城市交通网络拓扑结构复杂性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市交通作为交通运输系统的重要组成部分,是承载人类活动的基本构件之一,是城市繁荣、有序和高速发展的主要支撑条件。而日益严重的交通问题,严重影响了城市的经济建设和运行效率,也给人们的工作和生活带来了种种不便与损害,已经成为制约城市可持续发展的主要瓶颈。
     众所周知,城市交通系统是一个典型的、开放的、复杂巨系统,城市交通运行规律极其复杂。在新的形势下,要缓解城市交通问题,构筑和谐交通体系,需要应用复杂系统的研究方法,结合系统科学的原理、多学科交叉的理论体系对城市交通系统复杂性开展深入的理论和应用研究,从整体、宏观的角度去认识整个交通系统,理解城市交通网络演化的内在机理和运行规律。
     近几年发展起来的复杂网络方法,为我们研究系统复杂性提供了一个新视角、新方法。小世界效应与无标度特性的科学发现掀起了对复杂网络结构及其动力学特性的研究热潮,提高了人们对现实世界的科学认识。随着研究的深入,对于复杂网络的探讨已经渗透到包括社会学、生物学、物理学、经济学、计算机机科学以及交通运输等各领域中。
     应用复杂网络理论,从理论上分析城市交通网络结构复杂性,是研究复杂交通网络的关键所在,同时也是城市交通网络研究的基础理论问题之一。研究城市交通网络结构复杂性,不仅包括交通网络本身的拓扑特性,更为重要的是要研究不同网络拓扑条件下城市交通所体现出来的特征。城市交通网络具有其它复杂网络相似的一些拓扑特性,但又具有不同于其它复杂网络的显著特点,如自主性和选择性。同时人们逐渐认识到,解决大城市交通问题,必须以路线及道路网络为对象进行全面的分析。而且对本身是动态实体的城市交通网络来说,适应性和动态性也是它具有的基本特性。这意味着城市交通网络拓扑结构不是固定的、成熟的、也不是一成不变的。相反由于外部作用的驱动或者内部元素的作用,允许它随时间进行演化和调节。
     本论文主要从复杂网络理论和网络优化观点出发,结合城市交通网络自身的特点,研究了城市交通网络拓扑结构复杂性。具体来讲,本论文研究工作主要有如下几个方面:
     (1)将用户平衡配流与复杂网络理论相结合,研究了网络拓扑对交通阻塞的影响以及网络拓扑与交通流量的关系,并基于网络的观点进一步讨论了最优交通网络拓扑,分析了此类拓扑网络中度分布指数、交通需求量与交通阻塞之间的关联关系;
     (2)级联失效是研究复杂网络的一个重要分支,本论文应用复杂网络理论研究了城市交通网络上的级联失效问题,建立了三个城市交通网络级联失效模型,即基于不同移除方式的城市交通网络级联失效模型、边-点-边级联失效模型以及点能力动态更新级联失效模型,并在不同网络上进行了模拟实验;
     (3)城市交通中蕴涵着许多经济学问题,例如用户均衡的效率损失上界以及缓解交通阻塞的经济方法。本论文研究了非线性阻抗函数条件下不同网络拓扑上的用户平衡效率损失以及阻塞条件下城市交通网络上呈现的一般规律。发现不同拓扑上的用户均衡效率损失是有界和有序的,均匀网络具有较好的抗自由竞争能乃,而高聚类高集群的非均匀网络这种能力较差。并以此为基础,研究了基于网络的交通瓶颈识别及改善策略;
     (4)建立了基于介数的能力分配模型以提高网络的鲁棒性,并把模型扩展到交通网络上,提出了考虑有效性的路段重要性度量方法。在上述基础上提出了有限资源条件下的能力分配模型和抵抗网络级联失效的利润函数,分析了路段重要性分布的幂律特性以及利润与能力分配系数之间的关系;
     (5)最后对北京市公交网络及中国国家高速公路网络拓扑复杂性和鲁棒性进行了实证和攻击实验分析。
As an important component of traffic systems, urban traffic is not only a basic part to bear the human activities, but also the main supporting condition for the city prosperity, ordered and high-speed developments. However, increasing traffic problems have affected the city's economic construction and the operating efficiency, even do much harm and inconvenience to our life and work. Therefore, traffic problems have become a great bottleneck of the urban sustainable development.
     It is well known, the urban traffic is a classic, exoteric and complex system, and its running rule is also intricate. Under the new situation, in order to alleviate traffic problems in large cities and build a harmonious transportation system, it is necessary to develop theoretical and applied research with complex systems methods through combining the principle of system sciences and the interdisciplinary theoretical system. On the other hand, we should recognize and understand the evolution and internal operating mechanism of urban traffic network from the whole and macro viewpoints.
     Complex networks theory provides a new view and method for studying the system complexity. The finding of small-world effects and scale-free property has attracted a great deal of attention to the complex network structure and dynamics in recent years, which raises the science awareness of the real world. With the in-depth research for complex networks, it has infiltrated including sociology, biology, physics, economics, computer science, as well as transport and other areas.
     The key problem of complex traffic networks is to analyze their structure complexity including the topology complexity and the characteristics in different topologies, which is also a foundational theory of the urban traffic. The urban traffic network has some similar topology characteristics as other complex networks. However, many different properties are found in the urban system, such as autonomous and selective behaviors. Moreover, it has become a commonsense that we should study the urban traffic systematically from road lane to road network. In addition, adaptability and dynamic characteristics are also important properties, which mean that their topology structures are not fixed and unchangeable, and they will evolve with time under the external and internal force drive.
     This dissertation, from the points of complex network theory and network optimization, studies the complexity of topology structure for the urban traffic network. The main contents of this dissertation are summarized as follows:
     (1) Firstly, by combining the user equilibrium assignment with the complex network theory, we study the effects of network topology on the traffic network. Then, the interactions between the network topology and traffic flows are researched. Further, the optimal traffic topology is evaluated based on the complex network perspective, and the relationship among degree distribution, traffic demand and traffic congestion is analyzed.
     (2) Secondly, cascading failures are an important branch in the dynamics of the complex network. In the thesis, we firstly propose three models, different removal strategies cascading failures model, edge-node-edge cascading failure model and dynamical node-capacity update cascading failure model, to capture the dynamics of cascading failures in the urban traffic network. Moreover, simulation tests are given in different network topologies.
     (3) Thirdly, many economic problems exist in the urban traffic, e.g., the upper bound of the efficiency loss for user equilibrium and the economical method to alleviate the traffic congestion. The efficiency loss for user equilibrium in different topologies with nonlinear cost functions and the general law under the traffic congestion condition are investigated. Results show that the upper bound of the loss is limited and ordered. And there exists a higher resistance to the free competition for homogenous networks than that of heterogenous networks. Based on these results, the bottleneck identification and the strategy to alleviate the traffic congestion are proposed.
     (4) Then, a capacity assignment model is established to improve the network's robustness. Then, we extend the model to traffic networks and propose a new method to measure the link importance by considering the efficiency of traffic networks. The link-importance-based capacity assignment model with limited resources and profits functions to resist the cascading failures are given. The power-law form of link-importance distribution and the relationship between the profit function and assignment parameter are analysed.
     (5) Finally, the complexity and robustness of Beijing transit network and Chinese highway network are studied through simulating and attacking experiments.
引文
[1] Albert R, Albert I, Nakarado G L. 2004. Structural vulnerability of the North American power grid. Physical Review E, 69(2): 025103.
    
    [2] Albert R, Barabasi A L. 2002. Statistical mechanics of complex networks. Review Modern Physics, 74: 47.
    [3] Albert R, Jeong H, Barabasi A L. 2000. Attack and error tolerance of complex networks. Nature,406: 378-382.
    [4] Amaral L A N, Scala A, Barthelemy M, Stanley H E. 2000. Classes of small-world networks.Proceedings of the National Academy of Sciences USA, 97: 11149-11152.
    [5] Ashton D J, Jarrett T C, Johnson N F. 2005. Effect of congestion costs on shortest paths through complex networks. Physical Review Letters, 94: 058701.
    [6] Bagler G 2004. Analysis of the Airport Network of India as a complex weighted network.cond-mat/0409733.
    [7] Bando M, Hasebe K, Nakayama A, et al. 1995. Dynamic model of traffic congestion and numerical simulation. Physical Review E, 51: 1035-1042.
    [8] Barabasi A L, Albert R. 1999. Emergence of scaling in random networks. Science, 286:509-512.
    
    [9] Barabasi A L, Bonabeau E. 2003. Scale-free networks. Scientific American, 5: 60-69.
    [10] Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A. 2004a. The architecture of complex weighted networks. Proceedings of the National Academy of Sciences USA, 101: 3747-3752.
    
    [11] Barrat A, Barthelemy M, Vespignani A. 2004b. Modeling the evolution of weighted networks.Physical Review E, 70: 066149.
    
    [12] Barrat A, Barthelemy M, Vespignani V. 2004c. Weighted evolving networks: coupling topology and weight dynamics. Physical Review Letters, 92: 228701.
    [13] Barthelemy M, Flammini A. 2006. Optimal Traffic Networks. Journal of Statistical Mechanics:Theory and Experiment. L07002.
    [14] Beckmann A B, McGuire C B, Winsten C B. Studies in the economics of transportation. Yale University Press, New Haven, Connecticut, 1956.
    [15] Biham O, Middleton A A, Levine D A. 1992. Self-organization and a dynamical transition in traffic flow models. Physical Review A, 46: R6124-R6127.
    [16] Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U. 2006. Complex networks: structure and dynamics, Physics Reports, 424: 175-308.
    [17] Boguna M, Pastor-Satorras R, Vespignani A. 2003. Absence of epidemic threshold in scale-free networks with connectivity correlations. Physical Review Letters, 90: 028701.
    [18] Bonanno G, Caldarelli G, Lillo F, Mantegna R N. 2003. Topology of correlation-based minimal spanning trees in real and model markets. Physical Review E, 68: 046130.
    [19] Braunstein L, Buldyrev S, Cohen R, Havlin S, Stanley H. 2003. Optimal paths in disordered complex networks. Physical Review Letters, 91: 168701
    [20] Broder A, Kumar R, Maghoul F, Raghavan P, Rajalopagan S, Stata R, Tomkins A, Wiener J. 2000. Graph structure in the Web. Computer Networks, 33(1): 309-320.
    [21] Callway D S, Newman M E J, Strogatz S H, Watts D J. 2000. Network robustness and fragility:Percolation on random graphs. Physical Review Letters, 85: 5468-5471.
    [22] Centola D, Eguiluzc V M, Macy M W. 2007. Cascade dynamics of complex propagation.Physica A, 374:449-456.
    [23] Chau C K, Sim K M. 2003. The price of anarchy for non-atomic congestion games with symmetric cost maps and elastic demands. Operations Research Letters, 31: 327-334.
    [24] Chen Y Z, Li N, He D R. 2007. A study on some urban bus transport networks. Physica A, 376:747-754.
    [25] Chowell G, Hyman J M, Eubank S, Castillochavez C. 2003. Scaling laws for the movement of people between locations in a large city. Physical Review E, 68: 066102.
    [26] Cohen R, Erez K, Ben-Avraham D, Havlin S. 2000. Resilience of the Internet to random breakdowns. Physical Review Letters, 85: 4626-4628.
    [27] Cohen R, Erez K, Ben-Avraham D, Havlin S. 2001. Breakdown of the Internet under Intentional Attack. Physical Review Letters, 86: 3682-3685.
    [28] Colizza V, Banavar J R, Maritan A, Rinaldo A. 2004. Network structures from selection principles. Physical Review Letters, 92: 198701.
    [29] Correa J R, Schulz S A, Stier-Moses N E. 2004. Selfish routing in capacitated networks.Mathematics of Operations Research, 29(4): 961-976.
    [30] Correa J R, Schulz A S, Stier-Moses N E. On the ineficiency of equilibria in congestion games.Proceedings of the 11th Conference on Integer Programming and Combinatorial Optimization (Combinatorial Optimization Lecture Notes in Computer Science 3509). Springer, Berlin, 2005.
    [31] Costa L F, Rodrigues F A, Travieso G, Boas P R V. Characterization of complex networks: A survey of measurements. Arxiv preprint cond-mat/0505185 (2005).
    [32] Crucitti P, Latora V, Marchiori M. 2004. Model for cascading failures in complex networks.Physical Review E, 69: 045104(R).
    [33] Crucitti P, Latora V, Porta S. 2006. Centrality measures in spatial networks of urban streets.Physical Review E, 73: 036125.
    [34] Daganzo C F, Laval J A. 2005. Moving bottlenecks: A numerical method that converges in flows. Transportation Research, 39B: 855-863.
    [35] de Menezes M A, Barabasi A L. 2004. Fluctuations in network dynamics. Physical Review Letters, 92: 028701.
    [36] Dorogovtsev S N, Mendes J F F. 2002. Evolution of networks. Advances in Physics, 51:1097-1187.
    [37] Echenique P, Gomez-Gardenes J, Moreno Y. 2005. Dyanmics of jamming transitions in complex networks. Europhysics Letters, 71: 325.
    [38] Erdos P, Renyi A. 1960. On the evolving of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Science, 5: 17-61.
    [39] Frank M, Wolfe P. 1956. An algorithm for quadratic programming. Naval Research Logistics Quarterly, 3:95-110.
    (40] Fredman M L, Tarjan R E. 1987. Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM, 34: 596-615.
    [41] Fu B B, Gao Z Y, Kong X J, Liu F S. 2006. Express passenger transport system as a scale-free network. Modern Physics Letters B, 20: 1755.
    [42] Gao Z Y, Li K P. 2005. Evolution of traffic flow with scale-free topology, Chinese Physics Letters, 10:2711-2714.
    [43] Gao Z Y, Li K P, Li X G, Huang H J, Mao B H, Zheng J F. 2007. Scaling laws of the network traffic flow. Physica A, 380: 577-584.
    [44] Gao Z Y and Song Y F. 2002. A reserve capacity model of optimal signal control with user-equilibrium route choice. Transportation Research part, 36B: 313-323.
    [45] Gao Z Y, Wu J J and Sun H J. 2005. Solution algorithm for the bi-level discrete network design problem. Transportation Research Part, 39(4)B: 479-495.
    [46] Gazis D C, Herman R. 1992. The moving and 'phantom' bottleneck. Transportation Science, 26:223-229.
    [47] Glanz J, Perez-Pena R. 90 Seconds That Left Tens of Millions of People in the Dark. New York Times, August 26,2003.
    [48] Goh K I, Lee D S, Kahng B, Kim D. 2003. Sandpile on scale-free networks. Physical Review Letters, 91: 148701.
    [49] Goh K I, Lee D S, Kahng B, Kim D. 2005. Cascading toppling dynamics on scale-free networks. Physica A, 346: 93-103.
    [50] Goh K, Noh J, Kahng B, Kim D. 2004. Optimal transport in weighted complex networks.cond-mat/0410317.
    [51] Guimera R, Arenas A, Diaz-Guilera A, Giralt F. 2002a. Dynamical properties of model communication networks. Physical Review E, 66: 026704.
    [52] Guimera R, Dias-Guilera A, Vega-Redondo F, Cabrales A, Arenas A. 2002b. Optimal network topologies for local search with congestion. Physical Review Letters, 89: 248701.
    [53] Guo X L, Yang H. The price of anarchy of stochastic user equilibrium in traffic networks.Proceedings of the 1 Oth International Conference of Hong Kong Society for Transportation Studies(HKSTS). Hong Kong: HKSTS Ltd. 2005: 63-72.
    [54] Han D, Lo H K, Sun H, et al. 2008. The toll effect on price of anarchy when costs are nonlinear and asymmetric. European Journal of Operation Research, 186(1): 300-316.
    [55] Han D, Yang H. 2007. The multi-class, multi-criterion traffic equilibrium and the efficiency of congestion pricing. Transportation Research E, In press.
    [56] Helbing D. 1996. Derivation and empirical validation of a refined traffic flow model. Physica A,233: 253-282.
    [57] Holme P. 2003. Congestion and centrality in traffic flow on complex networks. Advances in Complex Systems, 6:163-176.
    [58] Holme P, Kim B J. 2002. Vertex overload breakdown in evolving networks. Physical Review E,65:066109
    [59] Huang H J, Liu T L, Guo X L, et al. Efficiency loss of the mixed SUE with ATIS market penetration. Proceedings of the Post-Conference Workshop of the 10th HKSTS: Behaviours in Networks. Hong Kong: HKSTS Ltd, 2005: 21-32.
    [60] Jenelius E, Petersen T, Mattsson L G 2006. Importance and exposure in road network vulnerability analysis. Transportation research A, 40: 537-560.
    [61] Jiang B, Claramunt C. 2004. Topological analysis of urban street networks. Environment and Planning B,31:151-162.
    [62] Jin W L. 2007. A dynamical system model of the traffic assignment problem. Transportation Research, 41B: 3248.
    [63] Kim D H, Noh J D, Jeong H. 2004. Scale-free trees: The skeletons of complex networks.Physical Review E, 70: 046126.
    [64] Koutsoupias E, Papadimitriou C H. Worst-case equilibria. Lecture Notes in Computer Science 1563, Berlin: Springer, 1999: 404413.
    [65] Kruskal J B. 1956. On the shortest spanning subtree of a graph. Proceedings of the American Mathematical Society, 7: 48-50.
    [66] Kuby M, Tierney S, Roberts T, et al. A comparison of geographic information systems, complex networks, and other models for analyzing transportation network topologies.NASA/CR-2005-213522,2005.
    [67] Lammer S, Gehlsen B, D. Helbing. 2006. Scaling laws in the spatial structure of urban road networks. Physica A, 363(1): 89-95.
    [68] Latora V, Marchiori M. 2001. Efficient behavior of Small-World Network. Physical Review Letters, 87: 198701.
    [69] Latora V, Marchiori M. 2002. Is the Boston subway a small-world network? Physica A, 314:109-113.
    [70] Latora V, Marchiori M. 2003. Economic small-world behavior in weighted networks. The European Physical Journal B, 32: 249-263.
    [71] Latora V, Marchiori M. 2004. How the science of the complex networks can help developing strategies against terrorism. Chaos, Solutions and Fractals, 20: 69-75.
    [72] Lee D S, Goh K. I, Kahng B, et al. 2004. Sandpile avalanche dynamics on scale-free networks.Physica A, 338: 84-91.
    
    [73] Li C, Chen G 2003. Network connection strengths: Another power-law? cond-mat/0311333.
    [74] Li C, Chen G 2004. A comprehensive weighted evolving network model. Physcia A, 343:288-294.
    [75] Li K P, Gao Z Y. 2006. A topological approach to traffic dynamics. Europhysics Letters, 74:369.
    [76] Li P, Xiong X, Qiao Z L, Yuan G Q, Sun X, Wang B H. 2006. Topological properties of urban public traffic networks in Chinese top-ten biggest cities. Chinese Physics Letters, 23: 3384.
    [77] Li W, Cai X. 2004. Statistical analysis of airport network of China. Physical Review E, 69:046106.
    [78] Li X G, Gao Z Y, Li K P, Zhao X M. 2007. The relationship between microscopic dynamics in traffic flow and complexity in network. Physical Review E, 76: 016110.
    [79] Lighthill M H, Whitham G B. 1955. On kinematics wave: II A theory of traffic flow on long crowed roads. Proceedings of the Royal Society of London A, 229: 317-345.
    [80] Liu J G, Wang Z T, Dang Y H. 2005. Optimization of robustness of scale-free network to random and targeted attacks. Modern Physics Letters B, 19(16): 785-792.
    [81] Long J C, Gao Z Y, Ren H L, Lian A P. 2007. Urban traffic congestion propagation and bottleneck identification. Chinese Science, In press.
    [82] Lu H P, Shi Y. 2007. Complexity of public transport networks. Tsinghua Science and Technology, 12:204.
    [83] Macdonald P J, Almaas E, Barabasi A L. 2005. Minimum spanning trees on weighted scale-free networks. Europhysics Letters, 72: 308.
    
    [84] Mathias N, Gopal V. 2001. Small-worlds: How and why. Physical Review E 63: 1.
    [85] Milgram S. 1967. The small world problem. Psychology Today, 1: 60-67.
    [86] Molloy M, Reed B. 1995. A Critical point for random graphs with a given degree sequence.Random Structures & Algorithms, 6: 161-180.
    [87] Molloy M, Reed B. 1998. The size of the giant component of a random graphs with a given degree sequence. Combinatorics, Probability and Computing, 7: 295-305.
    [88] Montis A D, Barthelemy M, Chessa A, Vespignanni A. 2005. The structure of inter-urban traffic:A weighted network analysis. arXiv.org preprint physics/0507106.
    [89] Moreno Y, Gomez J B, Pacheco A F. 2002. Inestability of scale-free networks under node-breaking avalanches. Europhysics Letters, 58(4): 630-636.
    [90] Moreno Y, Pastor-Satorras R, Vazquez A, Vespignani A. 2003. Critical load and congetion instabilities in scale free networks. Europhysics Letters, 62: 292-298.
    [91] Motter A E. 2004. Cascade control and defense in complex networks. Physical Review Letters,93:098701.
    [92] Motter A E, Lai Y-C. 2002. Cascade-based attacks on complex networks. Physical Review E, 66:065102(R).
    
    [93] Nagel K, Paczuski M. 1995. Emergent trafic jams. Physical Review E, 51(4): 2909-2918.
    [94] Nagel K, Schreckenberg M. 1992. A Cellular automaton model for freeway traffic. Journal of Physics, 2: 2221-2229.
    [95] Newell G F. 1993. A simplified theory on kinematic wave in highway traffic. Part I: General theory; Part II: Queuing at freeway bottlenecks; Part III: Multi-destination flows, Transportation Research,27B:281-314.
    
    [96] Newell G F. 1998. Amoving bottleneck. Transportation Research, 32B: 531-537.
    [97] Newman M E J. 2001. Scientific collaboration networks: II. Shortest paths, weighted networks and centrality. Physical Review E, 64: 016132.
    [98] Newman M E J. 2005. Threshold effects for two pathogens spreading on a network. Physical Review Letters, 95:108701.
    [99] Newman M E J. 2003. The structure and function of complex networks. SIAM Review, 45(2): 167-256.
    [100] Onnela J P, Chakraborti A, Kaski K, Kertesz J, Kanto A. 2003. Dynamics of market correlations: Taxonomy and portfolio analysis. Physical Review E, 68: 056110.
    [101] Park K, Lai Y, Ye N. 2004. Characterization of weighted complex networks. Physical Review E, 70:026109.
    [102] Parrilo P A, Lall S, Paganini F, etc. 1999. Model reduction for analysis of cascading failures in power systems. Proceedings of the American Control Conference, 6: 4208-4212.
    [103] Pastor-Satorras R, Vespignani A. 2001. Epidemic spreading in scale-free networks. Physical Review Letters, 86: 3200.
    [104] Payne H J.1971. Models of freeway traffic and control. Mathematical Methods of Public Systems, 1: 51-61.
    [105] Pepyne D L, Panayiotou C G, Cassandras C G 1999. Vulnerability assessment and allocation of protection resources in power systems. Proceedings of the American Control Conference, 6: 47054710.
    [106] Perakis G The price of anarchy under nonlinear and asymmetric costs. Proceedings of the 10th Conference on Integer Programming and Combinatorial Optimization (Lecture Notes in Computer Science 3064).Berhn: Springer. 2004: 46-58.
    [107] Porta S, Crucitti P, Latora V. 2005. The network analysis of urban streets: A primal approach. physics/0506009.
    
    [108] Richards P I. 1956. Shock waves on the highway. Operational Research, 4: 42-51.
    [109] Roughgarden T. Stackelberg scheduling strategies. Procddeings of the 33rd Annual ACM Symposium on the Theory of Computing. 2001:104-113.
    [110] Roughgarden T. 2003. The price ofanarchy is independent ofthe network topology. Journal of Computer and System Sciences, 67: 341-364.
    [111] Roughgarden T, Tardos E. 2002. How bad is selfish routing. Journal ofthe ACM, 49:236-259.
    [112] Roughgarden T, Tardos E. 2004. Bounding the inefficiency of equilibria in nonatomic congestion games. Games and Economic Behavior, 47: 389-403.
    [113] Sachtjen M L, Carreras B A, Lynch V E. 2000. Disturbances in a power transmission system. Physical Review E, 61: 4877-4882.
    [114] Seaton K A, Hackett L M. 2004. Station, trains and small-world networks. Physica A 339:635-644.
    [115] Sen P, Dasgupta S, Chatterjee A, Sreeram P A, Mukherjee G, Manna S S. 2002.Small-world properties of the Indian Railway network. Physical Review E, 67: 036106-036110.
    [116] Sheffi Y. Urban Transportation networks: Equilibrium analysis with mathematical programming methods[M], Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1985.
    [117] Sienkiewicz J, Holyst J A. 2005a. Public transport systems in Poland: from Bialystok to Zielona Gora by bus and tram using universal statistics of complex networks. physics/0503099.
    [118] Sienkiewicz J, Holyst J A. 2005b. Statistical analysis of 22 public transport networks in Poland. Physical Review E, 72: 046127.
    [119] Skiena S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica, Addison-Wesley, New York, 1990.
    [120] Smith M J. 1979. The existence, uniqueness and stability of traffic equilibrium.Transportation Research, 13B: 295-304.
    [121] Smith M J. 1984. The stability of dynamic model of traffic assignment: an application of method of Lyapunov. Transportation Research Part, 18(3)B: 245-252.
    [122] Sood V. 2007. Interacting particle systems on graphs. Boston: Doctor Dissertation of Boston University.
    [123] Sun H J, Wu J J. 2005. Scale-free characteristics of supply chain distribution networks,Modern Physics Letters B, 19(17): 841-84.
    [124] Sun H J, Wu J J. 2006. Complex Behaviour for the origin and destination matrix estimation problem. Chinese Physics Letters, 23(8): 2323-2326.
    [125] Sun H J, Wu J J. 2007. Evolution of network from nodes dividing and generation. Chinese Physics, 16(6):1581-1585.
    [126] Tadic B, Thurner S, Rodgers G J. 2004. Traffic on complex networks: Towards understanding global statistical properties from microscopic density fluctuations. Physical Review E,69: 036102.
    [127] Valverdel S, Cancho Ferrer R, Sole R V. 2002. Scale-free networks from optimal design.Europhysics Letters, 60: 512-517.
    [128] Wang B, Kim B J. 2007. A high robustness and low cost model for cascading failures.Europhysics Letters, 78:48001.
    [129] Wang B, Tang H W, Gao C H, Xiu Z L, Zhou T. 2006a. Optimization of network structure to random failures. Physica A, 368: 607-614.
    [130] Wang B, Tang H W, Zhou T, Xiu Z L. 2006b. Optimizing synchronizability of networks.Chinese Physics Letters, 23(11): 3123-3126.
    [131] Wang W X, Wang B H, Yin C Y, Xie Y B, and Zhou T. 2006. Traffic dynamics based on local routing protocol on a scale-free network. Physical Review E, 73: 026111.
    [132] Wang X F, Xu J. 2004. Cascading failures in coupled map lattices. Physical Review E, 70:056113.
    [133] Wardrop J G 1952. Some theoretical aspects of road traffic research. Proceedings of Institution of Civil Engineers-Part II, 1: 325-378.
    [134] Watts D J. 2002. A simple model of global cascades on random networks. Proceedings of the National Academy of Sciences USA, 99: 5766-5771.
    [135] Watts D J, Strogatz S H.1998. Collective dynamics of 'small-world' networks. Nature (London), 393:440442.
    [136] Wright C, Roberg P. 1998. The conceptual structure of traffic jams. Transport Policy, 5(1):23-35.
    [137] Wu J J, Gao Z Y, Sun H J, Huang H J. 2004. Urban transit system as a scale-free network.Modern Physics Letters B, 18: 1043.
    [138] Wu J J, Gao Z Y, Sun H J. 2006a. Complexity and efficiency of Beijing transit network.International Journal of Modern Physics B, 20: 2129.
    [139] Wu J J, Gao Z Y, Sun H J. 2006b. Cascade and breakdown in scale-free networks with community Structure. Physical Review E, 74: 066111.
    [140] Wu J J, Sun H J, Gao Z Y. 2008. Mapping to complex networks from chaos time series in the car following model. The 6th international conference on traffic and transportation studies.(In press)
    [141] Wu Z H, Braunstein L A, Havlin S, Stanley H E. 2006. Transport in weighted networks:Partition into superhighways and roads. Physical Review Letters, 96: 148702.
    [142] Xu J, Wang X F. 2005. Cascading failures in scale-free coupled map lattices. Physica A,349: 685-692.
    [143] Xu M, Gao Z Y. 2007. Behaviors in a dynamical model of traffic assignment with elastic demand. Chinese Physics, 16: 1608-1614.
    [144] Yang H, Huang H J. 2005. Mathematical and economic theory of road pricing. Oxford:Elsevier Ltd, 345-388.
    [145]Yook S H,Jeong H,Barabasi A L,Tu Y.2001.Weighted evolving networks.Physical Review Letters,86:5835-5838.
    [146]Zhang X Y,Jarrett D F.1998.Chaos in dynamic of traffic flows in an origin-destination network.American Institute of Physics,8(2):503-513.
    [147]Zhao L,Lai Y-C,Park K,Ye N.2005.Onset of traffic congestion in complex networks.Physical Review E,71:026125.
    [148]Zheng J F,Gao Z Y,Zhao X M.2007.Modeling cascading failures in congested complex networks.Physica A,385:700-706.
    [149]安居,李健,刘小明.2007.交通瓶颈对区域土地利用的制约研究.山西建筑,33(14):15-17.
    [150]成思危.2000.复杂科学与管理.南昌大学学报(人文社科版),31(3):1-6.
    [151]程琳,王炜,王京元,邵昀泓,鲁亚晨.2005.城市道路网络容量、交通规划与交通管理.公路交通科技,22(7):118-122.
    [152]段杰,李江.2002.基于空间分析的城市交通网络结构特征研究.中山大学学报(自然科学版),41(6):106-109.
    [153]方爱丽,赵继军.2006.复杂网络:结构和动力学.复杂系统与复杂性科学,3(3):56-94.
    [154]方锦清.2006.网络科学的理论模型探索及其进展.科技导报,24(12):67-72.
    [155]高自友,赵小梅,黄海军.2006a.复杂网络(第九章).上海科技教育出版社.
    [156]高自友,赵小梅,黄海军,毛保华.2006b.复杂网络理论与城市交通系统复杂性问题的相关研究.交通运输系统工程与信息,6(3):41-47.
    [157]高自友,汪晓霞,吴建军等.2006.现代物流网络设计与评价方法研究,北京市科学技术三等奖.
    [158]高自友,吴建军,毛保华,黄海军.2005.交通运输网络复杂性及其相关问题的研究.交通运输系统工程与信息,5(2):79-84.
    [159]侯立文.2004.城市道路交通可持续发展规划的技术支持研究[D].上海:上海交通大学博士论文.
    [160]胡海波,王林.2005.幂律分布研究简史.物理,34(12):889-896.
    [161]黄海军.城市交通网络平衡分析理论与实践.北京:人民交通出版社.1994.
    [162]黄海军,欧阳恋群,刘天亮.2006.交通网络中用户均衡行为的效率损失上界.北京航空航天大学学报,32(10):1215-1219.
    [163]姜锐.2002.交通流复杂动态特性的微观和宏观模式研究[D].合肥:中国科技大学博士论文.
    [164]李春光.2004.复杂网络建模及其动力学性质的若干研究[D].成都:电子科技大学博士论文.
    [165]李江,郭庆胜.2002.基于GIS的城市交通网络复杂性定量描述.华中师范大学学报(自然科学版),36(4):534-537.
    [166]李乐园,张小宁,张红军.2006.基于交通瓶颈的动态交通分配模型.系统工程理论与实践,26(4):125-129.
    [167]李英,周伟,郭世进.2007.上海公共交通网络复杂性分析.系统工程,25(1):38-41.
    [168]刘宏鲲.2007.中国航空网络的结构及其影响因素分析[D].成都:西南交通大学博士学位论文.
    [169]刘涛,陈忠,陈晓荣.2005.复杂网络理论及其应用研究概述.系统工程,23(6):1-7.
    [170]刘天亮.2008.信息作用下交通博弈均衡及其经济行为研究[D].北京:北京航空航天大学博士论文.
    [171]刘天亮,欧阳恋群,黄海军.2007.ATIS作用下的混合交通行为网络与效率损失上界.系统工程理论与实践,27(4):154-159.
    [172]卢守峰,杨兆升,刘喜敏.2006.基于复杂性理论的城市交通系统研究.吉林大学学报(工学版),36:153-156.
    [173]欧阳恋群.2007.网络环境下用户均衡行为的效率损失研究[D].北京:北京航空航天大学.
    [174]单晓芳,王正.2006.城市交通是一个复杂的巨系统.上海城市发展,6:23-25.
    [175]孙壮志.2007.城市交通网络形态特征分形计量研究.交通运输系统工程与信息,7(1):29-38.
    [176]谭跃进,吴俊,邓宏钟,朱大智.2006.复杂网络抗毁性研究综述.系统工程,24(10):1-5.
    [177]田琼,黄海军,杨海.2005.瓶颈处停车换乘logit随机均衡选择模型.管理科学学报,8(1):1-6.
    [178]汪秉宏,王文旭,许伯铭.2006.复杂网络(第12章).上海科技教育出版社.
    [179]王文旭.2007.复杂网络的演化动力学及网络上的动力学过程研究[D].合肥:中国科学技术大学博士学位论文.
    [180]汪小帆,陈关荣,李翔.2006.复杂网络理论及其应用.北京:清华大学出版社.
    [181]王晓丽,温冬海,张利分.2007.交通网络重要路段确定方法研究.山西科技,1:91-92.
    [182]徐健.2005.复杂网络中的相继故障研究[D].上海:上海交通大学硕士学位论文.
    [183]许良.2006.基于可靠性分析的城市道路交通网络设计问题研究[D].北京:北京交通大学博士学位论文.
    [184]赵晖.2007.一般输运网络演化模型动力学特征的相关研究[D].北京:北京交通大学博士学位论文.
    [185]赵金山,狄增如,王大辉.2005.北京市公共汽车交通网络几何性质的实证研究.复杂系统与复杂性科学,2(2):45-48.
    [186]赵月,杜文,陈爽.2008.复杂网络理论在城市交通网络分析中的应用.http://www.paper.edu.cn..
    [187]周涛,傅忠谦,牛永伟等.2005.自然科学进展.15(5):513-518.