老龄小鼠急性心肌梗塞后心脏破裂心室重构的分子机制及NF-κB的靶向干预研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     本研究旨在观察不同年龄小鼠急性心肌梗塞后心脏破裂心室重构及核因子NF-κB表达的差异,并进一步以携带抗NF-κB核酶基因的重组9型腺相关病毒(rAAV9),靶向抑制老龄小鼠心肌NF-κB信号转导通路,探讨老龄小鼠急性心梗后心脏破裂心室重构的分子机制。本研究包括:1)建立小鼠急性心肌梗塞模型,研究不同年龄小鼠急性心梗后心脏破裂和心室重构及NF-κB活性、p65、p50,细胞间粘附分子(ICAM)-1和血管细胞粘附分子(VCAM)-1表达的差异。2)探讨重组9型腺相关病毒载体对小鼠心脏的转染效果及对心功能的影响。3)研究应用携带抗NF-κB核酶基因的重组9型腺相关病毒,靶向抑制心肌NF-κB信号转导通路,是否可以减轻老龄小鼠急性心梗后心脏破裂及心室重构。
     方法:
     课题第一部分:1)近交系C57BL/6低龄(3月龄Young, Y)和老龄(18月龄Old,O)小鼠各80只,共160只,开胸结扎左冠状动脉,建立小鼠急性心肌梗塞模型,随机分为假手术组(sham operation, SH)10只,心梗组(myocardial infarction,MI)70只,观察小鼠心脏破裂发生,心肌梗死面积,左心室重构情况,进行不同年龄组的对比研究。2)另选低龄和老龄小鼠各48只,共96只,根据心梗时间分为SH、心梗(MI)3天、7天、14天组,根据分组在心梗后不同时间处死小鼠留取心脏标本,液氮冻存或甲醛固定备用。应用免疫组化法测定不同年龄小鼠心肌梗塞后p65、p50表达,并进行对比。Western Blot法测定不同年龄小鼠心肌梗塞后p65、p50,粘附分子ICAM-1、VCAM-1表达。
     课题第二部分:1)16只C57BL/6小鼠经尾静脉将携带增强型绿色荧光蛋白(enhanced green fluorescent protein, eGFP)报告基因的rAAV9 (rAAV9-eGFP)转染入小鼠,于7d、14d、21d、28d留取标本,使用荧光显微镜观察eGFP在心肌、肝、肺、肾、脑、骨骼肌的荧光表达,Western Blot法检测eGFP的蛋白表达。2)20只C57BL/6小鼠随机分为2组,每组10只,分别经尾静脉注射rAAV9-eGFP和生理盐水,28d后行心脏超声及血流动力学检查。
     课题第三部分:1)160只老龄(18月龄)C57BL/6小鼠建立急性心肌梗塞模型,随机分组,75只术前16天经尾静脉给予重组腺相关病毒rAAV9-R65注射,为R65+MI组,75只为MI组。其余10只为假手术(SH)组。术后7天进行心脏彩超检查了解左室重构情况,并检测心肌梗死面积,心脏破裂率,死亡率。2)EMSA法检测NF-кB活性,酶谱法检测基质金属蛋白酶(matrixmetalloproteinases, MMP)-2,9活性,Western Blot法检测p65、肿瘤坏死因子(TNF)-α、IL-Iβ、粘附分子ICAM-1、VCAM-1表达,天狼猩红染色检测胶原含量。
     结果:
     课题第一部分:1)两组梗死面积比较无统计学差异,老龄组小鼠心梗后1周心脏破裂的发生率显著升高(33.9% vs 15.6%,P=0.017)。与假手术组相比,MI各组均出现明显的左室扩张和心功能障碍。与低龄MI组相比,老龄MI组心梗7天时出现明显的梗死区变薄扩张和收缩功能障碍,表现为LVEDd、LVESd、EXLVDd明显增加,Pws、Pwd和FS值明显降低(P<0.05)。血液动力学测定:老龄假手术组与低龄假手术组比较,-dp/dtmax明显增高(P<0.05);老龄MI组与低龄MI组相比,SBP、DBP、LVSP增高(P<0.05)。MI组与假手术组相比,各组SBP、DBP、LVSP、±dp/dtmax显著下降(P<0.05)。老龄组心室腔扩大和收缩功能障碍更显著。2)心梗后不同时间,免疫组化显示老龄组p65,p50阳性细胞数较低龄组高,差异有统计学意义(p65 400 vs 154,p50 179 vs 83,P<0.05);Western Blot检测发现SH组及心梗3天,7天时老龄组p65蛋白表达均高于低龄组,说明老龄小鼠心梗后NF-κB活性较低龄组高。老龄组与低龄组ICAM-1表达差异均无统计学意义;老龄组VCAM-1表达SH组及心梗14天时较低龄组明显增加,差异有统计学意义(P值分别为0.001,0.034),说明年龄对VCAM-1表达有影响。
     课题第二部分:1)心肌组织冰冻切片在荧光显微镜下观察,在病毒转染后第7天,可见少量eGFP阳性的心肌细胞,随着时间的延长,eGFP阳性的心肌细胞逐渐增多,转染后第21天到达高峰,转染效率约32%,持续至第28天时仍有表达。转染后第21天可见肝、骨骼肌有微量绿色荧光表达,肺、肾、脑未见明显阳性表达。Western Blot检测eGFP蛋白表达结果与荧光显微镜观察结果一致。2)心脏超声检查,rAAV9-eGFP组较生理盐水组Awd、Pwd、Aws、Pws、LVEDd、LVESd、EXLVDd、FS均无明显差异(P>0.05)。血流动力学检测,rAAV9-eGFP组较生理盐水组MAP、LVSP、LVEDP及±dp/dtmax均无明显差异(P>0.05)。
     课题第三部分:1)R65+MI组死亡率及心脏破裂率(32.8% vs 15.2%,P=0.018)下降,心脏超声显示R65+MI组与MI组比较左室内径缩小、室壁厚度增加、FS值升高(P<0.05)。2)R65+MI组NF-кB活性、p65、MMP-9、MMP-2表达较MI组降低(P<0.05),TNF-α、早期VCAM-1表达较MI组低(P<0.05),IL-1β、ICAM-1表达变化不明显。3)R65+MI组CVF值较MI组低(P<0.05)。
     结论:
     1)老龄小鼠心脏破裂率高、心室重构重。心梗后NF-κB信号通路激活,且老龄组NF-κB活性较低龄组高,证实了NF-κB信号通路在急性心肌梗塞时的年龄异质性。2)rAAV9-eGFP经外周静脉注射21d时eGFP表达在心脏达到高峰,转染效率可达32%,可以满足大多数心脏疾病基因治疗的需要,在其他脏器表达量少或无表达,且对心功能无不良影响。3)rAAV9-R65抑制NF-κB活性,通过降低TNF-α、MMP-9、MMP-2和早期ICAM-1表达而降低胶原含量,从而降低老龄小鼠心脏破裂率并改善左室重构,进一步证实NF-κB信号通路在老龄小鼠心脏破裂及心室重构中起了重要作用。
Objective:The research is aimed at mechanisms of higher rate of cardiac rupture, more severe cardiac remodeling in old mice by study of expressions of NF-κB signal pathway post infarction, meanwhile the study is to investigate if targeted inhibition of NF-κB can attenuate post-infarct left ventricular rupture and remodeling in aged mice by ribozyme gene transfer with adeno-associated virus serotypes 9. The present study focuses on the following issues:1) To establish the acute myocardial infarction mouse model, study differential expression of p65, p50, intercelluar adhesion molecule (ICAM)-l and vascular celluar adhesion molecule (VCAM)-1 in different age groups post-infarction.2) To evaluate the transfection efficiency of recombinant adeno-associated virus serotype 9 carrying enhanced green fluorescent protein (rAAV9-eGFP) to mouse heart in vivo and the impact on cardiac function.3) To investigate if targeted inhibition of NF-κB can attenuate post-infarct left ventricular rupture and remodeling in aged mice by ribozyme gene transfer with adeno-associated virus serotypes 9. Methods: Part one:The part is about the expression of NF-κB signal pathway in mice with different age post myocardial infarction.1) The acute myocardial infarction model of mouse has been established by ligation of left coronary artery in 160 adult C57BL/6 mice (80 3-month-old,80 18-month-old) in which 20 were sham operation group (SH).Compare infarct size, rate of cardiac rupture and cardiac remodeling between different age-group. 2) Choose another 96 mice:48 3-month-old, other 48 18-month-old, set up AMI model by ligation of left coronary artery. They were randomly divided into four different groups according to time of postinfarction:SH, MI 3d,7d and 14d. The mice were sacrified at the time postinfarction according to group division and hearts were kept in liquid nitrogen then moved to-80℃refrigerator or in 4% paraformaldehyde. Expression of p65, p50 were detected by immunohistochemistry method and Western Blot, while expression of ICAM-1, VACM-1 were detected by Western Blot.Part two:1) 16 C57BL/6 mice were transfected rAAV9-eGFP by tail injection. EGFP expression in the heart, liver, lung, kidney and brain cryosections was observed under inverted fluorescence microscope 7, 14,21,28 days after the injection of rAAV9-eGFP and eGFP was quantitated by Western Blot.2) 20 C57BL/6 mice were divided into control group and rAAV9-eGFP group randomly, and were received with saline or rAAV9-eGFP. The echocardiography and hemodynamics were performed 28 days after the injection of saline or rAAV9-EGFP. Part three:1) We used 160 old mice (18-month-old) to set up acute myocardial infarction model.75 were given AAV9-R65 by tail vein injection 16 days before operation (MI+R65).75 and 10 mice were divided into myocardial infarction group (MI) and sham operation group (SH). Echocardiography was carried on 7 days post-operaion. Compare infarct size, rate of cardiac rupture and cardiac remodeling between these two groups.2) Compare activities of matrix metalloproteinases 2,9, expression of TNF-α, IL-1β, ICAM-1, VCAM-1 and content of collagen to discuss mechanisms. Results:Four results have been obtained through the study,1) There was no difference in infarct size between old and young group. Rate of cardiac rupture is higher in old group than that in young group(33.9% vs 15.6%, P=0.017). Dilation of left ventricle (LV) and contractile dysfunction were more severe in old group.2) It is observed that p65, p50 positive cells are much higher in old mice than in young mice by immunohistochemistry methods (p65 400 vs 154, p50 179 vs 83, P<0.05). Expression of p65 in SH, MI 3d,7d group in old mice is higher than in young mice, which means higher activities of NF-κB in old animals post infarction. There were no statistics differences in expression of ICAM-1 between old and young. Expression of VCAM-1 is higher in old than in young in SH and MI 14d group (P=0.001,0.034 respectively).3) eGFP expression in the heart reached the maximum at day 21, at the point of which the transduction efficiency of rAAV9-eGFP in myocardium was 32%. The other tissues had a little or no eGFP expression. The cardiac function did not reveal significant difference between rAAV9-eGFP group and the control group after transfection (P>0.05).4) Rate of cardiac rupture decreased greatly in MI+R65 group (32.8% vs 15.2%, P=0.018). Diameter of LV decrease, ventricular wall thickness, and fraction shortening increased in MI+R65 group by echocardiaography (P <0.05). Expression of MMP-9 and MMP-2, TNF-αand early VCAM-1 decreased in MI+R65 group (P<0.05). While CVF also decreased in MI+R65 group (P<0.05). But there were no changes of expression of IL-1βand ICAM-1in MI+R65 group. Inhibition of NF-κB leads to lower rate of cardiac rupture and lower expression of cytokines which identified action of NF-κB signal pathway in cardiac rupture. And age-related change in NF-κB signal pathway maybe associated with age-related cardiac rupture. Conclusions: The conclusion of the research can be drawn from the following four aspects,1) NF-κB signal pathway was activitied postinfarction and activities in old group is higher than that in young group. This result identified age-related expression differences of NF-κB signal pathway in old mice postinfarction.2) rAAV9-eGFP gene can be stably and efficiently expressed in mouse heart, and has no toxic effect on cardiac function.3) Rate of cardiac rupture and cardiac remodeling decreased greatly in old mice by ribozyme gene transfer with adeno-associated virus serotypes 9. It maybe caused by decreased collagen as the result of decreased MMP-9, MMP-2, TNF-αand early VCAM-1 which proved that NF-κB signal pathway may be associated with age-related cardiac rupture and cardiac remodeling.
引文
[1]Becker RC, Gore JM, Lambew C, et al. A composite view of cardiac rupture in the united states national registry of myocardial infarction[J]. J Am Coll Cardiol,1996, 27:1321-1326.
    [2]Figueras J, Cortadellas J, Soler-Soler J. Left ventricular free wall rupture:clinical presentation and management[J]. Heart,2000,83:499-504.
    [3]Figueras J, Juncal A, Carballo J, et al. Nature and progression of pericardial effusion in patients with a first myocardial infarction:relationship to age and free wall rupture[J]. Am Heart J,2002,144:251-258.
    [4]Rich MW. Epidemiology, clinical features, and prognosis of acute myocardial infarction in the elderly[J]. Am J Geriatr Cardiol,2006,15:7-11;quiz 12.
    [5]Kameda K, Matsunaga T, Abe N, et al. Increased pericardial fluid level of matrix metalloproteinase-9 activity in patients with acute myocardial infarction:Possible role in the development of cardiac rupture[J]. Circ J,2006,70(6):673-678.
    [6]Ichihara S, Senbonmatsu T, Price E Jr, et al. Targeted deletion of angiotensin Ⅱ type 2 receptor caused cardiac rupture after acute myocardial infarction[J]. Circulation, 2002,106:2244-2249.
    [7]Kossmehl P, Kurth E, Faramarzi S, et al. Mechanisms of apoptosis after ischemia and reperfusion:role of the rennin-angiotensin System[J]. Apoptosis,2006,11(3): 347-358.
    [8]Frantz S, Ducharme A, Sawyer D, et al. Targeted deletion of caspase-1 reduces early mortality and left ventricular dilatation following myocardial Infarction[J]. J Mol Cell Cardiol,2003,35(6):685-694.
    [9]Matsushlma H, Ide T, Matsushima S, et al. Targeted deletion of p53 prevents cardiac rupture after myocardial infarction in mice[J]. Cardiovasc Res,2006, 70(3):457-465.
    [10]陈倩,李小鹰,李江源,等.老年男性心力衰竭患者性激素水平调查与同龄健康男性的比较[J].中华心血管病杂志,2005,33:505-508.
    [11]Haldeman GA, Croft JB, Giles WH, et al. Hospitalization of patients with heart failure:National Hospital Discharge Survey,1985 to 1995[J]. Am Heart J,1999, 137:352-360.
    [12]Lakatta EG. Age-associated cardiovascular changes in health:impact on cardiovascular disease in older persons[J]. Heart Failure Rev,2002,7:29-49.
    [13]Chaturvedi NC, Shivalingappa G, Shanks B, et al. Myocardial infarction in the elderly[J]. Lancet,1972,1:280-281.
    [14]Smith SC, Gilpin E, Ahnve S, et al. Outlook after acute myocardial infarction in the very elderly compared with that in patients aged 65 to 75 years[J]. J Am Coll Cardiol,1990,16:784-792.
    [15]代瑞鸿.老年人急性心肌梗塞的临床特点[J].中华内科杂志,1981,20(8):463-466.
    [16]杨兴生.高龄人的急性心机梗塞[J].中华心血管病杂志,1986,14(2):84-87.
    [17]北京地区冠心病协作组.老年人急性心肌梗塞住院死亡分析[J].中华老年医学杂志,1982,1(4):203-205.
    [18]北京地区冠心病协作组.北京地区1977~1986年急性心肌梗塞病人住院病死率的变化[J].中华心血管病杂志,1990,18(4):215-216.
    [19]Lopez-Sendon J, Gonzalez A, Lopez S, et al. Diagnosis of subacute ventricular wall rupture after acute myocardial infarction:sensitivity and specificity of clinical, hemodynamic and echocardiographic criteria[J]. J Am Coll Cardiol,1992, 19:1145-1153.
    [20]Nakano T, Konishi T, Takezawa H. Potential prevention of myocardial rupture resulting from acute myocardial infarction[J]. Clin Cardiol,1985,8:199-204.
    [21]Pollak H, Diez W, Spiel R, et al. Early diagnosis of subacute free wall rupture complicating acute myocardial infarction[J]. Eur Heart J,1993,14:640-648.
    [22]Lewis AJ, Burchell HB, Titus JL. Clinical and pathologic features of postinfarction cardiac rupture[J]. Am J Cardiol,1969,23:43-53.
    [23]Shapira I, Isakov A, Burke M, et al. Cardiac rupture in patients with acute myocardial infarction[J]. Chest,1987,92:219-223.
    [24]Maggioni AP, Maseri A, Fresco C, et al. Age-related increase in mortality among patients with first myocardial infarctions treated with thrombolysis. The Investigators of the Gruppo Italiano per lo Studio della SoprAAVivenza nell'Infarto Miocardico [GISSI-2] [J]. N Engl J Med,1993,329:1442-1448.
    [25]Pollak H, Mlczoch J. Effect of nitrates on the frequency of left ventricular free wall rupture complicating acute myocardial infarction:a case-controlled study [J]. Am Heart J,1994,128:466-471.
    [26]Berglin BM, Hartford M, Karlsson T, et al. Factors associated with pre-hospital and in-hospital delay time in acute myocardial infarction:a 6-year experience [J]. J Intern Med,1998,243:243-250.
    [27]Becker RC, Hochman JS, Cannon CP, et al. Fatal cardiac rupture among patients treated with thrombolytic agents and adjunctive thrombin antagonists:observations from the. Thrombolysis and Thrombin Inhibition in Myocardial Infarction 9 Study[J]. J Am Coll Cardiol,1999,33:4794-4787.
    [28]Solodky A, Behar S, Herz I, et al. Comparison of incidence of cardiac rupture among patients with acute myocardial infarction treated by thrombolysis versus percutaneous transluminal coronary angioplasty[J]. Am J Cardiol,2001,87:1105-1108.
    [29]Figueras J, Juncal A, Carballo J, et al. Nature and progression of pericardial effusion in patients with a first myocardial infarction:relationship to age and free wall rupture[J]. Am Heart J,2002,144:251-258.
    [30]Bueno H, Martinez-Selles M, Perez-David E, et al. Effect of thrombolytic therapy on the risk of cardiac rupture and mortality in older patients with first acute myocardial infarction[J]. Eur Heart J,2005,26:1705-1711.
    [31]Jugdutt Bl. Remodeling of the myocardium and potential targets in the collagen Degradation and synthesis pathways [J]. Curr Drug Targets Cardiovasc Haematol Disord,2003,3:1-30.
    [32]Kim HE, Dalal SS, Yong E, et al. Disruption of the myocardial extracellular matrix Leads to cardiac dysfunction[J]. J Clin Invest,2000,106(7):857-866.
    [33]Creemers E, Cleutjens JP, Smits JF, et al. Matrix metalloproteinase inhibition after myocardial infarction. A new approach to prevent heart failure[J]? Circ Res,2001, 89:201-210.
    [34]Becker RC, Hochman JS, Cannon CP, et al. Fatal cardiac rupture among patients treated with thrombolytic agents and adjunctive thrombin antagonists:observations from the Thrombolysis and Thrombin Inhibition in Myocardial Infarction 9 Study[J]. J Am Coll Cardiol,1999,33:479-487.
    [35]Li, YY, McTiernan, CF, Feldman, AM. Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling[J]. Cardiovasc Res,2000,46:214-224.
    [36]Kameda K, Matsunga T, Abe N, et al. Increased pericardial fluid level of matrix Metalloproteinase-9 activity in patients with acute myocardial infartion:Possible Role in the development of cardiac rupture[J]. Circ J,2006,70(6):673-678.
    [37]Yasuda S, Miyazaki S, Kinoshita H, et al. Enhanced cardiac production of matrix metalloproteinase-2 and-9 and its attenuation associated with pravastatin treatment in patients with acute myocardial infarction[J]. Clin Sci(Lond),2007,112(1):43-49.
    [38]Nishikawa N, Yamamoto K, Sakata Y, et al. Differential activation of matrix Metalloproteinases in heart failure with and without ventricular dilatation[J]. Cardiovase Res,2003,57(3):766-774.
    [39]Heymans S, Luttun A, Nuyens D, et al. Inhibition of plasminogen activators or matrixmetalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure[J]. Nat Med,1999,5:1135-1142.
    [40]Hayashidani S, Tsutsui H, Ikeuchi M, et al. Targeted deletion of MMP-2 attenuates early LV rupture and late remodeling after experimental myocardial infarction[J]. Am J Physiol Heart Circ Physiol,2003,285:H1229-H1235.
    [41]Matsumura S, Iwanaga S, Mochzuki S, et al. Targeted deletion or pharmacological inhibition of MMP-2 prevents cardiac rupture after myocardial infarction in mice[J]. J Clin Invest,2005,115(3):599-609.
    [42]Yang Y, Ma Y, Han W, et al. Age-related differences in post-infarct left ventricular rupture and remodeling[J]. Am J Physiol Heart Circ Physiol,2008,294(4):815-822.
    [43]Cleutjens JP. The role of matrix metalloproteinases in heart disease[J]. Cardiovasc Res,1996,32:816-821.
    [44]Bishiop JE, Laurent GJ. Collagen turnover and its regulation in the normal and hypertrophying heart[J]. Eur Heart J,1995,16(Suppl C):38-44.
    [45]Charney RH, Takahashi S, Zhao M, et al. Collagen loss in the stunned myocardium[J]. Circulation,1992,85:1483-1490.
    [46]Morishita N, Kusachi S, Yamasaki S, et al. Sequential changes in laminin and type Ⅳ collagen in the infant zone-immunohistochemical study in rat myocardial infarction[J]. Jpn Circ J,1996,60:108-114.
    [47]Rohde LE, Ducharme A, Arroyo LH, et al. Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice[J]. Circulation,1999,99:3063-3070.
    [48]Hutchins GM, Bulkley BH. Infarct expansion versus extension:Two different complications of acute myocardial infarction[J], Am J Cardial,1978,41:1127-1132.
    [49]Eaton LW, Weiss JL, Bulkley BH, et al. Regional cardiac dilatation after acute myocardial infarction[J]. N Engl J Med,1979,300:57-62.
    [50]Dollery CM, McEwan JR, Henney AM. Matrix metalloproteinases and cardiovascular disease[J]. Circ Res,1995,77:863-868.
    [51]Gao XM, Dilley RJ, Samuel CS, et al. Lower risk of postinfarct rupture in mouse heart overexpressing β2-adrenergic receptors:importance of collagen content[J]. J Cardiovasc Pharmacol,2002,40:632-640.
    [52]Willems IE, Hcwenith MG, De May JG, et al. The alpha-smooth muscle actin-positive cells in healing human mvocardial scars[J]. Am J Pathol,1994, 145(4):868-875.
    [53]Gupta KB, Ratcliffe MB, Fallert MA, et al. Changes in the mechanical stiffness of myocardial tissue with aneurysm formation [J]. Circulation,1994,89:2315-2326.
    [54]Stawowy P, Margeta C, Blaschke F, et al. Protein kinase C epsilon mediates angiotensin Ⅱ-induced activation of betal-integrins in cardiac fibroblasts[J]. Cardiovasc Res,2005,67(1):50-59.
    [55]Hein L. Angiotensin Ⅱ and cell-matrix adhesion:PKCepsilon is essential[J]. Cardiovasc Res,2005,67(1):6-8.
    [56]Goette A, Bukowska A, Lendeckel U, et al. Angiotensin Ⅱ receptor blockade reduces tachycardia-induced atrial adhesion molecule expression[J]. Circulation,2008, 117(6):732-742.
    [57]Kiihn B, del Monte F, Hajjar RJ, et al. Periostin induces proliferation of differen-tiated cardiomyocytes and promotes cardiac repair[J]. Nat Med,2007,13(8): 962-969.
    [58]Oka T, Xu J, Kaiser RA, et al. Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling[J]. Circ Res,2007,101(3): 313-321.
    [59]Iekushi K, Taniyama Y, Azuma J, et al. Novel mechanisms of valsartan on the treatment of acute myocardial infarction through inhibition of the antiadhesion molecule periostin[J]. Hypertension,2007,49(6):1409-1414.
    [60]Zidar N, Jeruc J, Balazic J, et al. Neutrophils in human myocardial infarction with rupture of the free wall[J]. Cardiovasc Pathol,2005,14(5):247-250.
    [61]Sun M, Dawood F, Wen WH, et al. Excessive tumor necrosis factor activation after infarction contributes to susceptibility of myocardial rupture and left ventricular dysfunction[J]. Circulation,2004,110(20):3221-3228.
    [62]Askari AT, Brennan ML, Zhou X, et al. Myeloperoxidase and plasminogen activator inhibitor 1 play a central role in ventricular remodeling after myocardial infarction [J]. J Exp Med,2003,197(5):615-624.
    [63]Martin RD, Hoeth M, Warbinek RH, et al. The Transcription factor NF-κB and the regulation of vascular cell function[J]. Arterioscler Thromb Vasc Biol,2000, 20:e83-e88.
    [64]Dichtl W, Nilsson L, Goncalves I, et al. Very low-density lipoprotein activates nuclear factor-κB in endothelial cells[J]. Circ Res,1999,84:1085-1094.
    [65]Guttridge DC, Albanese C, Reuther JY, et al. NF-κB controls cell growth and differentiation through transcriptional regulation of cyclin D1[J]. Mol Cell Biol, 1999,19:5785-5799.
    [66]Bond M, Fabunmi RP, Baker AH, et al. Synergistic upregulation of metallopro-teinase-9 by growth factors and inflammatory cytokines:an absolute requirement for transcription factor NF-kappaB[J]. FEBS Lett,1998,435:29-34.
    [67]Wong SC, Fukuchi M, Melnyk P, et al. Induction of cyclooxyenase-2 and activation of nuclear factor-kappaB in myocardium of patients with congestive heart failure[J]. Circulation,1998,98:100-103.
    [68]Ritchie ME. Nuclear factor-κB is selectively and markedly activated in humans with unstable angina pectoris[J]. Circulation,1998,98:1707-1713.
    [69]Valen G, Paulsson G, Vaage J. Induction of inflammatory mediators during reperfusion of the human heart[J]. Ann Thorac Surg,2001,71:226-232.
    [70]Onai Y, Suzuki JI, MaejimaY, et al. Inhibition of NF-κB improves left ventricular remodeling and cardiac dysfunction after myocardial infarction[J]. Am J Physiol Heart Circ Physiol,2007,292(1):530-538.
    [71]Shunichi K, Kubota T, Monden Y, et al. Blockade of NF-κB improves cardiac function and survival after myocardial infarction[J]. Am J Physiol Heart Circ Physiol,2006,291:H1337-H1344.
    [72]Helenius M, Hanninen M, Lehtinen SK, et al. Aging-induced up-regulation of nuclear binding activities of oxidativ stress responsive NF-κB transcription factor in mouse cardiac muscle[J]. J Mol Cell Cardiol,1996,28:487-498.
    [73]Helenius M, Kyrylenko S, Vehvilainen P, et al. Characterization of aging-associated up-regulation of constitutive nuclear factor-κB binding activity [J]. Antioxide Redox Signal,2001,3:147-156.
    [74]Korhonen P, Helenius M, Salminen A. Age-related changes in the regulation of transcription factor NF-κB in rat brain[J]. Neurosci Lett,1997,225:61-64.
    [75]Gao XM, Xu Q, Kiriazis H, et al. Mouse model of post-infarct ventricular rupture: time course, strain-and gender-dependency, tensile strength, and histopa thology[J]. Cardiovasc Res,2005,65:469-477.
    [76]Gao XM, Dilley RJ, Samuel CS, et al. Lower risk of postinfarct rupture in mouse heart overexpressing β2-adrenergic receptors importance of collagen content[J]. J Cardiovasc Pharmacol,2002,40:632-640.
    [77]杨毅宁,马依彤,李军,等,小鼠心脏破裂模型的建立及其影响因素[J].实验动物与比较医学,2006,26(2):67-70.
    [78]马依彤,杨毅宁,高晓明,等.应用高频超声评价小鼠缺血性心肌病左室重塑的实验研究[J].中国超声医学杂志.2006,22(10):730-732.
    [79]Tanaka N, Dalton N, Mao L, et al. Transthoracic echocardiography in models of cardiac disease in the mouse[J]. Circulation,1996,94:1109-1117.
    [80]Shapira I, Isakov A, Burke M, et al. Cardiac rupture in patients with acute myocardial infarction[J]. Chest,1987,92:219-223.
    [81]Kawano H, Miyauchi K, Okada R, et al. Histopathological study of cardiac rupture following myocardial infarction with and without thrombolytic therapy [J]. Journal of Cardiology,1994,24:249-255.
    [82]Figueras J, Curos A, Cortadellas J, et al. Relevance of electrocardiographic findings, heart failure, and infarct site in assessing risk and timing of left ventricular free wall rupture during acute myocardial infarction[J]. Am J Cardiol,1995,76:543-547.
    [83]Gao XM, Ming Z, Su Y, et al. Infarct size and post-infarct inflammation determine the risk of cardiac rupture in mice[J]. Int J Cardiol,2009 Feb 3.
    [84]Takada A, Saito K, Nagai T, et al. When does an infarcted heart rupture? A pathological study of 148 out-of-hospital sudden death cases[J]. Int J Cardiol,2008, 129(3):447-448.
    [85]Schuster EH, Bulkley BH. Expansion of transmural myocardial infarction:a pathophysiologic factor in cardiac rupture[J]. Circulation,1979,60:1532-1538.
    [86]Dollery CM, McEwan JR, Henney AM. Matrix metalloproteinases and cardiovascular disease[J]. Circ Res,1995,77:863-868.
    [87]Capasso JM, Palackal T, Olivetti G, et al. Severe myocardial dysfunction induced by ventricular remodeling in aging rat hearts[J]. Am J Physiol Heart Circ Physiol,1990, 259:H1086-H1096.
    [88]Pacher P, Mabley JG, Liaudet L, et al. Left ventricular pressure-volume relationship in a rat model of advanced aging-associated heart failure[J]. AJP-Heart,2004, 287:2132-2137.
    [89]Boluyt MO, Converso K, Hwang HS, et al. Echocardiographic assessment of age-associated changes in systolic and diastolic function of the female F344 rat heart[J]. J Appl Physiol,2004,96:822-828.
    [90]Christensen DJ, Ford M, Reading J, et al. Effect of hypertension on myocardial rupture after acute myocardial infarction[J]. Chest,1977,72:618-622.
    [91]Lakatta EG, Levy D. Arterial and cardiac aging:major shareholders in cardiovascular disease enterprises, Part I:aging arteries:a "set up" for vascular disease[J]. Circulation,2003,107:139-146.
    [92]Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure, Part Ⅱ:causal mechanisms and treatment[J]. Circulation,2002,105: 1503-1508.
    [93]Uehara K, Nomura M, Ozaki Y. High-sensitivity C-reactive protein and left ventricular remodeling in patients with acute myocardial infarction[J]. Heart Vessels,2003,18:67-74.
    [94]Shah PK. Inflammation and plaque vulnerability [J]. Cardiovasc Drugs Ther,2009, 23(1):31-40.
    [95]Nakou ES, Liberopoulos EN, Milionis HJ, et al. The role of C-reactive protein in atherosclerotic cardiovascular disease:an overview[J]. Curr Vasc Pharmacol.2008, 6(4):258-270.
    [96]Tousoulis D, Kampoli AM, Stefanadi E, et al. New biochemical markers in acute coronary syndromes[J]. Curr Med Chem,2008,15(13):1288-1296.
    [97]Athyros VG, Kakafika AI, Karagiannis A, et al. Do we need to consider inflamm-atory markers when we treat atherosclerotic disease[J]? Atherosclerosis,200(1): 1-12.
    [98]Imhof BA, Dunon D.Leukocyte migration and adhesion[J]. Adv Immunol,1995, 58:345-416.
    [99]Hill PA, Lan HY, Nikolic-Paterson DJ, et al.-ICAM-1 directs migration and localization of interstitial leukocytes in experimental glomerulonephritis [J]. Kidney Int,1994,45:32-42.
    [100]Baeuerle PA, Henkel T. Function and activation of NF-kappa B in the immune system[J].Annu Rev Immunol,1994,12:141-179.
    [101]Barnes PJ, Karin M. Nuclear factor-KB-a pivotal transcription factor in chronic inflammatory disease[J]. New Engl J Med,1999,336(15):1066-1071.
    [102]Zhang M, Chen L. Status of cytokines in ischemia reperfusion induced heart injury[J]. Cardiovasc Hematol Disord Drug Targets,2008,8(3):161-172.
    [103]张波,王志农,王军,等.NF-κB在早期缺血再灌注损伤中的作用[J].中华急诊 医学,2005,5(14):384-387.
    [104]Flohe L, Brigelius-Flohe R, Saliou C, et al. Redox regulation of NF-kappa B activation[J]. Free Radic Biol Med,1997,22(6):1115-1126.
    [105]Janssen-Heiniger YMW, Poyneter ME, Baeuerle PA. Recent advances towards understanding redox mechanisms in the activation of nuclear factor-κB[J]. Free Radic Biol Med,2000,28(9):1317-1327.
    [106]Wang D, Baldwin AS. Activation of nuclear factor-κB-dependent transcription by tumor necrosis factor-α is mediated through phophorylation of Rel/p65 on the serine 529[J]. J Biol Cherm,1998,273(45):29411-29416.
    [107]陈瑗,周玫.自由基与衰老[M].北京:人民卫生出版社,2004.
    [108]Chung HY, Kim HJ, Kim JW, et al. The inflammation hypothesis of aging [J]. Ann N Y Acad Sci,2001,928:327-335.
    [109]Chung HY, Kim HJ, Kim JW, et al. Molecular inflammation hypothesis of aging based on the anti-aging mechanism of calorie restriction[J]. Microsc Res Tech, 2002,59(4):264-272.
    [110]Spencer NF, Poynter ME, Im S-Y, et al. Constitutive activation of NF-κB in an animal model of aging[J]. International Immunology,1997,9(10):1581-1588.
    [111]Helenius M, Hanninen M, Lehtinen SK, et al. Changes associated with aging and replicative senescence in the regulation of transcription factor nuclear factor-κB[J]. Biochem J,1996,318:603-608.
    [112]Korhonen P, Helenius M, Salminen A. Age-related changes in the regulation of transcription factor NF-κB in rat brain[J]. Neurosci Lett,1997,225(1):61-64.
    [113]Toliver-Kinsky T, Papconstantinou J, Perez-Polo JR. Age-associated alteration in hippocampal and basal forebrain nulear factor kappa B activity [J]. J Neurosci Res, 1997,48(6):580-587.
    [114]Kim HJ, Jung KJ, Yu BP, et al. Influence of aging and calorie restriction on MAPKs activity in rat kidney[J]. Exp Gerontol,2002,37(8-9):1041-1053.
    [115]Kim HJ, Yu BP, Chung HY. Molecular exploration of age-related NF-kappa B/IKK down regulation by calorie restriction in rat[J]. Kidney,2002,32(10):991-1005.
    [116]鲍国强,李素波,张永祥等.小鼠脏器核转录因子NF-κB活性观察[J].中华老年多器官疾病杂志,2002,3(1):200-203.
    [117]Bindhu OS, Ramadas K, Sebastian P, et al. High expression levels of nuclear factor kappa B and gelatinases in the tumorigenesis of oral squamous cell carcinoma[J]. Head Neck,2006,28(10):916-925.
    [118]Andela VB, Gordon AH, Zotalis G, et al. NF-kappaB:a pivotal transcription factor in prostate cancer metastasis to bone[J]. Clin Orthop Relat Res,2003, (415 Suppl):S75-S85.
    [119]Davies MJ. The composition of coronary artery plaques[J]. New Engl J Med,1997, 336:1312-1314.
    [120]Ross K. Growth regulatory molecules and atherosclerosis[J]. Excerpta Media,1994, 143-148.
    [121]Mizunok R, Satomura K, Miyamoto A, et al. Aangioscopic evaluation of coronary artery thrombi in acute coronary syndromes[J]. New Engl J Med,1992, 326:287-291.
    [122]Smith CW, Entnian ML, Lane CL, et al. Adherence of neutrophils to canine cardiac myocytes in vitro is dependent on intercellular adhesion molecule. J Clin Invest, 1991,88:1216-1223.
    [123]Mazzone A, De Servi S, Ricevati G, et al. Increased expression of neutrophil and monocyte adhesion in unstable coronary artery disease[J]. Circulation,1993, 88:358-363.
    [124]Hackman A, Abe Y, Insull W Jr, et al. Levels of soluble cell adhension molecules in patients with dyslipidemia[J]. Circulation,1996,93(7):1334-1338.
    [125]杨沁清,冷传友,等.急性脑梗塞患者血浆细胞粘附分子检测及临床意义[J].山东医药,2000,13(40):23-25.
    [126]黄凤.细胞间粘附分子-1与心功能不全的临床意义[J].国外医学.心血管疾病分册,2000,1(27):5-7.
    [127]Feeley BT, Park Al, Hoyt EG, et al. Sulfasalazine inhibits reperfusion injury and prolongs allograft survival in rat cardiac transplants[J]. J Heart lung Transplant, 1999,18(11):1088-1095.
    [128]Chung HY, Sung B, Jung KJ, et al. The molecular inflammatory process in aging[J]. Antioxid Redox Signal,2006,8(3-4):572-581.
    [129]Zou Y, Yoon S, Jung KJ, et al. Upregulation of aortic adhension molecules during aging[J]. J Gerontal A Biol Med Sci,2006,61(3):232-244.
    [130]Song S, Lu Y, Choi YK, et al. DNA-dependent PK inhibits adeno-associated virus DNA integration[J]. Pro Natl Acad USA,2004,101(7):2112-2116.
    [131]Vassalli G, BuelerH, Dudler J, et al. Adeno-associated virus(AAV)vectors achieve prolonged transgene expression in mouse myocardium and arteriesin vivo:a comparative study with adenovirus vectors[J]. Int J Cardiol,2003,90:229-238.
    [132]马依彤.心血管疾病小动物实验手册[M].北京:人民卫生出版社,2008.48.
    [133]Isner JM. Myocardial gene therapy[J]. Nature,2002,415(6868)234-239.
    [134]Felgner PL, Gadek TR, Holm M, et al. Lipofection:a highly efficient lipid-mediated transfection procedure[J]. Proc Natl Acad Sci USA,1987,84:7413-7418.
    [135]王伟,谢立信,董晓光,等.内皮抑素基因转移抑制视网膜新生血管的实验研究[J].中华眼科杂志,2006,42(2):111-115.
    [136]牛晓光,王伟,史伟云,等.脂质体介导内皮抑素基因转移抑制兔角膜新生血管的研究[J].中华眼科杂,2005,41:260-264.
    [137]Russell DW, Hirata RK. Human gene targeting by viral vectors[J]. Nat Genet,1998, 18:325-330.
    [138]Kay MA, Glorioso JC, Naldini L, et al. Viral vectors for gene therapy:the art of turning infectious agents into vehicles of therapeutics[J]. Nat Med,2001,7:33-40.
    [139]Baum C, Dullmann J, Li Z, et al. Side effects of retroviral gene transfer into hematopoietic stem cells [J]. Blood,2003,101:2099-2114.
    [140]Bartlett JS, Wilcher R, Samulski RJ. Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors[J]. J Viro,2000,74(6):2777-2785.
    [141]March KL, Woody M, Mehdi K. et al. Efficient in vivo catheter-based pericardial gene transfer mediated by adenoviral vectors[J]. Clin Cardiol,1999,22:123-129.
    [142]Maurice JP, Hata JA, Shah AS, et al. Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary beta2-adrenergic receptor gene delivery[J]. J Clin Invest,1999,104:21-29.
    [143]Lozier JN, Csako G, Mondoro TH, et al. Toxicity of a first-generation adenoviral vector in rhesus macaques[J]. Hum Gene Ther,2002,13:113-124.
    [144]Palmer DH, Mautner Y, Kerr DJ, et al. Clinical experience with adenovirus in cancer therapy [J]. Curr Opin Mol Ther,2002,4:423-434.
    [145]Chirmule N, Propert KJ, Magosin SA, et al. Immune responses to adenovirus and adeno-associated virus in humans[J]. Gene Ther,1999,6:1574-1583.
    [146]Flotte TR. Gene therapy progress and prospects:recombinant adeno-associated virus(rAAV)vectors[J]. Gene Ther,2004,11(10):805-810.
    [147]Zhao N, Liu DP, Liang CC. Hot topics in adeno-associated virus as a gene transfer vector[J]. Mol Biotechnol,2001,19:229-237.
    [148]Berns KI, Linden RM. The cryptic life style of adeno-associated virus[J]. Bioessays, 1995,17(3):237-245.
    [149]Samulski R, Chang LS, Shenk T. Helper-free stocks of recombinant adeno- associated viruses:normal integration does not require viral gene expression[J]. J Virol,1989,63(9):3822-3828.
    [150]Aitken ML. A phase I study of aerosolized administration of tgAAVCF to cystic fibrosis subjects with mild lung disease[J]. Hum Gene Ther,2001,12:1907-1916.
    [151]Herzog RW, Yang EY, Couto LB, et al. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector[J]. Nat Med,1999,5:56-63.
    [152]Grimm D, Kleinschmidt JA. Progress in adeno-associated virus type 2 vector production:promises and prospects for clinical use[J]. Hum Gene Ther,1999,10: 2445-2450.
    [153]Li J, Dressman D, Tsao Y P, et al. rAAV vector-mediated sarcoglycan gene transfer in a hamster model for limb girdle muscular dystrophy [J]. Gene Ther,1999, 6:72-82.
    [154]Wang Z, Zhu T, Qiao C, et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart[J]. Nat Biotechnol,2005,23(3):321-328.
    [155]Mohan RR, Schultz GS, Hong JW, et al. Gene transfer into rabbit keratocytes using AAV and lipid-mediated plasmid DNA vectors with a lamel lar flap for stromal access[J]. Exp Eye Res,2003,76(3):373-383.
    [156]Burger C, Gorbatyuk OS, VelardoM J, et al. Recombinant AAV vira vectors pseudotyped with viral capsids from serotypes 1,2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system[J]. Mol Ther,2004,10(2):302-317.
    [157]Evans CH, Gouze E, Gouze JN, et al. Gene therapeutic approaches-transfer in vivo[J]. Adv Drug Deliv Rev,2006,58(2):243-258.
    [158]Palomeque J, Chemaly ER, del Monte 1 F, et al. Efficiency of eight different AAV serotypes in transducing rat myocardium in vivo[J]. Gene Ther,2007,14(13): 989-997.
    [159]Inagaki K, Fuess S, Storm TA, et al. Robust systemic transduction with AAV9 vectors in mice:efficient global cardiac gene transfer superior to that of AAV8[J]. Mol Ther,2006,14(1):45-53.
    [160]Miyagi N, Rao VP, Ricci D, et al. Efficient and durable gene transfer to transplanted heart using adeno-associated virus 9 vector[J]. Heart Lung Transplant,2008, 27(5):554-560.
    [161]Chalfie M. Green fluorescent protein. Photochem Photobiol[J].1995,62(4):651- 656.
    [162]Zolotkin S, Potter M, Hauswirth WW, et al. A "humanized" green fluorescent protein cDNA adapted for high-level expression in mammalian cells[J]. J Virol, 1996,70(7):4646-4654.
    [163]欧阳长杰,赵玉,徐铁军.腺病毒介导EGFP基因转染神经干细胞的实验研究[J].徐州医学院学报,2007,27(7):424-428.
    [164]陈博,胡义珍,曹阳.增强型绿色荧光蛋白在体外培养的牛眼小梁细胞中的表达[J].眼视光学杂,2006,8(5):278-279.
    [165]French BA, Mazur W, Geske RS, et al. Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors[J]. Circulation,1994, 90(5):2414-2424.
    [166]Vale PR, Losordo DW, Tkebuchava T, et al. Catheter-based myocardial gene transfer utilizing nonfluoroscopic electromechanical left ventricular mapping[J]. J Am Coll Cardiol,1999,34(1):246-254.
    [167]Grossman PM, Han Z, Palasis M, et al. Incomplete retention after direct myocardial injection[J]. Catheter Cardiovasc Interv,2002,55(3):392-397.
    [168]Gwon HC, Beong JO, Kim HJ, et al. The feasibility and safety of fluoroscopy-guided percutaneous intramyocardial gene injection in porcine heart[J]. Int J Cardiol,2001,79(1):77-88.
    [169]Barr B, Carroll J, Kalynych AM, et al. Efficient catheter-mediated gene transfer into the heart using replication-defective adenovirus[J]. Gene Ther,1994, 1(1):51-58.
    [170]Budker V, Zhang G, Danko I, et al. The efficient expression of intravascularly delivered DNA in rat muscle[J]. Gene Ther,1998,5(2):272-276.
    [171]Wright MJ, Rosenthal E, Stewart L, et al. β-Galactosidase staining following intracoronary infusion of cationic liposomes in the in vivo rabbit heart produced by microinfarction rather than effective gene transfer:a cautionary tale[J]. Gene Ther. 1998,5(3):301-308.
    [172]Hajjar RJ, Schmidt U, Matsui T, et al. Modulation of ventricular function through gene transfer in vivo[J]. Proc Natl Accad Sci USA,1998,95(9):5251-5256.
    [173]Maurice JP, Hata JA, Shan AS, et al. Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary beta2-adrenergic receptor gene delivery[J]. J Clin Invest,1999,104(1):21-29.
    [174]Hoshijima M, Ikeda Y, Iwanaga Y, et al. suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery[J]. Nat Med,2002,8(8):864-871.
    [175]Ikeda Y, Gu Y, Iwanaga Y, et al. Restoration of deficient membrane proteins in the cardiomyopathic hamster by in vivo cardiac gene transfer[J]. Circulation,2002, 105(4):502-508.
    [176]Fromes Y, Salmon A, Wang X, et al. Gene delivery to the myocardium by intrapericardial injection[J]. Gene Ther,1999,6(4):683-688.
    [177]Lamping KG, Rios CD, Chun JA, et al. Intrapericardial administration of adeno-virus for gene transfer[J]. Am J Physiol,1997,272(1 pt 2):H310-H317.
    [178]惠海鹏,李小鹰,刘秀华,等.腺相关病毒介导心肌肌浆网Ca2+-ATPase 2a基因转导治疗大鼠慢性心力衰竭[J].中华心血管病杂志,2006,34(4):357-362.
    [179]Statford-Perricaudet LD, Makeh I, Perricaudet M, et al. Widespread long-term gene transfer to mouse skeletal muscles and heart[J]. J Clin Invest,1992,90:626-630.
    [180]Anderson WF. Human gene therapy[J]. Science,1992,256:808-813.
    [181]高霞,马依彤,杨毅宁,等.9型重组腺相关病毒转染体外大鼠心肌细胞的影响[J].细胞与分子免疫学杂志,2010,26(1):18-20.
    [182]刘子雄,赵强,陈安清,等.冠脉旁路术中转染抗NF-κB核酶基因防治犬移植静脉桥再狭窄的研究[J].中华医学杂志,2006,86(29):2079-2081.
    [183]Brand K, Page S, Rogler G, et al. Activated transcription factor nuclear factor-kappa B is present in the atherosclerotic lesion[J]. J Clin Invest,1996,97(7): 1715-1722.
    [184]Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle[J]. Cell,2002, 109(Suppl):81-96.
    [185]Shimizu N, Yoshiyama M, Omura T, et al. Activation of mitogen-activated protein kinases and activator protein-1 in myocardial infarction in rats[J]. Cardiovasc Res, 1998,38(1):116-124.
    [186]Beg AA, Sha WC, Bronson RT, et al. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B[J]. Nature,1995,376(6536): 167-170.
    [187]Kashani-Sabet M, Liu Y, Fong S, et al. Identification of gene function and functional pathways by systemic plasmid-based ribozyme targeting in adult mice[J]. PNAS,2002,99(6):3878-3883.
    [188]Chandrasekar B, Streitman JE, Colston JT, et al. Inhibition of nuclear factor kappa B attenueates proinflammatory cytokine and inducible nitric-oxide synthase expression in postischemic myocardium[J]. Biochim Biophys Acta,1998,1406(1): 91-106.
    [189]李志清,黄跃生,杨宗城,等.大鼠烧伤后早期核因子KB活化对细胞因子表达及心肌功能的影响[J].中华烧伤杂志,2006,12(22):448-451.
    [190]Ducharme A, Frantz S, Aikawa M, et al. Targeted deletion of matrix metallopro-teinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction[J]. J Clin Invest,2000,106:55-62.
    [191]Hayashidani S, Tsutsui H, Ikeuchi M, et al. Targeted deletion of MMP-2 attenuates early LV rupture and late remodeling after experimental myocardial infarction[J]. Am J Physiol Heart Circ Physiol,2003,285:H1229-H1235.
    [192]Peterson JT, Hallak H, Johnson L, et al. Matrix metalloproteinase inhibition attenuates left ventricular remodeling and dysfunction in a rat model of progressive heart failure. Circulation,2001,103:2303-2309.
    [193]Westermarck J, Kahari VM. Regulation of matrix metalloproteinase expression in tumor invasion[J]. FASEB J,199913:781-792.
    [194]Han YP, Tuan TL, Wu H, et al. TNF-alpha stimulates activation of pro-MMP2 in human skin through NF-κB mediated induction of MT1-MMP[J]. J Cell Sci,2001, 114:131-139.
    [195]Murphy G, Stanton H, Cowell S, et al. Mechanisms for pro matrix metalloproteinase activation[J]. APMIS,1999,107:38-44.
    [196]Xie Z, Singh M, Singh K. Differential regulation of matrix metalloproteinase-2 and-9 expression and activity in adult rat cardiac fibroblasts in response to interleukin-lbeta[J]. J Biol Chem,2004,279:39513-39519.
    [197]Lindner V, Collins T. Expression of NF-kappa B and I kappa B-alpha by aortic endothelium in an arterial injury model[J]. Am J Pathol,1996,148(2):427-438.
    [198]Kuwabara N, Tamada S, Iwai T, et al. Attenuation of renal fibrosis by curcumin in rat obstructive nephropathy[J]. Urology,2006,67(2):440-446.
    [199]Cha DR, Kang YS, Han SY, et al. Role of aldosterone in diabetic nephropathy[J]. Nephrology(Carlton),2005,10 Suppl:S37-S39.
    [200]Sun Y, Zhang J, Lu L, et al. Aldosterone-induced inflammation in the rat heart:role of oxidative stress[J]. Am J Pathol,2002,161(5):1773-1781.
    [1]Jugdutt BI. Remodeling of the myocardium and potential targets in the collagen degradation and synthesis pathways[J]. Curr Drug Targets Cardiovasc Haematol Disord,2003;3:1-30.
    [2]Kim HE, Dalal SS, Yong E, et al. Disruption of the myocardial extracellular matrix leads to cardiac dysfunction[J]. J Clin Invest,2000;106(7):857-866.
    [3]Creemers EE, Cleutjens JP, Smits JF, et al. Matrix metalloproteinase inhibition after myocardial infarction. A new approach to prevent heart failure[J]? Circ Res, 2001;89:201-210.
    [4]Peterson JT, Li H, Dillon L, et al. Evolution of matrix metalloprotease and tissue inhibitor expression during heart failure progression in the infarcted rat[J]. Cardiovasc Res,2000;46:307-315.
    [5]Li YY, McTiernan CF, Feldman AM. Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling [J]. Cardiovasc Res,2000;46:214-224.
    [6]Etoh T, Joffs C, Deschamps AM, et al. Myocardial and interstitial matrix metalloprotrinase activity after acute myocardial infarction in pigs[J]. Am J Physiol Heart Circ Physiol,2001;281(3):H987-H994
    [7]Kameda K, Matsunaga T, Abe N, et al. Increased pericardial fluid level of matrix metalloproteinase-9 activity in patients with acute myocardial infarction:possible role in the development of cardiac rupture[J]. Circ J,2006;70(6):673-678.
    [8]Yasuda S, Miyazaki S, Kinoshita H, et al. Enhanced cardiac production of matrix metalloproteinases-2 and-9 and its attenuation associated with pravastatin treatment in patients with acute myocardial infarction[J]. Clin Sci(Lond),2007; 112(1):43-49.
    [9]Solodky A, Behar S, Herz I, et al. Comparison of incidence of cardiac rupture among patients with acute myocardial infarction treated by thrombolysis versus percutaneous transluminal coronary angioplasty[J]. Am J Cardiol,2001;87:1105-1108.
    [10]Heymans S, Luttun A, Nuyens D, et al. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure[J]. Nat Med,1999;5:1135-1142.
    [11]Rohde LE, Ducharme A, Arroyo LH, et al. Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice[J]. Circulation,1999;99:3063-3070.
    [12]Nishikawa N, Yamamoto K, Sakata Y, et al. Differential activation of matrix metalloproteinases in heart failure with and without ventricular dilatation[J]. Cardiovasc Res,2003;57(3):766-774.
    [13]Hayashidani S, Tsutsui H, Ikeuchi M, et al. Targeted deletion of MMP-2 attenuates early LV rupture and late remodeling after experimental myocardial infarction[J]. Am J Physiol Heart Circ Physiol,2003;285:H1229-H1235.
    [14]Matsumura S, Iwanaga S, Mochizuki S, et al. Targeted deletion or pharmacological inhibition of MMP-2 prevents cardiac rupture after myocardial infarction in mice[J]. J Clin Invest,2005;115(3):599-609.
    [15]Tao ZY, Cavasin MA, Yang F, et al. Temporal changes in matrix metalloproteinase expression and inflammatory response associated with cardiac rupture after myoca-rdial infarction in mice[J]. Life Sci,2004;74:1561-1572.
    [16]Solomon SD, Pfeffer MA. Renin-angiotensin system and cardiac rupture after myocardial infarction[J]. Circulation,2002;106:2167-2169.
    [17]Ichihara S, Senbonmatsu T, Price E, et al. Targeted deletion of angiotensin Ⅱ type 2 receptor caused cardiac rupture after acute myocardial infarction[J]. Circulation, 2002; 106:2244-2249.
    [18]Kossmehl P, Kurth E, Faramarzi S, et al. Mechanisms of apoptosis after ischemia and reperfusion:role of the renin-angiotensin system[J]. Apoptosis,2006,11(3):347-358.
    [19]Maczewski M, Borys M, Kacprzak P, et al. Angiotensin Ⅱ AT1 receptor density on blood platelets predicts early left ventricular remodelling in non-reperfused acute myocardial infarction in humans[J]. Eur J Heart Fail,2006;8(2):173-178.
    [20]Ichihara S, Senbonmatsu T, Price E, et al. The targeted deletion of angiotensin Ⅱ type 2 receptor caused cardiac rupture after acute myocardial infarction[J]. Circulation, 2002; 106:2244-2249.
    [21]Connelly CM, Ngoy S, Schoen FJ, et al. Biomechanical properties of reperfused transmural myocardial infarcts in rabbits during the first week after infarction. Implications for left ventricular rupture[J]. Circ Res,1992;71:401-413.
    [22]Khalil ME, Heller EN, Boctor F, et al. Ventricular free wall rupture in acute myocardial infarction[J]. J Cardiovasc Pharmacol Ther,2001;6:231-236.
    [23]ISIS-1 (First International Study of Infarct Survival)Collaborative Group. Mechanisms for the early mortality reduction produced by beta-blockade started early in acute myocardial infarction:ISIS-1[J]. Lancet,1988;1:921-923.
    [24]Rouet-Benzineb P, Gontero B, Dreyfus P, et al. Angiotensin Ⅱ induces nuclear factor-kappa B activation in cultured neonatal rat cardiomyocytes through protein kinase C signaling pathway[J]. J Mol Cell Cardiol,2000;32(10):1767-1778.
    [25]Beranek JT. Pathogenesis of postinfarction free wall rupture[J]. Int J Cardiol, 2002;84:91-92.
    [26]Frantz S, Ducharme A, Sawyer D, et al. Targeted deletion of caspase-1 reduces early mortality and left ventricular dilatation following myocardial infarction[J]. J Mol Cell Cardiol,2003;35(6):685-694.
    [27]Matsusaka H, Ide T, Matsushima S, et al. Targeted deletion of p53 prevents cardiac rupture after myocardial infarction in mice[J]. Cardiovasc Res,2006;70(3):457-465.
    [28]Ye S. Polymorphism in matrix metalloproteinase gene promoters:implication in regulation of gene expression and susceptibility of various diseases[J]. Matrix Biol, 2000;19:623-629.
    [29]Martin TN, Penney DE, Smith JA, et al. Matrix metalloproteinase-1 promoter polymorphisms and changes in left ventricular volume following acute myocardial infarction[J]. Am J Cardiol,2004;94(8):1044-1046.
    [30]Ye S, Watts GF, Mandalia S, et al. Preliminary report:genetic varia-tion in the human stromelysin promoter is associated with progression of coronary atherosclerosis[J]. Br Heart J,1995;73:209-215.
    [31]Zhang B, Ye S, Herrmann SM, Eriksson P, et al. Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis[J]. Circulation,1999;99:1788-1794.
    [32]Jormsjo S, Ye S, Moritz J, et al. Allele-specific regulation of matrix metallopro-teinase-12 gene activity is associated with coronary artery luminal dimensions in diabetic patients with manifest coronary artery disease[J]. Circ Res,2000;86:998-1003.
    [33]Terashima M, Akita H, Kanazawa K, et al. Stromelysin promoter 5A/6A polymor-phism is associated with acute myocardial infarction[J]. Circulation,1999;99:2717-2719.
    [34]Yoon S, Tromp G, Vongpunsawad S, et al. Genetic analysis of MMP3, MMP9, and PAI-1 in Finnish patients with abdominal aortic or intracranial aneurysms[J]. Biochem Biophys Res Commun,1999;265:563-568.
    [35]Peters DG, Kassam A, St Jean PL, et al. Functional polymorphism in the matrix metalloproteinase-9 promoter as a potential risk factor for intracranial aneurysm[J]. Stroke,1999;30:2612-2616.
    [36]Zidar N, Jeruc J, Balazic J, et al. Neutrophils in human myocardial infarction with rupture of the free wall[J]. Cardiovasc Pathol,2005;14(5):247-250.
    [37]Sun M, Dawood F, Wen WH, et al. Excessive tumor necrosis factor activation after infarction contributes to susceptibility of myocardial rupture and left ventricular dysfunction[J]. Circulation,2004;110(20):3221-3228.
    [38]Askari AT, Brennan ML, Zhou X, et al. Myeloperoxidase and plasminogen activator inhibitor 1 play a central role in ventricular remodeling after myocardial infarction[J]. J Exp Med,2003;197(5):615-624.
    [39]Cavasin MA, Tao ZY, Yu AL, et al. Testosterone enhances early cardiac remodeling after myocardial infarction, causing rupture and degrading cardiac function[J]. Am J Physiol Heart Circ Physiol,2006;290(5):H2043-H2050.
    [40]Nahrendorf M, Hu K, Frantz S, et al. Factor XIII deficiency causes cardiac rupture, impairs wound healing, and aggravates cardiac remodeling in mice with myocardial infarction[J]. Circulation,2006; 113(9):1196-1202.
    [41]Barandon L, Couffinhal T, Ezan J, et al. Reduction of infarct size and prevention of cardiac rupture in transgenic mice overexpressing FrzA[J]. Circulation, 2003;108(18):2282-2289.