缺血后适应对压力超负荷诱导小鼠肥厚心肌缺血再灌注损伤的保护作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     本研究旨在观察缺血后适应(IPost)对压力负荷诱导的肥厚心肌缺血再灌注(I/R)损伤的影响,并进一步探讨再灌注损伤抢救激酶(RISK)在IPost减轻肥厚心肌缺血再灌注损伤中的作用机制。本研究包括:1)通过显微外科技术建立小鼠主动脉弓缩窄压力超负荷模型,探讨心脏形态及功能变化的规律,确定心肌肥厚发生的时间点;2)建立小鼠离体肥厚心脏Langendorff缺血再灌注模型,研究缺血后适应对离体小鼠肥厚心肌缺血再灌注损伤中的保护作用,探讨再灌注损伤抢救激酶在该保护作用中的分子机制;3)探讨再灌注损伤抢救激酶中细胞外信号调节激酶(ERK1/2)作为Bcl-2与Bax的上游靶酶在IPost减少心肌缺血再灌注细胞凋亡中的作用。
     方法:
     课题第一部分:12周龄C57/BL小鼠通过主动脉弓缩窄(TAC)建立心肌肥厚模型,在1、4、8、12、16周时进行高频心脏超声、血流动力学、组织重量及心肌病理学检测,逆转录聚合酶链反应(RT-PCR)半定量测定心房利钠肽(ANP)、脑钠素(BNP)、α-肌球蛋白重链(α-MHC)、β-肌球蛋白重链(β-MHC)、转化生长因子(TGF-β1)、心肌内质网Ca2+-ATP酶(SERCA2a)mRNA的表达。
     课题第二部分:12周龄C57/BL小鼠通过主动脉弓缩窄4周建立心肌肥厚模型,利用Langendorff灌流装置建立小鼠肥厚心肌I/R模型,稳定灌流30min,分为4组,1)I/R组:I/R组为停止灌流30min后直接恢复再灌注120min,在停止灌流前后不做任何特殊处理;2)IPost组(采取缺血10s及再灌注10s的3次IPost周期):停止灌流30min,在完全再灌注早期给予反复短暂灌流/停止灌流的后适应,之后持续120min的灌注;3)I/R+抑制剂组[分别用ERK1/2特异性抑制剂PD98059及蛋白激酶-B(Akt)特异性抑制剂wortmannin]:在恢复再灌注的开始不进行后适应循环,给予含抑制剂KH液持续灌流15min后,再恢复无PD98059的KH液灌流;4)IPost+抑制剂组:在再灌注120min起始,给予3次后适应循环的同时给予抑制剂的KH液持续灌流15min后,再恢复无抑制剂的KH液灌流。在再灌注120min时测定梗死心肌面积,采用微型测压球囊同步记录心功能的变化,分别在再灌注15min及2h时用Western印迹法测定左室心肌ERK1/2、核蛋白s6激酶(P70S6K)、蛋白激酶B(Akt)、糖原合成酶-3β(GSK-3β)蛋白表达。
     课题第三部分:12周龄C57/BL小鼠通过主动脉弓缩窄4周建立心肌肥厚模型,利用Langendorff灌流装置建立小鼠肥厚心肌I/R模型,30min全心缺血随后再灌注120min。分为4组,I/R组、IPost组(采取缺血10s及再灌注10s的3次IPost周期)、I/R+PD98059组、IPost+PD98059组,进行心脏血流动力学、心肌梗死范围检测,Western印迹方法检测ERK1/2、Bcl-2、Bax、细胞色素C(Cyt.C)蛋白表达水平,脱氧核苷酸转移酶介导的生物素原位缺口末端标记(TUNEL)法检测心肌细胞的凋亡。
     结果:
     课题第一部分1)与假手术组比较,缩窄组左室收缩期及舒张期前壁和后壁厚度、左心室收缩末期及舒张末期内径于术后呈逐渐增加趋势;左心室射血分数于术后12周显著降低(P<0.05)。左室收缩压及左室压力上升和下降最大速率于术后4周明显增加,8~12周保持稳定,16周明显下降;左室舒张末压于术后8周持续增加(P均<0.05)。显示心肌由左室肥厚最终发展为心力衰竭。2)组织形态学天狼猩红测量心肌胶原含量及凋亡指数显示从4周到16周呈增加趋势;3)与假手术组比较,缩窄组心肌组织ANP、BNP、β-MHC、TGF-β1 mRNA术后1周至16周表达呈持续性增加;而α-MHC、SERCA2a mRNA表达呈持续性降低。
     课题第二、三部分1)成功建立并改良了小鼠离体肥厚心脏Langendorff缺血后适应模型;2)与I/R组比较,IPost组的心肌梗死面积[(23.6±2.8)%]较I/R组[(40.2±4.6)%]明显降低(P<0.05);小鼠心脏血流动力学指标左心室收缩压、左心室压力变化最大速率显著改善(P<0.05);电镜观察发现IPost可减轻缺血再灌注引起的线粒体损伤;凋亡指数显著降低[(16±2)/100 vs(37±5)/100,P<0.05];3)与I/R组相比,IPost组心肌的再灌注15min及2h ERK1/2、P70S6K磷酸化蛋白水平显著增高,而Akt、GSK-3β磷酸化蛋白水平无明显变化(P均>0.05)。4)IPost组心肌的Bcl-2、线粒体Cyt.C表达显著增加,Bax、胞浆Cyt.C蛋白表达显著降低(P<0.05)。与I/R组比较,I/R+PD98059组、IPost+PD98059组上述指标无统计学意义(P均>0.05)。显示在再灌注的最初15min使用PD98059能消除IPost对肥厚心肌的上述保护作用并显著增加心肌梗死面积,与I/R组水平相同。
     结论:
     1)通过主动脉弓缩窄,可以建立稳定的小鼠压力超负荷诱导左室心肌早期代偿性向心性肥厚致晚期心力衰竭的动物模型;2)利用小鼠离体肥厚心脏Langendorff缺血再灌注模型,IPost能有效地减轻离体小鼠肥厚心肌缺血再灌注损伤,能明显减少心肌I/R损伤导致的线粒体损伤,减少心肌梗死面积,其中再灌注损伤抢救激酶中ERK1/2信号通路在再灌注早期即参与了IPost对缺血再灌注肥厚心肌保护作用,磷脂酰肌醇3激酶-蛋白激酶B(PI3K-Akt)信号通路未参与上述保护作用;3)ERK1/2信号通路对缺血后适应肥厚心肌的保护作用可能通过调控心肌细胞凋亡相关蛋白Bcl-2、Bax、Cyt.C的表达实现,其分子机制与上调胞膜Bcl-2与Bax蛋白表达的比值以及减少线粒体Cyt.C的释放有关。
Objective:
     The research is aimed to evaluate effects caused by ischemia postconditioning (IPost) on mouse hypertrophic heart in vivosuffering from ischemia/reperfusion (I/R) injury, and further exploring cardioprotective mechanisms induced by reperfusion injurysalvage kinase (RISK)signal pathways in isolated mouse hypertrophic hearts. The presentstudy focuses on the following issues: 1) Through microsurgery to establish the transverse aortic constriction (TAC) mouse model and to explore the changed tendency of heartstructure and function. 2) To establish the advanced Langendorff model of mouse hypertrophic heart and to determine the effect of ischemic IPost protection in hypertrophic myocardiumsubjected to I/R injure and tostudy the role of RISKsignal pathways in mediatingsuch protection. 3) To explore the cardioprotective molecular mechanisms of extracellularsignal-regulated kinase 1/2 (ERK1/2) as the upstream target enzyme of Bcl-2 and Bax that decrease cell apoptosis.
     Methods:
     Part one:C57/BL wild mice, aged 12wk old, weresubjected tosham-operation (SH) or transversing aortic constriction to establish left ventricular hypertrophy. Echocardiographic assessments, hemodynamic determination, organ weight measurement, morphological and histological examination were performed at 1, 4, 8, 12 and 16 wks aftersurgery. At the meanwhile mRNA levels of atrial natriuretic peptide (ANP), Brain natriuretic peptide (BNP),α-myosin heavy chain (α-MHC),β-myosin heavy chain (β-MHC), Transforming growth factor (TGF-β1),sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) mRNA were determined by reverse transcription polymerase chain reaction (RT-PCR) technique. Part two: TAC was induced in aged 12 wks old C57/BL mice to establish left ventricular hypertrophy for 4 wks. Hypertrophic myocardium I/R injure was induced by 30min globe ischemia, followed by 15min or 120min reperfusion in Langendorff model. Hearts were randomly divided into 4 groups. 1) I/R group:30min global ischemia and 120min reperfusion; 2) IPost group:IPost with 3 episodes of 10s of ischemia and 10s reperfusion after 30min global ischemia and 15min or 2h reperfusion; 3) I/R+ inhibitor (ERK1/2 inhibitor PD98059 or Akt inhibitor wortmannin) group:after 30min global ischemia and then give 15min reperfusion by KH fuild with inhibitor PD98059 or wortmannin, then as I/R group; 4) IPost+inhibitor group:IPost with 3 episodes of 10s of ischemia and 10s reperfusion after 30min global ischemia and then with I/R+ inhibitor group. at the end of reperfusion the effects of IPost on infarctsize, hemodynamics bymini-balloon were measured;Protein levels of ERK1/2?P70S6K?Akt?GSK-3βwere determined by Western blot at the 15min or end of reperfuaion. Part three: TAC was induced in aged 12 wks old C57/BL mice to establish left ventricular hypertrophy for 4 wks. Hypertrophic myocardium I/R injure was induced by 30min globe ischemia, followed by 120min reperfusion in Langendorff model. Hearts were randomly divided into 4 groups:I/R group;IPos group (three cycles of 10s reperfusion interspersed by 10s of no–flow ischemia) ;I/R+PD98059 group; IPost+PD98059 group. At the end Hemodynamic determination, infarctionsize (IS) measurement were performed. Protein levels of ERK1/2, Bcl-2, Bax, mitochondrial and cytosolic Cyt.C were determined by Weatern blot. Apoptosis was measured by terminal deoxynucleotidyl transferase- mediated dUTP nick end labeling (TUNEL)staining.
     Results:
     Part one: (1) Compared withsH group, LVESd? LVEDd?Awsth?Awdth?Pwsth ? Pwdth ? progressive increased after TAC. Meanwhile, left ventricular fractionalshortening (LVFS%)significantly decreased at 16wk (P<0.05). LVSP ?dp/dtmax?dp/dtmin in TAC group were progressive increased after 4 wk. From 8~12 wk these parameters maintainedstabilization and thensharply decreased at 16 wk (all P<0.05). However LVEDP was increased at 8 wk and there wasstatistically difference (P<0.05). These echocardiographic and hemodynamic changes indicated a development of LVH and eventually progressing towards to heart failure. (2) Histologically, cardiac collagen measured by percentage ofsirius Red positivestained area and apoptosis indexshowed a progressive increase from 4 to 16 wk. (3) Compared withsH group, mRNA levels of ANP?BNP?β-MHC?TGF-β1was time-dependently increased whileα-MHC andsERCA2a were time-dependently decreased. (all P<0.05).
     Part two and three: 1)The Langendorff model of mouse hypertrophic heart wassuccessfully established,;2)Infarctsize wassignificantly reduced in postconditioning group (23.6±2.8)% compared with I/R group hearts [(40.2±4.6)%, P<0.05], IPost group had higher Lvsp, dp/dtmax(all P<0.05); Myocardial function was equally improved compared with I/R group (all P<0.05); and apoptosis index decreased(AI%) [(16±2) /100 vs (37±5) /100, P<0.05] .3)ERK1/2?P70S6Kphosphorylation of myocardial wassignificantly increased in IPost group at 15min and 2 h reperfusion (all P<0.05).Compared with I/R, PI3K-Akt?GSK-3βphosphorylation of myocardial was nosignificantly changes in IPost group at 15min and 2h reperfusion (all P>0.05). 4)Compared with I/R group, increased protein levels of phosphorylated ERK1/2, Bcl-2, mitochondrial Cyt.C;decreased protein levels of Bax, cytosolic Cyt.C. I/R+PD98059 group had no effects on above-mentioned parameters. However, in IPost+PD98059 group, addition of ERK1/2 inhibitor PD98059, at the first 15min of reperfusion, reversed all changes observed in IPost group and eliminated IPost protection by increasing IS to a levelsimilar as in I/R group. The histopathological changes in mitochondria and myocardium destroyed by ischemia repefusion were alleviated markedly by ischemic postconditioning.
     Conclusions:
     The conclusion of the research can be drawn from the following four aspects, 1) Pressure-overload induced by TAC resulted in a development of LVH from early concentric hypertrophy to late eccentric hypertrophy. And eventually toward cardiac dysfunction or heart failure. 2) IPost plays a pivotal role in reducing ischemia/reperfusion injury by decrease AI and mitochondria injury in hypertrophic myocardium in vitro.ERK1/2signaling pathway involved in the protection of IPost, but PI3K-Aktsignaling pathway did not participate it. 3) ERK1/2signaling pathway involved in the protection of IPost by regulating the myocyte apoptosis proteins of Bcl-2?Bax and Cyt.C.IPost attenuated ischemia/reperfusion induced apoptosis via increasing the ratio of Bcl-2/Bax in mitochondrial, inhibiting mitochondrial Cyt.C release.
引文
[1] Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia:a delay of lethalsell injury in is-chemia myocardium[J]. Circula- tion, 1986, 74:1124 -1136.
    [2] Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion:comparison with ischemic preconditioning[J]. Am J Physiol Heart Circ Physiol ,2003,285:579-588.
    [3] Halkos ME, Kerendi F, Corvera JS, et al. Myocardial protection with postconditioning is not enhanced by ischemic preconditioning[J]. Ann Thoracsurg, 2004,78:961-969.
    [4] Ma XL, Weyrich AS, Lefer DJ, et al. Diminished basal nitric oxide release after myocardial ischemia and reperfusion promotes neutrophil adherence to coronary endothelium[J]. Circ Res, 1993,72:403-412.
    [5] GalagudzaM, Kurapeev D,minasians, et a. l Ischemic postcondi- tioning:brief ischemia during reperfusion converts persistentventricular fibrillation into regular rhythm[J]. Eur J Cardiothoracsurg, 2004, 25:1006-1010.
    [6] Petrishchev NN, Vlasov TD, GalagudzaMM, et a. l Myocardial ische-mic postconditioning:a brief ischemia causes conversion of resistant reperfusion induced ventricular fibrillation into the normal rhythm[J]. RossFiziolZh Im IMsechenova, 2004, 90:1138-1144.
    [7] Shliakhto EV, Galagudzamm,syrenskii AV, et, al. Cardioprotective effects of ischemic post-conditioning of the myocardium[J]. Kardiologiia,2005,45:44-48.
    [8] Zhao ZQ,sun HY, Wang NP, et al. Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting reactive oxygenspecies2triggeredmitochondrial calcium overload[J]. Circulation, 2003, 108(supp l IV):174.
    [9] Kin H, Zhao ZQ,sun HY, et al. Postconditioning attenuatesmyocardial ischemia reperfusion injury by inhibiting events in the earlyminutes of reperfusion[J]. Cardiovasc Res, 2004, 62:74-85.
    [10] Hausenloy DJ, Duchen MR, Yellon DM. Inhibiting mitochondrial meability transition pore opening at reperfusion protects against ischaemia-reperfusion injury[J]. Cardiovasc Res, 2003, 60:617-625.
    [11] Robert A. Kloner,shereif H. Rezkalla. Preconditioning, postconditioning and their application to clinical cardiology[J]. Cardiovascular Research, 2006, 70:297-307
    [12] Hausenloy DJ, Yellon DM. Reperfusion injurysalvage kinasesignalling:taking aRISK for cardioprotection[J]. Heart Fail Rev, 2007, 12:217-234.
    [13] Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischaemia-reperfusion injury:targeting the Reperfusion Injurysalvage Kinase(RISK)-pathway[J]. Cardiovasc Res, 2004;61:448-460
    [14] Tsang A, Hausenloy DJ, Mocanumm, et al. Postconditioning:a form of"modified reperfusion"protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway[J]. Circ Res, 2004, 95:230-232
    [15] GottliebRA. Reperfusioninjurynducesapoptosisinrabbitcardiomyocytes[J]. Clin Invest, 1994, 94:1 621-8.
    [16] Condorelli G, Morisco C, Stassi G, et al. Increased Cardiomyocyte Apoptosis and Changes inProapoptotic and Antiapoptotic Genes bax and bcl-2 During Left Ventricular Adaptations to Chronic Pressure Overload in the Rat[J]. Circulation. , 1999, 99:3071-3078.
    [17] Kannel WB, Gordon T, Castelli WP, etal. Electrocardiographic left ventricular hypertrophy and risk of coronary heart disease. The Framinghamstudy[J]. Ann Intern Med, 1970, 72:813-822.
    [18] Casale PN, Villa AE, Robalino BD, et al. Left ventricular hypertrophy Increases the risk for major complications during PTCA[J]. Circulation,1992,86(4suPPll):I一786:3128.
    [19] Cooley DA, Reul G. J, WukasCh DC. Ischemic contracture of the heart:“Stone heart”. AM J cardiol, 1972, 29:575-577.
    [20] Koyanagis, Eastham CL, Harrison DG, et al. Increasedsize of myocardial infarction in dogs with chronic hypertension and left ventricular hypertrophy[J]. Circ Res, 1982, 50:55-62.
    [21] Dellsperger KC, Clothier JL, Hartnett JA, et al. Acceleration of the wavefront of myocardial necrosis by chronic hypertension and left ventricular hypertrophy in dogs[J]. Circ Res, 1988, 63:87-96.
    [22] Anderson PG, BishopsP, DigernesssB. Transmural progression of morphologic changes during ischemic contracture and reperfusion in the normal and hypertrophied rat heart[J]. Am J Pathol, 1987, 129:152-167.
    [23] Zhu M, Feng J, Lucchinetti E, et al. Ischemic postconditioning protects remodeled myocardium via the PI3K–PKB/Akt reperfusion injurysalvage kinase pathway[J]. Cardiovascular Research, 2006, 72:152–162.
    [24] Nagoshi T, Matsui T, Aoyama T, et al. PI3K rescues the detrimental effects ofchronic Akt activation in the heartduring ischemia / reperfusion injury[J]. Clin Invest, 2005, 115:2128 - 38.
    [25]彭龙云,马虹,何建桂,等.缺血后处理减轻大鼠肥厚心肌缺血再灌注损伤的观察[J].中华心血管杂志, 2006, 34:685 - 689.
    [26]张健发,马依彤,杨毅宁,等.再灌注抢救激酶对小鼠缺血后适应心肌再灌注损伤中的减轻作用[J].中华心血管病杂志, 2008, 36:1-6.
    [27] Haider AW, Larson MG, Benjamin EJ, et al. Increased left ventricular mass and hypertrophy are associated with increased risk forsudden death[J]. J Am Coll Cardiol, 1998, 32:1454–1459.
    [28] Rockman HA, Ross RS, Harris AN, et al.segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murin e model of cardiac hypertrophy[J]. Proc. Natl. Acad.sci. USA, 1991, 88:8277-8281.
    [29] Bradshaw AD, Baicu CF, Rentz TJ, et al. Pressure overload-induced alterations in fibrillar collagen content and myocardial diastolic function:role ofsecreted protein acidic and rich in cysteine(SPARC)in post-synthetic procollagen processing[J]. Circulation, 2009, 119:269-280. [0]
    [30] Xia Y, Lee K, Li N, et al. Characterization of the inflammatory and fibrotic response in a mouse model of cardiac pressure overload[J]. Histochem Cell Biol,2008,22.
    [31] Mitchell-JordansA, Holopainen T, Rens et al. Loss of Bmx nonreceptor tyrosine kinase prevents pressure overload-induced cardiac hypertrophy[J]. Circ Res, 2008, 103:1359-1362.
    [32] Gao XM, Kiriazis H, Moore XL, et al. Regression of pressure overload-induced left ventricular hypertrophy in mice[J]. Am J Physiol Heart Circ Physiol, 2005, 288(6):2702–2707.
    [33]马依彤.心血管疾病小动物实验手册[M].北京:人民卫生出版社, 2008:210-222.
    [34]杨毅宁,马依彤,高晓明,等.年龄因素对小鼠急性心肌梗死后心脏破裂的影响及机制研究[J].中华心血管病杂志, 2006, 34:1041-1042.
    [35] Berenji K, Drazner MH, Rothermel BA, et al. Does load induced ventricular hypertrophy progress tosystolic heart failure?[J]Am JPhysiol Heart Circ Physiol, 2005, 289:8-16.
    [36] Lorell BH, Carabello BA. Left ventricular hypertrophy–pathogenesis, detection and prognosis[J]. Circulation, 2000, 10:470-479.
    [37] Larsen JR,smerup M, Hasenkam JM, et al. Hypertrophied hearts:what ofsevoflurane cardioprotection?[J]. Acta Anaesthesiolscand, 2009, 53:496-504.
    [38] Zhang Q, Davidov T, Weiss HR, et al.sERCA Inhibition Limits the Functional Effects of Cyclic GMP in Both Control and Hypertrophic Cardiac Myocytes[J]. Pharmacology, 2009, 83:223-230.
    [39] Akki A,seymour AM. Western diet impairs metabolic remodelling and contractile efficiency in cardiac hypertrophy[J]. Cardiovasc Res. 2009, 81:610-617.
    [40] Ganau A, Devereux RB, Roman MJ, et al. Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension[J]. J Am Coll Cardiol, 1992, 19:1559-1560.
    [41] Hu P, Zhang D,swenson L, et al.minimally invasive aortic banding in mice:effects of altered cardiomyocyte insulinsignaling during pressure overload[J]. Am J Physiol Heart Circ Physiol, 2003, 285:1261-1269.
    [42] Nakamura A, Rokosh DG, Paccanaro M, et al. LVsystolic performance improves with development ofhypertrophy after transverse aortic constriction in mice[J]. Am J Physiol Heart Circ Physiol, 2001, 281:1104-1112.
    [43] Liao Y, Ishikura F, Beppus, et al. Echocardiographic assessment of LV hypertrophy and function in aortic-banded mice:necropsy validation[J]. Am J Physiol Heart Circ Physiol, 2002, 282:1703–1708.
    [44] Nishikimi T, Maeda N, Matsuoka H. The role of natriuretic peptides in cardioprotection[J]. Cardiovasc Res,2006,69:318–28.
    [45] Gardner DG. Natriuretic peptides:Markers or modulators of cardiac hypertrophy?[J]Trends Endocrinol Metab, 2003, 14:411–416.
    [46] Gardner DG, Chens, Glenn DJ, Grigsby CL. Molecular biology of the natriuretic peptidesystem:Implications for physiology and hypertension[J]. Hypertension, 2007, 49:419–426.
    [47] Richards AM. Natriuretic peptides:Update on peptide release, bioactivity, and clinical use[J]. Hypertension, 2007, 50:25–30.
    [48] Kilic A, Velic A, De Windt LJ, et al. Enhancedactivity of themyocardial Na+/H+ exchanger NHE-1 contributes to cardiac remodeling in atrial natriuretic peptide receptor-deficient mice[J]. Circulation, 2005, 112:2307–2317.
    [49] Kuhn M, Voss M, Mitko D, et al. Left ventricular assist devicesupport reverses altered cardiac expression and function of natriuretic peptides and receptors in end-stage heart failure[J]. Cardiovasc Res ,2004,64:308–314.
    [50] Ohga Y, Sakatas, Takenaka C, et al. Cardiac dysfunction in terms of left ventricular mechanical work and energetics in hypothyroid rats[J]. Am J Physico l Heart Circ Physio l, 2002, 283:631-641.
    [51] Sakurais, Ashida T, Ieki K, et al. Left ventricular regional variations in myosin isoformshift in Dah lsalt-sensitive hypertensive rats[J]. Hypertens Res, 2003, 26:251-255.
    [52] Watabe T, Miyazono K. Roles of TGF-beta familysignaling instem cell renewal and differentiation[J]. Cell Res,2009,19:103-115.
    [53] Hovnanian A. SERCA pumps and human diseases[J]. Subcell Biochem, 2007, 45:337-363.
    [54] Patrizio M, Musumeci M,stati T, et al. Propranolol causes a paradoxical enhancement of cardiomyocyte foetal gene response to hypertrophicstimuli[J]. Br J Pharmacol, 2007, 152:216-22.
    [55] Hausenloy DJ, Yellon DM. Survival kinases in ischemic preconditioning and postconditioning[J]. Cardiovasc Res, 2006, 70:240-253.
    [56] Ferdinandy P,schulz R, Baxter GF. Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning[J]. Pharmacol Rev, 2007, 59:418-458.
    [57]马依彤,杨毅宁等.应用高频超声评价小鼠缺血性心肌病左室重塑的实验研究[J].中国超声医学杂志, 2006, 22:730-732.
    [58] KaljustomL, Mori T, Mohammad HRS, et al. Postconditioning in rats and mice[J].scand Cardiovasc J, 2006, 40:334-341.
    [59]张健发,马依彤,杨毅宁等.小鼠心肌缺血后适应模型的建立及其相关影响因素[J].中国比较医学杂志, 2007, 10:576-580.
    [60]张健发,马依彤,杨毅宁等.离体小鼠心脏缺血后适应模型的建立以其效果评价.新疆医科大学学报[J]. 2007, 30:321-324.
    [61]张健发,马依彤,杨毅宁等.缺血后适应对再灌注小鼠梗死心肌面积
    [67]·Penna C, Mancardi D, Raimondos, et al. The paradigm of postconditioning to protect the heart[J]. J Cell Mol Med,2008 ;12:435-58.
    [68] Sivaraman V, Mudalagiri NR, Disalvo C, et al. Postconditioning protects human atrial muscle through the activation of the RISK pathway[J]. Basic Res Cardiol, 2007, 102:453-459.
    [69] May LT, HillsJ. ERK phosphorylation:spatial and temporal regulation by G protein-coupled receptors[J]. Int J Biochem Cell Biol, 2008, 40:2013-2017.
    [70] Darling CE, Jiang R, Maynard M, et al. Postconditioning viastuttering reperfusion limits myocardial infarctsize in rabbit hearts:role of ERK1/2[J]. Am J Physiol Heart Circ Physiol,2005,289:1618-1626.
    [71] Yang XM, Proctor JB, Cui L, et al. Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cellsignaling pathways[J]. J Am Coll Cardiol, 2004, 44:1103~1110.
    [72] Hu Y, Chen X, Pan TT, Neo KL, et al. Cardioprotection induced by hydrogensulfide preconditioning involves activation of ERK and PI3K/Akt pathways[J]. Pflugers Arch, 2008, 455:607-616.
    [73] Dorn GW 2nd, Force T. Protein kinase cascades in the regulation of cardiac hypertrophy[J]. J Clin Invest, 2005, 115:527-537.
    [74] Ceci M, Ross J Jr, Condorelli G. Molecular determinants of the physiological adaptation tostress in the cardiomyocyte:a focus on AKT[J]. J Mol Cell Cardiol, 2004, 37:905-912.
    [75] Yang XM, Philipps, Downey JM, et al. Postconditioning's protection is not dependent on circulating blood factors or cells but involves adenosine receptors and requires PI3-kinase and guanylyl cyclase activation[J]. Basic Res Cardiol, 2005, 100:57~63.
    [76] Tsang A, Hausenloy DJ, Yellon DM. Myocardial postconditioning:reperfusion injury revisited[J]. Am J Physiol Heart Circ Physiol, 2005, 289:2-7.
    [77] Fingar DC, Blenis J. Target of rapamycin(TOR):an integrator of nutrient and growth factorsignals and coordinator of cell growth and cell cycle progression[J]. Oncogene, 2004, 23:3151-3171.
    [78] Pene F, Claessens YE, Muller O, et al. Role of the phosphatidylinositol 3-kinase/Akt and mTOR/P70S6-kinase pathways in the proliferation and apoptosis in multiple myeloma[J]. Oncogene, 2002, 21:6587-6597.
    [79] Wang X, Proud CG. The mTOR pathway in the control of proteinsynthesis[J]. Physiology(Bethesda), 2006, 21:362-369.
    [80] Yang XM, Krieg T, Cui L, Downey JM, Cohen MV. NECA and bradykinin at reperfusion reduce infarction in rabbit hearts bysignaling through PI3K, ERK, and NO. J Mol Cell Cardiol, 2004, 36:411–421.
    [81] Kowalczyk JE, Zab?ocka B. Protein kinases in mitochondria[J]. Postepy Biochem, 2008, 54:209-216.
    [82] Andreadou I, Iliodromitis EK, Koufaki M, et al. Pharmacological pre- and post- conditioning agents:reperfusion-injury of the heart revisited[J]. Mini Rev Med Chem, 2008, 8:952-959.
    [83] Leung AW, Halestrap AP. Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore[J]. Biochim Biophys Acta, 2008, 1777:946-52.
    [84] Argaud L, Gateau-Roesch O, Raisky O, et al. Postconditioning inhibits mitochondrial permeability transition[J]. Circulation, 2005, 111:194-197
    [85] Bopassa JC, Ferrera R, Gateau-Roesch O·et al. Couture-Lepetit and M·Ovize, PI 3-kinase regulates themitochondrial transition pore in controlled reperfusion and postconditioning[J]. CardiovasRes, 2006, 69:178-185·
    [86] Yang X, Downey JM, Cohen MV. Multiple brief coronary occlusions during early reperfusion protect rabbit hearts by activation of ERK and production ofnitric oxide[J]. Circulation, 2003, 108:158-62.
    [87] Ping P, Zhang J, Huangs, et al. PKC-dependent activation of p44/p42 MAPKs during myocardial ischemia- reperfusion in conscious rabbits[J]. Am J Physiol,1999,276:1468-1481.
    [88] Philipps, Yang XM, Cui L, et al. Postconditioning protects rabbit hearts through a protein kinase C-adenosine A2b receptor cascade[J]. Cardiovasc Res, 2006, 70:308~314.
    [89] Fantinelli JC, MoscasM. Comparative effects of ischemic pre and postconditioning on ischemia-reperfusion injury inspontaneously hypertensive rats(SHR)[J]. Mol Cell Biochem, 2007, 296:45-51.
    [90] Zatta AJ, Kin H, Lee G, et al·Infarct-sparing effect ofmyocardial postconditioning is dependent on protein kinase Csignaling[J]. Cardiovasc Res, 2006, 70:315-324.
    [91] Widmann C, Gibsons. Mitogen-activated protein kinase:conservation of a three- kinase-module from yeast to human[J]. Physiol Rev, 1999, 79:143-180.
    [92] Zhao ZQ, Nakamura M, Wang NP, et al. Progressively developed myocardial apoptotic cell death during late phase of reperfusion[J]. Apoptosis, 2001, 6:279-290.
    [93] Kajstura J, Cheng W, Reiss K, et a1. Apoptotic and necrotic myocyte cell deaths are independent contributing variables ofsize in rats[J]. Lab Invest, 1996, 74:86-107.
    [94] Ling H, Lou Y. Total flavones from Elsholtzia blanda reduce infarctsize during myocardial ischemia by inhibiting myocardial apoptosis in rats[J]. Ethnopharmaco1, 2005, 101:169-175.
    [95]吴克复主编.细胞通讯与疾病[M].北京,科学出版社, 2006, 357-336.
    [96] Nathalie MD, Douglas RGr. Role of Bcl-2 family members in immunity anddisease[J]. Biochimica Biophysica Acta, 2004, 1644:179-188.
    [97] Kane DJ,sarafian TA, Anton R, et al. Bcl-2 inhibition of neural death:decreased generation of reactive oxygenspecies[J].sciencc,1993, 262:1274-1277.
    [98] Nakamura M, Wang NP, Zhao ZQ, et al. Preconditioning decreases Bax expression, PMN accumulation and apoptosis in reperfused rat heart[J]. Cardiovasc Res, 2000, 45:661-670.
    [99] Misao J, Hayakawa Y, Ohno M, et al. Expression of Bcl-2 protein, an inhibitor of apoptosis, and Bax, an acceleretor of apoptosis, in ventricular myocytes of human hearts with myocardial infarction[J]. Circulation, 1996, 94:1506-1512.
    [100] Hochhauser E, Kivitys, Offen D, et al. Bax ablation protects against myocardial ischemia-reperfusion injury in transgenic mice[J]. Am J Physiol Heart Circ Physiol, 2003, 284:2351-2359.
    [101] Chen Wang, Donald A. Neff, John G. Krolikowski, et al. The influence of B-Cell lymphoma 2 protein, an antiapoptotic regulator of mitochondrial permeability transition, on isoflurane-induced and ischemic postconditioning in rabbits[J]. Anesth Analg, 2006, 102:1355-1360.
    [102]刘陕岭,刘进.脂肪乳后处理对心脏缺血再灌注损伤的保护作用[J].四川大学学报(医学版), 2007, 38:663-666.
    [103] Braunwald E. Myocardial reperfusion, limitation of infarctsize, reduction of left ventricular dysfunction and improvedsurvival:should the paradigm be expanded?[J].Circulation, 1989, 79:441-444.
    [104] Movassagh M, Foo RS. Simplified apoptotic cascades[J]. Heart Fail Rev, 2008, 13:111-119.
    [105] Lopez-Neblina F, Toledo AH, Toledo-Pereyra LH. Molecular biology of apoptosis in ischemia and reperfusion[J]. J Investsurg, 2005, 18:335-350.
    [106] Halkos ME, Kerendi F, Corvera JS, et al. Myocardial protection with postconditioning is not enhanced by ischemic preconditioning[J]. Ann Thoracsurg, 2004, 78:961-969.
    [107] Ling H, Lou Y. Total flavones from Elsholtzia blanda reduce infarctsize during acute myocardial ischemia by inhibiting myocardial apoptosis in rats[J]. Ethnopharmaco1, 2005, 101:169-175.
    [108] Mossac D, Gurevich RM, Zhang H, et al. Caspase activation and mitochondrial cytochrome C release during hypoxia-mediated apoptosis of adult ventricular myocytes[J]. J Mol Cell Cardiol, 2000, 32:53-63.
    [109] CooksA,sugden PH, Clerk A, et al. Regulation of Bcl-2 family proteins during development and in response to oxidativestress in cardiac myocytes. Association with changes in mitochondrial membrane potential[J]. Circ Res, 1999, 85:940- 949.
    [110] Yaoita Hiroyuli, Ogawa K, Maehara K, et al. Attenuation of ischemia/reperfusioninjury in rats by a caspase inhibitor[J]. Circulation, 1998, 97:276-281.
    [111] Chen ZY, Chua CC, HO YS, et al. Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice[J]. Am J Physiol, 2001, 280:2313-2320.
    [112] Mossac D, Gurevich RM, Zhang H, et al. Caspase activation and mitochondrial cytochrome C release during hypoxia-mediated apoptosis of adult ventricular myocytes[J]. J Mol Cell Cardiol, 2000, 32:53-63.
    [113] Laelaumm, Boudinas, Thambo JB, et al. Cardioprotection by ischemic preconditioning preserves mitochondrial function and functional coupling between adensine nucleotide translocase and creatine kinase[J]. J Mol Cell Cardiol, 2001, 33:947-956.
    [114] Nicholson DW. Caspasestructure, proteolyticsubstrates, and function during apoptotic cell death[J]. Cell Death Differ, 1999, 6:1028-1042.
    [115] Li DY, Tao L, Liu H, et al. Role of ERK1/2 in the anti-apoptotic and cardioprotective effects of nitric oxide after myocardial ischemia and reperfusion . Apoptosis, 2006, 11:923-930.
    [116] Boucher MJ, Morisset J, Vachon PH, et al. MEK/ERKsignaling pathway regulates the expression of Bcl-2, Bcl-X(L), and Mcl-1 and promotessurvival of human pancreatic cancer cells. J Cell Biochem, 2000, 79:355-369.
    [117] Thorburn J, McMahon M, Thnrburn A, et al. Raf-1 kinase activity is necessary andsufficient for gene expression changes but notsufficient for cellular morphology changes associated with cardiac myocyte hypertrophy[J]. J Biol Chem, 1994, 269:30580-30586.
    [118] Thorburn J, Carlson M, ManaoursJ, et al. Inhibition of asignaling pathway in cardiac muscle cells by active mitogen-activated protein kinase[J]. Mol Biol Cel1, 1995, 6:1479-1490.
    [119] Yue TL, Wang CL, Gu JL, et al. Inhibition of Extracellularsignal-regulated kinase enhances ischemia/reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart[J]. Circ Res, 2000, 86:692-699.
    [120] Choukroun G. Role of thestress-activated protein kinases in endothelin-induced camliomyocyte hypertrophy[J]. J Clin Invest, 1998, 102:1311-1320.
    [1] Levy D, Larson MG, Vasan RS, et al. The progression from hypertension to congestive heart failure[J]. JAMA, 1996, 275:1557–1562.
    [2] Simko F. Left ventricular hypertrophy regression as aprocess with variable bio logical imp lications [J]. Can J Card iol, 1996, 12∶507-513.
    [3] Flint A. A Practical Treatise on the Diagnosis, Pathology, and Treatment of Diseases of the Heart(2nd ed. )[M]. Philadelphia, PA:Lea. 1870, p. 33.
    [4] Osler W. The Principles and Practice of Medicine[M]. New York:Appleton, 1892.
    [5] Meerson FZ. On the mechanism of compensatory hyperfunction and insufficiency of the heart[J]. Cor Vasa, 1961, 3:161–177.
    [6] Gunthers and Grossman W. Determinants of ventricular function in pressure-overload hypertrophy in man[J]. Circulation, 1979, 59:679–688.
    [7] Krayenbuehl HP, Hess OM, Ritter M, et al. Left ventricularsystolic function in aorticstenosis[J]. Eur Heart J, 1988, 9:19–23.
    [8]刘力生主编.高血压[M].人民卫生出版社, 2001, 881-882.
    [9] Ganau A, Devereux RB, Roman MJ, et al. Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension [J]. J Am Coll Cardiol, 1992, 19:1550–1558.
    [10] Cooper G. Basic determ inants of myocardial hypertrophy:A review of mo lecular mechanisms [J]. A nnu R ev M ed, 1997, 48∶13.
    [11] Nakagami H, Takemoto M, Liao J K. NADPH oxidase2derivedsuperoxide anion mediates angiotensinⅡinduced cardiac hypert rophy[J]. J Mol Cell Cardiol, 2003, 35:851.
    [12] Johnson JA. An epsilon PKC-selective inhibitor attenuates back phosphorylation of a low molecular weight protein in cardiac myocytes[J]. Cellsignal, 2003, 15:123-130.
    [13]滕宗燕,张一娜.心肌肥厚发生的细胞内分子机制[J].哈尔滨医科大学学报, 2001, 35:319-321.
    [14] Nishikimi T, Maeda N, Matsuoka H. The role of natriuretic peptides in cardioprotection[J]. Cardiovasc Res, 2006;69:318–328.
    [15] Gardner DG, Chens, Glenn DJ, Grigsby CL. Molecular biology of the natriuretic peptidesystem:Implications for physiology and hypertension. Hypertension, 2007, 49:419–426.
    [16] Gardner DG. Natriuretic peptides:Markers or modulators of cardiac hypertrophy? [J]. Trends Endocrinol Metab, 2003,14:411–416.
    [17] Thibault G, Amiri F, Garcia R. Regulation of natriuretic pep tidesecretion by the heart[J]. Annu Rev Physiol, 1999, 61:193-217.
    [18]柯永胜.体液因素在高血压性左心室肥厚发生中的作用[J].心血管病学进展, 1992, 13(2):87-90.
    [19] Richards AM. Natriuretic peptides:Update on peptide release, bioactivity, and clinical use[J]. Hypertension, 2007,50:25–30.
    [20] Mori T, Chen YF, Feng JA, et al. Volume overload results in exaggerated cardiac hypertrophy in the atrial natriuretic peptide knockout mouse[J]. Cardiovasc Res, 2004, 61:771–779.
    [21] Wang D, Oparils, Feng JA, et al. Effects of pressure overload on extracellular matrix expression in the heart of the atrial natriuretic peptide-null mouse[J]. Hypertension, 2003, 42:88–95.
    [22] Feng JA, Perry G, Mori T, et al. Pressure-independent enhancement of cardiac hypertrophy in atrial natriuretic peptidedeficient mice[J]. Clin Exp Pharmacol Physiol, 2003, 30:343–349.
    [23] Tamura N, Ogawa Y, Chusho H, et al. Cardiac fibrosis in mice lacking brain natriuretic peptide[J]. Proc Natl Acadsci USA, 2000, 97:4239–4244.
    [24] Kishimoto I, Rossi K, Garbers DL. A genetic model provides evidence that the receptor for atrial natriuretic peptide(guanylyl cyclase-A)inhibits cardiac ventricular myocyte hypertrophy[J]. Proc Natl Acadsci USA, 2001, 98:2703–2706.
    [25] Soeki T, Kishimoto I, Okumura H, et al. C-type natriuretic peptide, a novel antifibrotic and antihypertrophic agent, prevents cardiac remodeling after myocardial infarction[J]. J Am Coll Cardiol, 2005, 45:608–616.
    [26] Sharma GD, Nguyen HT, Antonov AS, et al. Expression of atrial natriuretic peptide receptor-A antagonizes the mitogen-activated protein kinases(Erk2 and P38MAPK)in cultured human vascularsmooth muscle cells[J]. Mol Cell Biochem, 2002, 233:165–173.
    [27] Kuhn M, Voss M, Mitko D, et al. Left ventricular assist devicesupport reverses altered cardiac expression and function of natriuretic peptides and receptors in end-stage heart failure[J]. Cardiovasc Res, 2004, 64:308–314.
    [28] Dickey DM, Flora DR, Bryan PM, et al. Differential regulation of membrane guanylyl cyclases in congestive heart failure:Natriuretic peptide receptor(NPR)-B,not NPR-A, is the predominant natriuretic peptide receptor in the failing heart[J]. Endocrinology, 2007, 148:3518–3522.
    [29] Rundell VL, ManavesV, Martin AF, et al. Impact of beta-myosin heavy chain isoform expression on cross bridge cycling kinetics[J]. Am J Physio l Heart Circ Physio l, 2005, 288:896-903.
    [30] Blair E, Redwood C, de Jesus Oliveira M, et al. Mutations of the Light Meromyosin Domain of the BMyosin Heavy Chain Rod in Hypertrophic Cardiomyopathy[J]. Circulation Research, 2002, 90:263-269.
    [31] Ohga Y, Sakatas, Takenaka C, et al. Cardiac dysfunction in terms of left ventricular mechanical work and energetics in hypothyroid rats[J]. Am J Physicol Heart Circ Physiol, 2002, 283:631-641.
    [32] Sakurais, Ashida T, Ieki K, et al. Left ventricular regional variations in myosin isoformshift in Dah lsalt-sensitive hypertensive rats[J]. Hypertens Res, 2003, 26:251-255.
    [33] Zahabi A, Picards, Fortin N, et al. Expression of constitutively active guanylate cyclase in cardiomyocytes inhibits the hypertrophic effects of isoproterenol and aortic constriction on mouse hearts. [J]. J Biol Chem, 2003, 278:47694-47699.
    [34] James J, Martin L, Krenz M, et al. Forced expression of alpha-myosin heavy chain in the rabbit ventricle results in cardioprotection under cardiomyopathic conditions [J]. Circulation, 2005, 111(18):2339-2346.
    [35] Krumenacker JS, Katsukis, Kots A, et al. Differential expression of genes involved in cGMP dependent nitric oxidesignaling in murine embryonicstem(ES)cells and ES cell-derived cardiomyocytes[J]. Nitric Oxide, 2006, 14:1211.
    [36] Yan X,schuldt AJ, Price RL, et al. Pressure overload-induced hypertrophy in transgenic miceselectively overexpressing AT2 receptors in ventricular myocytes [J]. Am J Physiol Heart Circ Physiol, 2008, 294:H1274-1281.
    [37] Simko F,simko J. Heart failure and angiotensin converting enzyme inhibition:problems and perspectives [J]. Physiol Res, 1999, 48∶1-8.
    [38] Blume A, Kaschina E, Unger T. Angiotensin II type 2 receptors:signalling and pathophysiological role [J]. Curr Opin Nephrol Hypertens, 2001, 10:239-246.
    [39] Giannessi D, Del Reys, Vitale RL. The role of endothelins and their receptor in heart failure[J]. Pharmacol Res, 2001, 43:111-126.
    [40] Matsubara H. Pathophysiological role of angiotensinⅡtype 2 receptor in cardiovascular and renal diseases[J]. Circ Res, 1998, 83:1182-1191.
    [41] Arimoto T, Takeishi Y, Takahashi H, et al. Cardiac-specific overexpression of diacylglycerol kinase zeta prevents Gq protein-coupled receptor agonist-induced cardiac hypertrophy in transgenic mice[J]. Circulation, 2006, 113:60–66.
    [42] Sadoshima JI, Lezumos.singnal transduction pathways of angiotensinⅡinduced c-fos gene expression in cardiac myocytes in vitro [J]. Circ Res, 1993, 73:424.
    [43] Marian AJ. Beta-adrenergic receptorssignaling and heart failure in mice, rabbits and humans[J]. J Mol Cell Cardiol, 2006, 41:11–13.
    [44] Heinrich PC, Behrmann I, Müller-Newen G, et al. Interleukin-6-type cytokinesignalling through the gp130/Jak/STAT pathway[J]. Biochem J,1998, 334:297-314.
    [45] Carbia-Nagashima A, Arzt E. Intracellular proteins and mechanisms involved in the control of gp130/JAK/STAT cytokinesignaling[J]. IUBMB Life, 2004, 56:83-8.
    [46] Rapacciuolo A, Esposito G, Caron K, et al. Important role of endogenous norepinephrine and epinephrine in t he development of in vivo pressure overload cardiac hypert rophy[J]. J Am Coil Cardiol, 2001, 38:876-882
    [47] Kagiyamas, Eguchis, Frank GD, et al. Angiotensin II-induced cardiac hypertrophy and hypertension are attenuated by epidermal growth factor receptor antisense [J]. Circulation, 2002, 106∶909-912.
    [48] Molkentin JD. Calcineurin-NFATsignaling regulates the cardiac hypertrophic response in coordination with the MAPKs [J]. Cardiovasc Res,2004, 15;63:467-475.
    [49] Purcell NH, Wilkins BJ, York A, et al. Genetic inhibition of cardiac ERK1/2 promotesstress-induced apoptosis and heart failure but has no effect on hypertrophy in vivo[J]. ProcNatl Acadsci USA,2007,104:14074–14079.
    [50] Oshima Y, Fujio Y, Funamoto M, et al. Aldosterone augments endothelin-1-induced cardiac myocyte hypertrophy with the reinforcement of the JNK pathway. [J]. FEBS Lett, 2002, 524:123-126.
    [51] Kudohs, Komuro I, Mizuno T, et al. Angiotensin IIstimulates c-Jun NH2-terminal kinase in cultured cardiac myocytes of neonatal rats [J]. Circ Res, 1997, 80:139-146.
    [52] Molkentin JD, Lu JR, Antos CL, et al. A calcineurin dependent transcrip tional pathway for cardiac hypertrophy [J]. Cell, 1998, 93∶215-218.
    [53] Nemer M. Genetic insights into normal and abnormal heart development [J]. Cardiovasc Pathol, 2008, 17:48-54.
    [54] Tyler T. Targeted inhibition of calcineurin prevents agonistinduced cardiomyocyte hypertrophy [J]. J N eu rosci, 2000, 97∶1196-1201.
    [55] Fiedler B, LohmannsM,smolenski A, et al. Inhibition of calcineurin2NFAT hypert rophysingnaling by cGMP2dependent protein kinase typeⅠin cardiac myocytes[J]. Proc Natl Acadsci USA, 2002, 99:11363-11368.
    [56] Rothermel BA, Vega RB, Yang J, et al. A protein encoded within theDownsyndrome critical region is enriched instriated muscles and inhibits calcineurinsignaling[J]. J Biol Chem, 2000, 275:8719–8725.
    [57] Kingsbury TJ, Cunningham KW. A conserved family of calcineurin regulators. Genes Dev. 2000;14:1595–1604. Yang J, Rothermel BA, Vega RB, et al. Independentsignals control expression of the calcineurin inhibitory proteins MCIP1 and MCIP2 instriated muscles[J]. Circ Res, 2001, 87:e61–e68.
    [58] Gaertner TR, KolodziejsJ, Wang D, et al. Comparative analyses of the three-dimensionalstructures and enzymatic properties of al-pha, beta, gamma and delta isoforms of Ca2+/calmodulin depen-dent protein kinase II [J]. J Biol Chem, 2004, 279:12484-12494.
    [59] Zhang CL, McKinsey TA, Changs, et al. Class II histone deacetylases act assignal-responsive repressors of cardiac hypertrophy[J]. Cell, 2002, 110:479–488.
    [60] Zhang T, Johnson EN, Gu Y, et al. The cardiac-specific nuclear-B Isoform of Ca2+/calmodulin dependent protein kinase II induces hypertrophy and dilated cardiomyopathy associated with increased protein phosphatase 2A activity[J]. J Biol Chem, 2002, 277:1261-1267.
    [61] Crackower MA, Oudit GY, Kozieradzi I, et al. Rgulation of myocardial contractility and cellsize by distinct PI3K- PTENsignaling pathway[J]. Cell, 2002, 110∶737-749.
    [62] Reiss K. Overexp ression of insulin-like growth factor21 in the heart is coup led with myocyte p roliferation in transgenic mice [J]. Proc Natl Acadsci USA, 1996, 93:8630-8635.
    [63]金惠铭,卢建,殷莲华.细胞分子病理生理学[M].郑州大学出版社, 2002., 531-548.
    [64] Crackower MA, Oudit GY, Kozieradzki I, et al. Regulation of myocardial contractility and cellsize by distinct PI3K-PTENsignaling pathways[J]. Cell, 2002, 110:737–749.
    [65] Shioi T, Mcmullen JR, Kang PM, et al. Akt/protein kinase B promotes organgrowth in transgenic mice[J]. Mol Cell Biol, 2002, 22(8)∶2799-2809.
    [66] RabkinsW, Goutsouliak V, Kong JY. Angiotensin II induces activation of phosphatidylinositol 3-kinase in cardiomyocytes [J]. J Hypertens, 1997, 15∶891-899.
    [67] Schwartzbuer G, Robbins J. The tumorsuppressor gene PTEN can regulate cardiac hypertrophy andsurvival [J]. J Biol Chem, 2001, 276∶35786-35793.
    [68] Simpson PC. Beta-protein kinase C and hypertrophicsignaling in human heart failure[J]. Circulation, 1999, 99∶334-337.
    [69] Adams JW,sakata Y, Davis MG, et al. Enhanced Galphaqsignaling:a common pathway mediates cardiac hypertrophy and apoptotic heart failure. [J]. Proc Natl Acadsci USA, 1998, 95∶10140-10145.
    [70] Jin H, Yang R, Keller GA, et al. In vivo effects of cardiotrophin-1[J]. Cytokine, 1996, 8:920–926.
    [71] Pennica D,shaw KJ,swanson TA, et al. Cardiotrophin-1. Biological activities and binding to the leukemia inhibitory factor receptor/gp130signaling complex[J]. J Biol Chem, 1995, 270:10915–10922.
    [72] Wollert KC, Taga T,saito M, et al. Cardiotrophin-1 activates a distinct form of cardiac musclecell hypertrophy. Assembly ofsarcomeric units inseries VIA gp130/leukemia inhibitory factor receptor-dependent pathways[J]. J Biol Chem, 1996, 271:9535–9545.
    [73] Brar BK,stephanou A, Pennica D, et al. CT-1 mediated cardioprotection against ischaemic re-oxygenation injury is mediated by PI3 kinase, Akt and MEK1/2 pathways[J]. Cytokine, 2001, 16:93–96.
    [74] Tsutamoto T, Wada A, Maeda K, et al. Relationship between plasma level of cardiotrophin-1 and left ventricular mass index in patients with dilated cardiomyopathy[J]. J AmColl Cardiol, 2001, 38:1485–490.
    [75] Villegass, Villarreal FJ, Dillmann WH. Leukemia inhibitory factor and interleukin-6 downregulatesarcoplasmic reticulum Ca2+ ATPase(SERCA2)in cardiac myocytes[J]. Basic Res Cardiol, 2000a, 95:47–54.
    [76] Nicol RL, Frey N, Pearson G, et al. Activated MEK5 inducesserial assembly ofsarcomeres and eccentric cardiac hypertrophy[J]. EMBO J, 2001, 20:2757–2767.
    [77] Takahashi E, Fukuda K, Miyoshis, et al. Leukemia inhibitory factor activates cardiac l-type Ca2+ channels via phosphorylation ofserine 1829 in the rabbit Cav1. 2subunit [J]. Circ Res, 2004, 94:1242–1248.
    [78] Aspenstrom P. Effectors for the Rho GTPases[J]. Curr Opin Cell Biol, 1999, 11:95-102.
    [79] Satohs, Ueda Y, Koyanao M, et al. Chronic inhibition of Rho-kinase blunts the process of left ventrieular hypertrophy leading to cardiac contractile dysfunction in hypertension induced heart failure[J]. J Mol Cell Cardiol, 2003, 35:59-70.
    [80] Kobavashi N, Horinakas, Mitas, et al. Critical role of Rho-kinase pathway for cardiac performance and remodeling in failing rat hearts [J]. Cardiovase Res, 2002, 55(4):757-767.
    [81] Hunter JJ, Tanaka N, Rockman HA, et al. Ventricular expression of amLC-2-v-ras fusion induces cardiac hypertrophy andselective diastolic dysfunction in transgenic mice[J]. J Biol Chem, 1995, 270:23173-23178.
    [82] Laufs V, Kilter H, Konkol C, et al. Impact of HMG CoA reductase inhibition onsmall GTPases in the heart[J]. Cardiovas Res, 2002, 53:911-92.
    [83]冯作化.医学分子生物学[M].北京,人民卫生出版社, 2001. 134.
    [84]罗惠兰,何作云.心肌肥厚时转化生长因子β1表达的意义及与cAMP?cGMP的关系[J].解放军医学杂志, 2000, 25:268-269.
    [85] Lee AA, Dillmann WH, McCulloch AD, et al. AngiotensinⅡStimulates the mutocrine production Of transforming growth factor-beta 1 in adult rat cardial fibroblasts [J]. J Mol Cell Carrdiol, 1995, 27:2347-2357.
    [86] Takeda Y, Yoneda T, DemuraM, et al. Calcineurin inhibition attenuatesminer–alocorticoid-induced cardiac hypertrophy[J]. Circulation, 2002, 105:677-679.
    [87]常连庆.醛固酮诱导心肌肥厚的机制[J].高血压杂志, 2003, 11:415-418.
    [88] Harada E, Yoshimura M, Yasue H, et al. Aldosterone induces angiotensin-converting-enzyme gene expression in cultured neonatal rat cardiocytes. [J]. Circulation, 2001, 104:137-139.
    [89]武旭东.心肌肥厚肽研究进展[J].国外医学生理?病理科学与临床分册, 1996, 16:235.
    [90] Diedrichs H, Chi M, Boelck B, et al. Increased regulatory activity of the calcineurin/NFAT pathway in human heart failure. Eur J Heart Fail, 2004, 6:3–9.
    [91] Molkentin JD, Lu JR, Antos CL, et al. A calcineurin-dependent transcriptionalpathway for cardiac hypertrophy[J]. Cell, 1998, 93:215–228.
    [92] Haqs, Choukroun G, Lim H, et al. Differential activation ofsignal transduction pathways in human hearts with hypertrophy versus advanced heart failure[J]. Circulation, 2001, 103:670–677.
    [93] D’Angelo DD,sakata Y, Lorenz JN, et al. Transgenic G_q overexpression induces cardiac contractile failure in mice[J]. Proc Natl Acadsci USA, 1997, 94:8121–8126.
    [94] Lytton J, MacLennan DH. Molecular cloning of cDNAs from human kidney zxcoding for two alternativelyspliced products of the cardiac Ca2+-ATPase gene[J]. J Biol Chem, 1988, 263:15024-15031.
    [95] Sukovich DA,shabbeer J, Periasamy M. Analysis of the rabbit cardiac/slow twitch musclesarcoplasmic reticulum calcium ATPase(SERCA2)gene promoter[J]. Nucleic Acids Res, 1993, 21:2723-2728.
    [96] Arai M, Yoguchi A, Takizawa T, et al. Mechanism of doxorubicin-induced inhibition ofsarcoplasmic reticulum Ca(2+)-ATPase gene transcription[J]. Circ Res, 2000, 86:8-14.
    [97] Braz JC, Bueno OF, De Windt LJ, et al. PKC alpha regulates the hypertrophic growth of cardiomyocytes through extracellularsignal-regulated kinase1/2(ERK1/2)[J]. J Cell Biol, 2002, 156:905-919.
    [98] Gao XM, Kiriazis H, Moore XL, et al. Regression of pressure overload-induced left ventricular hypertrophy in mice [J]. Am J Physiol Heart Circ Physiol, 2005, 288:2702–2707.
    [99] Baker DL, Hashimoto K, Grupp IL, et al. Targeted overexpression of thesarcoplasmic reticulum Ca2+-ATPase increases cardiac contractility in transgenic mouse hearts[J]. Circ Res, 1998, 83:1205-1214.
    [100] M?rk HK, Sjaastad I, Sande JB, et al. Increased cardiomyocyte function and Ca2+ transients in mice during early congestive heart failure [J]. J Mol Cell Cardiol, 2007, 43:177-86.
    [101] Haghighi K, Gregory KN, Kranias EG.sarcoplasmic reticulum Ca-ATPase-phospholamban interactions and dilated cardiomyopathy[J]. Biochem Biophys Res, 2004, 322:1214–1222.
    [102] Babu GJ, Bhupathy P, Timofeyev V, et al. Ablation ofsarcolipin enhancessarcoplasmic reticulum calcium transport and atrial contractility[J]. Proc Natl Acadsci Us A, 2007, 45:17867-17872.
    [103] Babu GJ, Bhupathy P, Carnes CA, et al. Differential expression ofsarcolipin protein during muscle development and cardiac pathophysiology[J]. J Mol Cell Cardiol, 2007, 43:215-222.
    [104] Desantiago J, Chu G, Kranias EG, et al. Phosphorylation of phospholamban and troponin I in _-adrenergic-induced acceleration of cardiac relaxation[J]. Am JPhysiol Heart Circ Physiol, 2000, 278:769–779.
    [105] Colyer J. Phosphorylationstates of phospholamban[J]. Ann N Y Acadsci, 1998, 853:79-91.
    [106] Porter MJ, Heidkamp MC, Scully BT. Isoenzyme-selective regulation ofsERCA2 gene expression by protein kinase C in neonatal rat ventricular myocytes[J]. Am J Physiol Cell Physiol, 2003, 285:C19-C21.
    [107] Kim YK, KimsJ, Yatani A, et al. Mechanism of enhanced cardiac function in mice with hypertrophy induced by overexpressed Akt [J]. Biol Chem, 2003, 278:47622-47628.
    [108] LuckeysW, Mansoori J, Fair K, et al. Blocking cardiac growth in hypertrophic cardiomyopathy induces cardiac dysfunction and decreasedsurvival only in males[J]. Am J Physiol Heart Circ Physiol, 2007, 292:838-845.
    [109] Dillmann WH. Cellular action of thyroid hormone on the heart[J]. Thyroid, 2002, 12:447-452.
    [110] Scully BT, Vijayan K, EngmansJ, et al. PYK2 regulatessERCA2 gene expression in neonatal rat ventricular myocytes[J]. Am J Physiol Cell Physiol, 2005, 289:471-482.
    [111] Suarez J, Belke DD, Gloss B, et al. In vivo adenoviral transfer ofsorcin reverses cardiac contractile abnormalities of diabetic cardiomyopathy[J]. Am J Physiol Heart Circ Physiol, 2004, 286:68-75.
    [112] Sakatas, Lebeche D, Sakata N, et al. Restoration of mechanical and energetic function in failing aortic-banded rat hearts by gene transfer of calcium cycling pro teins[J]. J Mol Cell Cardiol, 2007, 42:852-861.
    [113] Kawase Y, Ly HQ, Prunier F, Lebeche D, et al. Reversal of cardiac dysfunction after long-term expression ofsERCA2a by gene transfer in a pre-clinical model of heart failure[J]. J Am Coll Cardiol, 2008, 51:1112-1119.
    [114]惠海鹏,李小鹰,刘秀华.腺相关病毒介导心肌肌浆网Ca2+ 2ATPase 2a基因转导治疗大鼠慢性心力衰竭[J].中华心血管病杂志, 2006, 34:357-361.
    [115] del Monte F, HardingsE, Hajjar RJ, et al. Targeting phospholamban by gene transfer in human heart failure[J]. Circulation, 2002, 105(8):904-907.
    [116] Koitabashi N, Arai M, Tomaru K, et al. Carvedilol effectively blocks oxidativestress-mediated downregulation ofsarcoplasmic reticulum Ca2+-ATPase 2 gene transcription through modification ofsp1 binding[J]. Biochem Biophys Res Commun, 2005, 328:116-124.
    [117] Kinugawa K, Yonekura K, Ribeiro RC, et al. Regulation of thyroid hormone receptor isoforms in physiological and pathological cardiac hypertrophy[J]. Circ Res, 2001, 89:591-598.
    [118] Wu PS, Moriscot AS, Knowlton KU, et al. Alpha 1-adrenergicstimulation inhibits 3, 5, 3'-triiodothyronine-induced expression of the rat heartsarcoplasmic reticulum Ca2+ adenosine triphosphatase gene[J]. Endocrinology, 1997, 138(1):114-120.
    [119] Morkin E, Pennock GD, Spooner PH, et al. Clinical and experimentalstudies on the use of 3, 5-diiodothyropropionic acid, a thyroid hormone analogue, in heart failure[J]. Thyroid, 2002, 12:527-533.
    [120] Rupp H, Vetter R.sarcoplasmic reticulum function and carnitine palmitoyltransferase-1 inhibition during progression of heart failure[J]. Br J Pharmacol, 2000, 131:1748-1756.
    [121] Hajjar RJ, Zsebo K, Deckelbaum L, et al. Design of a phase 1/2 trial of intracoronary administration of AAV1/SERCA2a in patients with heart failure [J]. J Card Fail, 2008, 14:355-67.