VV, Fagard RH, Lijnen PJ. Stimulation of collagen production by transforming growth factor-betal during differentiation of cardiac fibroblasts to myofibroblasts[J]. Hypertension,2002,39 (2):258-263.
    [41]Brooks WW, Conrad CH. Myocardial fibrosis in transforming growth factor beta(1) heterozygous mice[J]. J Mol Cell Cardiol,2000,32 (2):187-195.
    [42]Kawano H, Do YS, Kawano Y, Starnes V, Barr M, Law RE, Hsueh WA. Angiotensin Ⅱ has multiple profibrotic effects in human cardiac fibroblasts[J]. Circulation,2000, 101 (10):1130-1137.
    [43]Lijnen PJ, Petrov VV, Fagard RH. Induction of cardiac fibrosis by transforming growth factor-beta(1)[J]. Mol Genet Metab,2000,71 (1-2):418-435.
    [44]Zhang ML, Mei J, Archer LA, Obayashi M, Diao N, Stuyvers B, ter Keurs HE. Effects of therapy using the Celacade system on structural and functional cardiac remodelling in rats following myocardial infarction[J]. Can J Cardiol,2009,25 (7): e241-247.
    [45]Gao X, He X, Luo B, Peng L, Lin J, Zuo Z. Angiotensin Ⅱ increases collagen Ⅰ expression via transforming growth factor-betal and extracellular signal-regulated kinase in cardiac fibroblasts [J]. Eur J Pharmacol,2009,606 (1-3):115-120.
    [46]Pinto YM, Pinto-Sietsma SJ, Philipp T, Engler S, Kossamehl P, Hocher B, Marquardt H, Sethmann S, Lauster R, Merker HJ, Paul M. Reduction in left ventricular messenger RNA for transforming growth factor beta(1) attenuates left ventricular fibrosis and improves survival without lowering blood pressure in the hypertensive TGR(mRen2)27 Rat[J]. Hypertension,2000,36 (5):747-754.
    [47]Eghbali-Fatourechi G, Sieck GC, Prakash YS, Maercklein P, Gores GJ, Fitzpatrick LA.Type I procollagen production and cell proliferation is mediated by transforming growth factor-beta in a model of hepatic fibrosis[J]. Endocrinology,1996,137 (5): 1894-1903.
    [48]Okuno M, Akita K, Moriwaki H, Kawada N, Ikeda K, Kaneda K, Suzuki Y, Kojima S. Prevention of rat hepatic fibrosis by the protease inhibitor, camostat mesilate, via reduced generation of active TGF-beta[J]. Gastroenterology,2001,120 (7):1784-1800.
    [49]Yamamoto H, Ueno H, Ooshima A, Takeshita A. Adenovirus-mediated transfer of a truncated transforming growth factor-beta (TGF-beta) type Ⅱ receptor completely and specifically abolishes diverse signaling by TGF-beta in vascular wall cells in primary culture[J]. J Biol Chem,1996,271 (27):16253-16259.
    [50]Dooley S, Hamzavi J, Breitkopf K, Wiercinska E, Said HM, Lorenzen J, Ten Dijke P, Gressner AM. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats[J]. Gastroenterology,2003,125 (1):178-191.
    [51]Tang LX, Yang G, Tang JJ. [Smad7 inhibits collagen expression in human hepatic satellite cells in vitro][J]. Nan Fang Yi Ke Da Xue Xue Bao,2009,29 (10):2122-2127.
    [52]Nie J, Dou X, Hao W, Wang X, Peng W, Jia Z, Chen W, Li X, Luo N, Lan HY, Yu XQ. Smad7 gene transfer inhibits peritoneal fibrosis[J]. Kidney Int,2007,72 (11): 1336-1344.
    [53]Chung IM, Ueno H, Pak YK, Kim JW, Choi DH, Shin GJ, Yang WI, Jang Y. Catheter-based adenovirus-mediated local intravascular gene delivery of a soluble TGF-beta type Ⅱ receptor using an infiltrator in porcine coronary arteries:efficacy and complications [J]. Exp Mol Med,2002,34 (4):299-307.
    [54]Isaka Y, Akagi Y, Ando Y, Tsujie M, Sudo T, Ohno N, Border WA, Noble NA, Kaneda Y, Hori M, Imai E. Gene therapy by transforming growth factor-beta receptor-IgG Fc chimera suppressed extracellular matrix accumulation in experimental glomerulonephritis[J]. Kidney Int,1999,55 (2):465-475.
    [55]Smith JD, Bryant SR, Couper LL, Vary CP, Gotwals PJ, Koteliansky VE, Lindner V. Soluble transforming growth factor-beta type Ⅱ receptor inhibits negative remodeling, fibroblast transdifferentiation, and intimal lesion formation but not endothelial growth[J]. Circ Res,1999,84 (10):1212-1222.
    [56]George J, Roulot D, Koteliansky VE, Bissell DM. In vivo inhibition of rat stellate cell activation by soluble transforming growth factor beta type Ⅱ receptor:a potential new therapy for hepatic fibrosis[J]. Proc Natl Acad Sci U S A,1999,96 (22):12719-12724.
    [57]Yata Y, Gotwals P, Koteliansky V, Rockey DC. Dose-dependent inhibition of hepatic fibrosis in mice by a TGF-beta soluble receptor:implications for antifibrotic therapy[J]. Hepatology,2002,35 (5):1022-1030.
    [58]Okada H, Takemura G, Kosai K, Li Y, Takahashi T, Esaki M, Yuge K, Miyata S, Maruyama R, Mikami A, Minatoguchi S, Fujiwara T, Fujiwara H. Postinfarction gene therapy against transforming growth factor-beta signal modulates infarct tissue dynamics and attenuates left ventricular remodeling and heart failure[J]. Circulation, 2005,111 (19):2430-2437.
    [59]Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome[J]. Cell,1982, 31(1):99-109.
    [60]Wodarz A, Nusse R. Mechanisms of Wnt signaling in development[J]. Annu Rev Cell Dev Biol,1998,14:59-88.
    [61]Huelsken J, Vogel R, Brinkmann V, Erdmann B, Birchmeier C, Birchmeier W. Requirement for beta-catenin in anterior-posterior axis formation in mice[J]. J Cell Biol,2000,148 (3):567-578.
    [62]Mukhopadhyay M, Shtrom S, Rodriguez-Esteban C, Chen L, Tsukui T, Gomer L, Dorward DW, Glinka A, Grinberg A, Huang SP, Niehrs C, Izpisua Belmonte JC, Westphal H. Dickkopfl is required for embryonic head induction and limb morphogenesis in the mouse[J]. Dev Cell,2001,1 (3):423-434.
    [63]Kuhl M, Sheldahl LC, Park M, Miller JR, Moon RT. The Wnt/Ca2+pathway:a new vertebrate Wnt signaling pathway takes shape[J]. Trends Genet,2000,16 (7):279-283.
    [64]韩琳,冯新港.Wnt信号通路及其在动物生长发育过程中的作用[J].中国兽医寄生虫病,2008,16(3):47-52.
    [65]Panhuysen M, Vogt Weisenhorn DM, Blanquet V, Brodski C, Heinzmann U, Beisker W, Wurst W. Effects of Wntl signaling on proliferation in the developing mid-/hindbrain region[J]. Mol Cell Neurosci,2004,26 (1):101-111.
    [66]Daumer KM, Tufan AC, Tuan RS. Long-term in vitro analysis of limb cartilage development:involvement of Wnt signaling[J]. J Cell Biochem,2004,93 (3): 526-541.
    [67]Alfieri CM, Cheek J, Chakraborty S, Yutzey KE. Wnt signaling in heart valve development and osteogenic gene induction[J]. Dev Biol,2010,338 (2):127-135.
    [68]Munsterberg A, Yue Q. Cardiac progenitor migration and specification:The dual function of Wnts[J]. Cell Adh Migr,2008,2 (2):74-76.
    [69]Shan J, Jokela T, Skovorodkin I, Vainio S. Mapping of the fate of cell lineages generated from cells that express the Wnt4 gene by time-lapse during kidney development[J]. Differentiation,2010,79 (1):57-64.
    [70]Chen J, Lan Y, Baek JA, Gao Y, Jiang R. Wnt/beta-catenin signaling plays an essential role in activation of odontogenic mesenchyme during early tooth development[J]. Dev Biol,2009,334 (1):174-185.
    [71]Boras-Granic K, Wysolmerski JJ. Wnt signaling in breast organogenesis[J]. Organogenesis,2008,4 (2):116-122.
    [72]Chen MM, Lam A, Abraham JA, Schreiner GF, Joly AH. CTGF expression is induced by TGF-beta in cardiac fibroblasts and cardiac myocytes:apotential role in heart fibrosis[J]. J Mol Cell Cardiol,2000,32 (10):1805-1819.
    [73]张召才,杨英珍,陈灏珠.心肌纤维化的研究进展[J].临床心血管病杂志,2004,20(1):58-60.
    [74]李丹,范哲.心肌纤维化的调控因素[J].心血管病学进展,2004,25(4):253-257.
    [75]Samuel CS, Unemori EN, Mookerjee I, Bathgate RA, Layfield SL, Mak J, Tregear GW, Du XJ. Relaxin modulates cardiac fibroblast proliferation, differentiation, and collagen production and reverses cardiac fibrosis in vivo[J]. Endocrinology,2004, 145 (9):4125-4133.
    [76]Majno G, Gabbiani G, Hirschel BJ, Ryan GB, Statkov PR. Contraction of granulation tissue in vitro:similarity to smooth muscle[J]. Science,1971,173 (996): 548-550.
    [77]Sun Y, Weber KT. Angiotensin converting enzyme and myofibroblasts during tissue repair in the rat heart[J]. J Mol Cell Cardiol,1996,28 (5):851-858.
    [78]Li RK, Jia ZQ, Weisel RD, Merante F, Mickle DA. Smooth muscle cell transplantation into myocardial scar tissue improves heart function[J]. J Mol Cell Cardiol,1999,31 (3):513-522.
    [79]Ke Z, Zhou F, Wang L, Chen S, Liu F, Fan X, Tang F, Liu D, Zhao G. Down-regulation of Wnt signaling could promote bone marrow-derived mesenchymal stem cells to differentiate into hepatocytes[J]. Biochem Biophys Res Commun,2008,367 (2):342-348.
    [80]Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR 3rd, Nusse R. Wnt proteins are lipid-modified and can act as stem cell growth factors[J]. Nature,2003,423 (6938):448-452.
    [81]Klein PS, Melton DA. A molecular mechanism for the effect of lithium on development[J]. Proc Natl Acad Sci U S A,1996,93 (16):8455-8459.
    [82]罗秋育,季明芳.Wnt抑制因子-1与Wnt通路和肿瘤发生[J].医学分子生物学杂志,2006,3(6):453-455.
    [83]Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway[J]. Mol Cell Biol,2002,22 (4):1172-1183.
    [84]Blankesteijn WM, Essers-Janssen YP, Verluyten MJ, Daemen MJ, Smits JF.A homologue of Drosophila tissue polarity gene frizzled is expressed in migrating myofibroblasts in the infarcted rat heart[J]. Nat Med,1997,3 (5):541-544.
    [85]Chen L, Wu Q, Guo F, Xia B, Zuo J. Expression of Dishevelled-1 in wound healing after acute myocardial infarction:possible involvement in myofibroblast proliferation and migration[J]. J Cell Mol Med,2004,8 (2):257-264.
    [86]陈丽君,左伋,夏蓓莉,郭锋,王克强,葛均波.急性心梗后心肌组织β-catenin的表达[J].中国分子心脏病学杂志,2003,3(6):326-332.
    [87]Mason JO, Kitajewski J, Varmus HE. Mutational analysis of mouse Wnt-1 identifies two temperature-sensitive alleles and attributes of Wnt-1 protein essential for transformation of a mammary cell line[J]. Mol Biol Cell,1992,3 (5):521-533.
    [88]Young CS, Kitamura M, Hardy S, Kitajewski J. Wnt-1 induces growth, cytosolic beta-catenin, and Tcf/Lef transcriptional activation in Rat-1 fibroblasts[J]. Mol Cell Biol,1998,18 (5):2474-2485.
    [89]Ueda Y, Hijikata M, Takagi S, Takada R, Takada S, Chiba T, Shimotohno K. Wnt/beta-catenin signaling suppresses apoptosis in low serum medium and induces morphologic change in rodent fibroblasts[J]. Int J Cancer,2002,99 (5):681-688.
    [90]Toyofuku T, Hong Z, Kuzuya T, Tada M, Hori M. Wnt/frizzled-2 signaling induces aggregation and adhesion among cardiac myocytes by increased cadherin-beta-atenin complex[J]. J Cell Biol,2000,150 (1):225-241.
    [91]Laeremans H, Rensen SS, Ottenheijm HC, Smits JF, Blankesteijn WM. Wnt/frizzled signaling modulates the migration and differentiation of immortalized cardiac fibroblasts[J]. Cardiovasc Res,2010, [Epub ahead of print].
    [92]Hahn JY, Cho HJ, Bae JW, Yuk HS, Kim KI, Park KW, Koo BK, Chae IH, Shin CS, Oh BH, Choi YS, Park YB, Kim HS. Beta-catenin overexpression reduces myocardial infarct size through differential effects on cardiomyocytes and cardiac fibroblasts[J]. J Biol Chem,2006,281 (41):30979-30989.
    [93]Surendran K, McCaul SP, Simon TC. A role for Wnt-4 in renal fibrosis[J]. Am J Physiol Renal Physiol,2002,282 (3):F431-441.
    [94]Sen M, Reifert J, Lauterbach K, Wolf V, Rubin JS, Corr M, Carson DA. Regulation of fibronectin and metalloproteinase expression by Wnt signaling in rheumatoid arthritis synoviocytes[J]. Arthritis Rheum,2002,46 (11):2867-2877.
    [95]Nishita M, Hashimoto MK, Ogata S, Laurent MN, Ueno N, Shibuya H, Cho KW. Interaction between Wnt and TGF-beta signalling pathways during formation of Spemann's organizer[J]. Nature,2000,403 (6771):781-785.
    [96]Letamendia A, Labbe E, Attisano L. Transcriptional regulation by Smads:crosstalk between the TGF-beta and Wnt pathways[J]. J Bone Joint Surg Am,2001,83-A Suppll(Pt1):S31-39.
    [97]Tian YC, Phillips AO. Interaction between the transforming growth factor-beta type Ⅱ receptor/Smad pathway and beta-catenin during transforming growth factor-betal-mediated adherens junction disassembly[J]. Am J Pathol,2002,160(5):1619-1628.
    [98]Hussein SM, Duff EK, Sirard C. Smad4 and beta-catenin co-activators functionally interact with lymphoid-enhancing factor to regulate graded expression of Msx2[J]. J Biol Chem,2003,278 (49):48805-48814.
    [99]Labbe E, Letamendia A, Attisano L. Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-beta and wnt pathways[J]. Proc Natl Acad Sci U S A, 2000,97 (15):8358-8363.
    [100]Edlund S, Lee SY, Grimsby S, Zhang S, Aspenstrom P, Heldin CH, Landstrom M. Interaction between Smad7 and beta-catenin:importance for transforming growth factor beta-induced apoptosis[J]. Mol Cell Biol,2005,25 (4):1475-1488.
    [101]李伟,辛殿祺,郭应禄.前列腺癌PC-3细胞中Wnt信号通路与TGF-p信号通路相互调节[J].中华泌尿外科杂志,2006,27(Suppl):59-62.