高产葡萄糖耐量因子(Glucose Tolerance Factor)酵母菌的选育及其功能特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葡萄糖耐量因子(GTF)是一种小分子的铬结合蛋白(肽),三价有机铬是其重要活性成分,含有半胱氨酸、天门冬氨酸、甘氨酸和谷氨酸。本项研究从本试验室收藏的7株啤酒酵母入手,探索一条通过航天诱变、高产菌株的选育、GTF的分离纯化以及功能特性研究为主要线索的微生物发酵高产GTF的途径。本论文的主要试验结果如下:
     利用GTF可溶于氨水的性质,完善其提取参数,优化消解工艺,确定GTF有效提取方法和测定方法。结果表明:0.1g的菌体悬浮于10mL的0.1moL/L氨水溶液于37℃、200r/min提取3h,5000r/min离心10min,收集上清液,上火焰原子吸收光谱法测定其铬含量。验证试验结果显示该方法可有效的测定和评价菌体中GTF的含量。该方法可靠,处理时间短、耗酸量少,其回收率在95%~102.5%之间,相对偏差小于4%。
     利用航天诱变技术对本实验是收藏的7株啤酒酵母进行诱变处理。通过梯度含铬平板、液体培养和筛选得到一株遗传性能稳定、GTF高产菌株YS-3。其有机铬产量为1258μg/g.dcw,总铬含量为1926μg/g.dcw,有机铬率达65.31%,生物量40 g/L。相比于出发菌株Y-3,YS-3有机铬产量提高了53%。
     铬离子为800μg/mL时,严重抑制菌体的生长;400μg/mL时,对菌体有刺激生长作用。与无铬离子培养相比,400μg/mL的铬离子延长了菌体延迟期,发酵6 h后进入对数生长期,生物量增长超过无铬离子培养。有机铬富集主要发生在对数生长期(6 h~44 h);菌体最快的有机铬富集速度主要出现在延迟期(0 h~6 h),此时单位菌体的富铬量最大。通过二次加铬培养,摇瓶培养YS-3富集有机铬量可提高一倍,有机铬为2644μg/g.dcw左右,菌体生物量无显著性降低。发酵罐扩大规模培养,有机铬量为1930μg/g.dcw,生物量为33 g/L。
     采用中红外分析了其蛋白结合铬前后的二级结构的变化。大分子蛋白结合铬后,部分α-螺旋结构和无规则卷曲向β-转角结构转变,β-折叠结构几乎无变化;小分子蛋白结合铬后,部分β-折叠结构转向无规则卷曲和α-螺旋,β-转角结构几乎无变化。
     通过HPLC-ICP-MS/AES对Sephadex G-75凝胶层析Peak1、Peak2中金属铬和蛋白的分布进行微量分析和评估,对大、小含铬蛋白组分采用不同的分离纯化路线:小分子含铬蛋白:采用三次超滤(100kD、50kD、10KD)、Sephadex G25、Sephadex G15凝胶过滤层析脱盐处理获得峰形对称的含铬峰PP1。大分子含铬蛋白采用Sephadex G75、高效液相层析处理。
     对峰PP1的结构分析表明其为一个含铬的小肽类物质,由天门冬氨酸、谷氨酸、甘氨酸、半胱氨酸组成;其中的氨基酸有可能并非以肽键相连,或以配位键与金属结合。峰PP1中含有两个m/z比值为712.2535、769.2747离子峰,并根据其一、二级质谱图推测其氨基酸组成比例。通过LC-ESI-MS对peak1中第8管进行测定,分析该含铬大分子蛋白有可能为HBT1蛋白或3-磷酸甘油醛脱氢酶或核蛋白体蛋白。
     糖尿病动物试验结果显示富铬酵母菌体对糖尿病有一定的改善作用,具有一定的降脂、降糖作用(糖基化血红蛋白),对胰腺组织和β细胞具有一定的保护和恢复作用。
     从本文结果可以看出,通过航天诱变、筛选得到的YS-3,在优化其发酵条件基础上,通过二次补铬工艺,有机铬产量达至1930μg/g.dcw,生物量为33 g/L。发酵所产的GTF的氨基酸组成与文献报道一致,通过动物饲喂试验证明其对糖尿病有一定改善作用,具有降脂、降血糖、保护胰腺组织的功能。因此通过微生物高产GTF、使生物铬补充剂工业化具有广阔的研究价值和发展前景。
Glucose Tolerance Factor (GTF) is a low molecular weight Cr binding polypetide, consisted of glycine, cysteine, glutamic acid and aspartic acid and Cr3+ being its essential active center. GTF has been proven to play an important role in normal glucose homeostasis by many studies and it has become the focus of studies. The aim of this paper is to carry out comprehensive research in the field of a high yield of GTF by yeast and the structure and function of GTF. The main results of this paper are as follows:
     According to the property of ammonia-solubility of GTF, develop an effective ammonia extraction method of organic chromium and determination method by perfect and optimize its extraction and digestion parameters. 0.1g yeast suspended in 10mL 0.1mol/L NH4OH, shook with 200r/min for 3h at 37℃, collected the supernatant with centrifugation, microwave digested and oxidized the supernatant. Determining the content of the organic chromium of GTF, residual chromium in the yeast after extraction and the total chromium in the yeast with flame atomic absorption spectrometry. The experiment result showed that the theoretical residual chromium content meet with determination result closely. This method is suitable for determining GTF in the yeast.
     Seven strains yeast is mutagenized by piggyback experiment. Using chromium chloride hexahydrate as the chromium source, A strain of high-biomass, producing glucose tolerance factor yeast strain was screened through gradient concentration of chromium plates cultivation and liquid fermentation cultivation. The biomass of it was 40 g/L. the content of organic Cr was 1287μg/g.dcw and that of total Cr was 1917μg/g.dcw. Compared with the original strain, the organic chromium of YS-3 was improved by 53% with same biomass and pH during cultivation.
     YPD is fitter for YS-3 to produce more GTF compared with wort. Growth of YS-3 in media with 800μg/mL Cr3+ was strongly inhibited, and was stimulated with 400μg/mL Cr3+. In the presence of Cr3+400μg/mL, the lag phase is prolonged and after initial six hours the concentration of cell increased sharply and exceeded that without Cr3+. The accumulation of chromium ions into yeast cells was mainly completed in the exponential growth(6 h~44 h) and the fastest speed of accumulating chromium mainly occurred in the lag phase(0 h~6 h). The amount of organic chromium doubled through supplementation of chromium, reaching 2644μg/g.dcw without significant decrease in biomass. With pilot-scale fed-batch fermentation, the organic chromium reached 1930μg/g.dcw and biomass 33g/L.
     Through bioaccumulation and biotransformation, chromium was uptake into the yeast to bind on the protein, which had a great impact on the protein secondary structure. When chromium binding on the big molecule weight protein, the secondary structure changed fromα-helix and random-coil toβ-turn,β-turn increased,α-helix increased, random-coil decreased a little andβ-sheet changed nothing. When chromium binded on the small molecule weight protein, the secondary structure changed fromβ-sheet toα-helix and random-coil,β-sheet decreased greatly, random-coil increased greatly,α-helix increased a little andβ-turn remain intact.
     The distribution of chromium and protein were analyzed in Peak1 and Peak2 through HPLC-ICP-MS/AES, different purification method was adopted to purify two groups of chromium containing protein. In the case of low molecule weight protein, ammonia extract was purified by ultra-filtration(100kD、50kD、10KD), condense, gel filtration column chromatography (Sephadex G25), gel filtration column chromatography (Sephadex G15), achieving PP1 containing chromium. In the case of big molecule weight protein, ammonia extract was purified by gel filtration column chromatography (Sephadex G75), HPLC, achieving the eighth tube containing chromium.
     Ultraviolet wavelength scan and amino acid composition analysis showed that PP1 was a polypeptide containing chromium, consisted of glycine, cysteine, glutamic acid and aspartic acid. N-termianl sequence analysis showed that amino acids in PP1 were possibily connected by coordination bond, not by the amide bond. The peptide mass fingerprints produced by PP1 were studied by MALDI-TOF-TOF-MS and PP1 was analyzed by HPLC-ICP-MS/AES. The result showed that protein in peak PP1 belong to clusters of similar protein with high purity. There are only two quasi-molecular ions with high ion abundance in first order mass spectrum, m/z ratio of ions 712.2535, 769.2747. Make a speculation on the proportion of amino acid composition of the two quasi-molecular ions according to its second order mass spectrum and the result of amino acid composition of peak PP1.
     The peptide mass fingerprints produced by the eighth tube in Peak1 was studied by HPLC-ESI-MS. Data from HPLC-ESI-MS showed that the big molecule weight containing chromium possibly is Glyceraldehyde-3-phosphate dehydrogenase 3 or Ribosomal protein L2A or Protein HBT1.
     Diabetes mellitus models induced by streptozotocin were treated with high chromium brewer’s yeast (250~1000μg/kg.dCr) for a period of 3 months. It showed that organic chromium have an improvement on diabetes mellitus. TCHO decreased very significantly in low group and middle group and TG decreased significantly in low group. Serum insulin increased significantly in low group and high group. GHb decreased significantly in high group; Pathological examination of pancrease islet revealed that organic chromium had a certain protective effect on theβ-cell.
     Above all, the organic chromium yield of YS-3, mutagenized by space piggyback, reached 1930μg/g .dcw and biomass of it reached 33g/L, through supplement chromium twice. The composition of GTF isolated from YS-3 was in accord with other reports. Furthermore effect of high chromium yeast on diabetes mice showed that it have improvement on blood glucose, blood lipids and impaired islet andβcells. We could draw a conclusion that GTF from yeast should be paid more attention to and studied further.
引文
1.陈登云,刘娜,张兰英.应用HPCL-ICP-MS联用技术进行Hg的形态分析研究.环境化学.2005(24)1:110~113
    2.程南征,胡晓林,姜桂荣.糖尿病病人和健康人的血铬和尿铬含量.营养学报.1987(9)3:265~269
    3.丁文军,柴之芳,钱琴芳等.铬的代谢和葡萄糖耐量因子的研究.微量元素与健康研究.1997(14)2:53~55
    4.丁文军,钱琴芳,柴之芳等.富铬酵母中铬的化学种态及结合形态研究.分析化学研究简报,1999(27)9:1061~1064
    5.丁文军,钱琴芳,丰伟悦等.富铬酵母降低糖尿病大鼠血糖的生物效应评价.营养学报,2002(24)3:278~281
    6.丁文俊,钱琴芳,侯小琳等.富铬酵母细胞的DNA、RNA和蛋白质结合铬的测定.核技术,2000(23)4:231~235
    7.冯立新,刘朝晖,宁志芳.紫外线诱变获得高铬耐受性酵母.承德医学院学报,2002(19)3:230
    8.郭尧君.分光光度技术及其在生物化学中的应用.科学出版社,北京:1987.
    9.国家环境保护局,国家技术监督局.GB/ T 15555.6~1995固体废物总铬的测定—直接吸入火焰原子吸收分光光度法,1996
    10.郝素娥,金蝉,张巨生.La2O3对富铬酵母中铬含量影响的研究.哈尔滨工业大学学报,2003(35)6:674~678
    11.洪敏,李新生,颜雪明等.含铬有机化合物的生物活性及研究进展.化工时刊,2004(18)1:9~12
    12.黄汉明,梁宝鎏,孙大泽.非胰岛素依赖型糖尿病患者头发矿物元素分析.微量元素与健康研究,2004(21)6:10~15
    13.黄仲贤.金属蛋白研究中几个值得注意的动向,化学进展,2002(14)4:318~322
    14.蒋明,沈涛,徐辉碧等.化学进展,2002(14)4:263~272
    15.金花.微生物发酵法研制富铬酵母[硕士论文].吉林:吉林大学,2004
    16.吴瑾光主编.近代傅立叶变换红外光谱技术及应用下卷,科学技术文献出版社, 1994:192~201
    17.刘曲滨,肖方正,陈子健等.铬酵母中铬含量的测定.饲料工业,2000(21)6:34~35
    18.刘亚明,牛欣,冯前进.葡萄糖耐量因子(GTF)研究概述.中国中西医结合肾病杂志,2003(4)6:367~369
    19.刘静,章佩群,张博润等.利用中子活化分析法研究高生物量富铬酵母的培养条件.核技术,2003(26)7:509~513
    20.李鹏飞,张绍维,孙文娟邓.富铬酵母提取液降低血糖作用观察.中国公共卫生,2005(21)11:1335~1336
    21.李志东,李娜,张洪林等.啤酒酵母吸附重金属离子铬的研究.中国酿造发酵,2006,10,38~41
    22.绉淑芸,张永保.酵母中的中子活化分析测定.中国原子能科学研究院年报,2005,1
    23.倪国华、宋焕禄,凝胶过滤分离鸡肉蛋白酶解物时紫外检测波长的选择,食品研究与开发,2002(23)5
    24.沈桂芳、孙永成、钦天均.中国航天诱变育种搭载实验综述.2005航天育种高层论坛空间诱变育种研究与开发进展——航天育种高层论坛论文选编2005年
    25.宋留君,孔毅,周长林.高密度发酵的影响因素.见第一届全国化学工程与生物化工年会论文摘要集(下) ,2004年
    26.孙文娟,李鹏飞,叶丽杰等.富铬酵母液的提取及氨基酸含量分析.中国公共卫生,2004(20)7:817
    27.田兴山,张玲华,郭勇等.空间诱变在微生物菌种选育上的研究报告.生物技术通讯,2005(16)1:105~107
    28.王翀.啤酒酵母对重金属Cr(Ⅲ)生物转化及生物吸附的研究.[硕士论文],西安:西北大学,2005
    29.王建,卫亚丽,文宗河,何建川.蛋白质结构的FT-IR研究进展,化学通报,2002(7)482~486
    30.王建华、卫亚丽、文宗河等.蛋白质结构的FT-IR研究进展.化学通报,2004(7)482~486
    31.王萌,丰伟悦,陆文伟等.SEC-ICP-MS结合同位素稀释技术分析金属蛋白.中国质谱学会无机质谱、同位素质谱、质谱仪器和教育学专业委员会学术交流会中国质谱学会无机质谱,同位素质谱、质谱仪器和教育学专业委员会学术交流会论文汇编,2007年.
    32.王瞳.富铬酿酒酵母的单倍体原生质体复合诱变育种及其生物学功能研究.[硕士论文].泰安市:山东农业大学,2006
    33.王一红,冯家力,潘振球等.液相色谱~质谱/质谱联用技术分析18种游离氨基酸.2006(16)2:161~163
    34.魏丽勤,方晓梅,李宁梅等.太空搭载泰勒菌素高产菌株的选育.工业微生物,2007(37)1:1~7
    35.肖扬,周智广.代谢综合症的药物干预.中国实用内科杂志.2008(28)11:919~923
    36.肖浩平.富铬酵母发酵工艺的研究[硕士论文].无锡:江南大学,2004
    37.辛先荣,王志鹏,杨斌盛.α—吡啶甲酸铬配合物与EHPG作用的光谱研究.山西大学学报(自然科学版)2004,27(2):167~169
    38.雪烟.GTF可防治胰岛素抵抗.大众卫生报,20005年1月04日
    39.焉伶娜,蒙敏,钱琴芳.用51Cr放射性示踪法研究富铬酵母中的铬的赋存状态.核技术,1994(17) 1:34~36
    40.杨利敏,高艳华,李晶等.有机铬对试验性糖尿病大鼠降血糖作用的观察.黑龙江医药科学2003(26)5:24~25
    41.杨利敏,杨子安,姚海涛等.有机铬对实验性糖尿病大鼠胰岛β细胞形态结构及功能的影响.中国组织化学与细胞化学杂志.2006(15)2:208~211
    42.杨利敏,张磊艺,杨子安等.有机铬对试验性糖尿病大鼠糖、脂质代谢的影响.心血管康复医学杂志,2004(13)3:203~204
    43.尹义存.代谢综合症与糖尿病.人民军医.2008(51)12:777
    44.禹爱兵,王加启.低分子格聚合物及其代谢机理[J].中国畜牧兽医,2005(32)5:3~5
    45.张均日主编.现代药理实验方法.北京医科大学中国协和医科大学联合出版社,1998:981~999
    46.张帅.富铬酵母制备新工艺的研究[J].食品工业科技.2005(26)2:145~147
    47.周保学,姜述芹,周定.葡萄糖耐量因子研究中的几个重要问题.国外医学医学地理分册.1999(20)3:97~99
    48.奚清丽,石根勇.铬酵母对糖尿病小鼠的降血糖作用研究.江苏预防医学,2006(17)2:65~67
    49.张巨生,郝素娥,史瑞欣.Er3+对铬酵母中总铬和有机铬含量的影响.精细化工,2004(21)9:671~673
    50.刘晓铭.葡萄糖耐受因子富集酵母发酵工艺及其动物功能性研究[硕士论文].北京:中国农业科学院,2007
    51.国家环境保护局,国家技术监督局.GB/T15555.6-1995.固体废物总铬的测定直接吸入火焰原子吸收分光光度法.北京:中国环境科学出版社,1996
    52.国家环境保护局.GB7467-87.水质六价铬的测定二苯碳酰二阱分光光度法.北京:中国环境科学出版社,1987
    53. A. I. Rapoport, O.A.Muter. Biosorption of hexavalent chromium by yeasts.Journal of Process Biochemistry.1995(30)2:145~149
    54. A.I. Rapoport & O.A. Muter. Biosorption of hexavalent chromium by yeast. Process Biochemsitry.1995,30,2:145~149
    55. Akiko Yamamoto, Osamu Wada and Hiramitsu Suzuki. Purification and properties of biologically active chromium complex from bovine colostrums. J.Nutrition.1988,118:39~45
    56. Akiko Yamamoto, Osamu Wada and Tetsu Ono. Isolation of a biologically active low-molecular-mass chromium compound from rabbit liver. J.Biochem.1987,165:627~631
    57. Akiko Yamamoto, Wada, O. & Ono, T. Isolation of a biologically active low~molecular~mass chromium compound from rabbit liver. Eur. J. Biochem. 1987,165: 627~631.
    58. Akiko Yamamoto., Wada, O. & Ono, T. Distribution and chromium-binding capacity of a low-molecular-weight, chromium~binding substance in mice. J. Inorg. Biochem. 1983,22: 91~102.
    59. Ali Demirci, Anthony L. Pometto. Enhanced organically bound chromium yeast production.Journal of Agric.Food Chem.2000(48):531~536
    60. Althuis MD, Jordan NE, Ludington EA, Wittes JT: Glucose and insulin responses to dietary chromium supplements: a meta~analysis. Am J Clin Nutr 76:148~155, 2002
    61. Anderson RA, Bryden NA, Evock~Clover CM, Steele NC. Beneficial effects of chromium on glucose and lipid variables in control and somatotropin~treated pigs are associated with increased tissue chromium and altered tissue copper, iron, and zinc. J Anim Sci. 1997,75(3),657~661
    62. Anderson RA, Cheng N, Bryden NA, Polansky MM, et al. Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes. 1997,46(11),1786~1791
    63. Anderson RA. Nutrition factors influencing the glucose/insulin system, chromium. J Am Coll Nutrion. 1997,16(5),404~410
    64. Anderson, R.A., Bryden, N.A., Polansky, M.M., and Gautschi, J. 1996. Dietary chromium effects on tissue chromium concentrations and chromium absorption in rats. J. Trace Elem. Exp. Med., 9: 11~25.
    65. Anne D. Madsen, Waler Goessler, Soren N. Pedersen et al.. Characterization of an algal extract by HPLC~ICP~MS and LC~celectrospray MS for use in arsenosugar speciation studies. J.Anal. At. Spectrom., 2005,15,657~662
    66. Arshag D Moordian, MD and John E Morley, MB, Bch. Micronutrient status in diabetes mellitus. Am J Clin Nutr. 1987,45:877~895
    67. Bahadori B, Wallner S, Schneider H et al.. Effect of chromium yeast and chromium picolinate on body compositon of obese, non-diabetic patient during and after a formula diet.1997,24(5):185~187
    68. Bahijiri SM, Mira SA, Mufti AM et al.. The effects of inorganic chromium and brewer’s yeast supplementation on glucose tolerance, serum lipids and drug dosage in individuals with type 2 diabetes. Saudi Med J.200,21:831~837
    69. Bradford M..A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bingding. Anal Biochem. 1967, 72: 248~254.
    70. Buffie J. Clodfelder, Bryan M. Gullick, Henry C. Lukaski et al.. Oral administration of the biomimetic[Cr3O(O2CCH2CH3)6(H2O)] + increases insulin sensitivity and improves blood plasma variables in healthy and type 2 diabetic rats. J Biol Inorg Chem.2005,10:119~130
    71. Cameron Rink, Sashwati Roy, Savita Khanna et al.. Transcriptome of the subcutaneous adipose tissue in response to oral supplementation of type Leprdb obese diabetic mice with niacin-bound chromium. Physiol Genomics.2006,27:370~379
    72. Clodfelder BJ, Emamau lee J, Hepburn DD et al.. The trail of chromium(Ⅲ) in vivo from the blood to the urine: the roles of transferring and chromodulin. J Bio Inorg Chem.2001,6:608~617
    73. D. M. Davis, E.S.Holdsworth, J. L. Sherriff. The isolation of glucose tolerance factors from brewer’s yeast and their relationship to chromium.Journal of Biochmeical Medicine,1985(33):297~311
    74. David A. Mark. Chromium Picolinate Supplementation Attenuates Body Weight Gain and Increases Insulin Sensitivity in Subjects With Type 2 Diabetes-response to Martin et al. Diabetes Care.2006,29,12:2764
    75. David L. Hwang, Arye Lev-ran, Thomas Papoian et al.. Insulin–like activity of chromium–binding fractions from brewer’s yeast. Journal of Inorganic Biochemistry.1987,30:219~225
    76. David L. Hwang, Lev-ran, Barseghian K et al.. Glucose tolerance factor and method of making same, US patent 4985439,1987:14
    77. Davis, C. M. & Vincent, J. B. Chromium oligopeptide activates insulin receptor tyrosine kinase activity. Biochemistry.1997,36: 4382–4385.
    78. Ding W, Chai Z, et al. Serum and urine chromium concentrations in elderly diabetes. Biol Trace Elem Res. 1998,63(3), 231~237
    79. Douglas S Kalman. Chromium pioclinate and type 2 diabetes. American Journal of Clinical Nutrition.2003,78
    80. Dror Y, Stern F, et al. Micronutrient (vitamins and minerals) supplementation for the elderly, suggested by a special committee nominated by Ministry of Healthy. Harefuah ,2001,140(11),1062~1067,1117
    81. E. S. Holdsworth, E. Neville. Effects of extracts of high-and low-chromium brewer’s yeast on metabolism of glucose by hepatocytes from rats fed on high-or low-Cr diets.British Journal of Nutrition,1990,63:623~630
    82. E. S. Holdsworth, Geoffrey Appleby. Assays of glucose tolerance factor and its mode of action, studied with brewer’s yeast.Journal of Inorganic Biochemistry,1984,21:31~44
    83. Erin M O’Donoghune, Juan A Cooper, Timothy G.Jackson et al. Identification of peptides from autolysates of Saccharomyces cerevisiae that exhibit glucose tolerance factor activity in a yeast assay. Journal of Biochem,1990(22)8:841~846
    84. Esther G Offenbacher EdD, Carol J Rinko MS AND F Xavier Pi-Sunyer MD. The effects of inorganic chromium and brewer’s yeast on glucose tolerance , plasma lipids, and plasma chromium in elderly subjects. The American Journal of Clinical Nutrition.1985,42:454~461
    85. Ethan M. Balk, Joseph Lau, Athina Tatsioni et al.. Effect of chromium supplementation on glucose metabolism and lipids. Diabetes Care.2007,30,8:2154~2163
    86. Feng Dong, Machender Reddy Kandadi, Jun Ren et al.. Chromium (D-phenylalanine)3 Supplementation Alters Glucose Disposal, Insulin Signaling, and Glucose Transporter-4 Membrane Translocation in Insulin-Resistant Mice. J. Nutr. 2008,138:1846~1851.
    87. Gloria Y. Yeh, Ted J. Kaptchuk, David M. Eisenberg et al.. Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care.2003,26:1277~1294
    88. Gunton JE, Cheung NW, Hitchman R et al.. Chromium supplementation does not improve glucose tolerance, insulin sensitivity, or lipid profile: a randomized, placebo-controlled,double-blind trial of supplementation in subjects with impaired glucose tolerance. Diabetes Care 28:712~713, 2005
    89. H. Ksheminska, D. Fedorovych, L. Babyak et al.. Chromium (Ⅲ)and (Ⅵ) tolerance and bioaccumulation in yeast: a survey of cellular chromium content in selected strains of representative genera. Process Biochemistry.2005,40:1567~1572
    90. H.S. Stahlhut, C.S. Whisnant and J.W. Spears. Effect of chromium supplementation and copper status on performance and reproduction of beef cows. Animal Feed Science and Technology.2006,128:266~275
    91. Helena Ksheminska, Anita Jaglarz, Daria Fedorovych et al.. Bioremediation of chromium by the yeast Pichia guilliermondii: toxicity and accumulation of Cr (III) and Cr (VI) and the influence of riboflavin on Cr tolerance. Microbiol. Res. 2003 158, 59~67
    92. Holm R H, Kennepoh P, So lomon E I. Structural and functional aspects of metal sites in biology. Chem. Rev. ,1996, 96: 2239—2314
    93. J Liu, B Zhang, X He. et al.. Selection of a high~biomass, chromium-rich yeast strain and optimization of cultivation conditions. Journal of Industrial Microbiology & Biotechnology.2001,27:195~198
    94. J. A. Vinson and P. Bose. The effect of a high chromium yeast on the blood glucose control and blood lipids of normal and diabetic human subjects. Nutritional Reports International.1984,30(4)
    95. J.Hegoczki, A.Suhajda, B.Janzso et al.. Preparation of chromium enriched yeasts[J].Journal of Acta Alimentaria,1997,26(4):345~358
    96. Jeejeebhoy KN, Chu RC, Marliss EB et al.. Chromium deficiency, glucose intolerance , and neuropathy reversed by chromium supplementation in a patient receiving long~term total parenteral nutrition. Am J Clin Nutr.1977,30(4):531
    97. John B. Vincent. Mechanisms of chromium action: low-molecular-weight chromium–binding substance. Journal of the American College of Nutrition.1999,18:6~12
    98. John B. Vincent. Recent advances in the nutritional biochemistry of trivalent chromium. Proceedings of the Nutrition Society.2004,63:41~47
    99. John B. Vincent. Relationship between glucose tolerance factor and low-molecular-weight chromium–binding substance. J.Nutr.1994,124:117~118
    100.John B. Vincent. The biochemistry of chromium. J. Nutr.2000,130:715~718
    101.John E. Morley, David R. Thomas,Geriatric Nutrition,CRC Press,2007
    102.Jorma Kumpulainen, Pekka Koivistoinen, Seppw Lathtinen. Isolation, purification, and partial chemical characterization of chromium(Ⅲ) fractions existing in brewer’s yeast and sabouraud’s liquid medium. Bioinorganic Chemistry,1978,8:419~429
    103.Jovanovic L, Gutierrez M, Peterson CM. Chromium supplementation for women with gestational diabetes mellitus. J Trace Elem Exptl Med,1999,12:91
    104.Julie Martin, Dwight Matthews and William T.Cefalu. Chromium PicolinateSupplementation Attenuates Body Weight Gain and Increases Insulin Sensitivity in Subjects With Type 2 Diabetes-response to Mark. Diabetes Care.2006,29,12:2764~2764
    105.Julie Martin, Zhong Q.Wang, Deborah Wachtel et al.. Chromium Picolinate Supplementation Attenuates Body Weight Gain and Increases Insulin Sensitivity in Subjects With Type 2 Diabetes. Diabetes Care.2006,29,8:1826~1832
    106.K.C.Swanson, D.L.Harmon, K.A.Jacques et al.. Efficacy of chromium–yeast supplementation for growing beef steers. Animal Feed Science and Technology.2000,86:95~105
    107.Kleefstra N, Houweling ST, Jansman FG, Groenier KH, Gans RO, Meyboom~de Jong B, Bakker SJ, Bilo HJ: Chromium treatment has no effect in patients with poorly controlled, insulin-reated type 2 diabetes in an obese Western population: a randomized, double~blind, placebo~controlled trial. Diabetes Care 29:521~525, 2006
    108.L ehemann S. Metal ions and prion diseases. Curr. Opin. Chem. Biol. 2002, 6: 187~192
    109.L iu C, Xu H. J. The metal site as a template for the metalloprotein structure formation, Inorg. Biochem. , 2002, 88: 77~86
    110.L iu C, Xu H. J. The metal site as a template for the metalloprotein structure formation, Inorg. Biochem. , 2002, 88: 77~86
    111.Lawrence E. Skogerson, Milwaukee. Method for the production of chromium yeast. US patent 4348483,1982:
    112.Mertz W and Schwarz K. Archives of Biochemistry & Biophysics, 1955,58,504~518
    113.Mertz W. Chromium occurrence and function in biological systems. Physiological Review, 1969,49,163~239
    114.Mertz W. Present knowledge in Nutrition .4th ed. New York, Nutrition Foundation, 1975,“Effect and metabolism of glucose tolerant factor”Chapter 36,365-375
    115.Mertz W. The role of elements in the aging process. Prog Clin Biol Res. 1990,326,229~240
    116.Mertz W. The role of elements in the aging process. Prog Clin Biol Res. 1990,326,229~240
    117.Michael Via, MD, Corey Scurlock, MD, Jayashree Raikhelkar, MD et al.. Chromium Infusion Reverses Extreme Insulin Resistance in a Cardiothoracic ICU Patient. Nutrition in Clinical Practice, 2008,23( 3),:325~328
    118.Milos Beran, Ralph Stahl and Milos Beran. Glycaemic activity of chromium(Ⅲ)–β-nicotinamide adenine dinucleotide phosphate complex and its presence in yeast extracts. Analyst.1995,120:979~981
    119.Nanne Kleefstra, Sebastiaan T. Houweling, Frank G. A. Jansman et al.. Chromium treatment has no effect in patients with poorly controlled, insulin-treated type2 diabetes in an obese-western population. Diabetes Care.2006,29(3):521~525
    120.Nanne Kleefstra, Sebastiaan T. Houweling, Stephan J.L. Bakker et al.. Chromium treatmenthas no effect in patients with type2 diabetes in an obese-western population. Diabetes Care.2007,30:1092~51096
    121.Neile K.Edens, Lisa A.Reaves, Marti S et al.. Yeast extract stimulates glucose metabolism and inhibits lipolysis in rat adipocytes in vitro[J].Journal of Nutr,2002(132):1141~1148
    122.Office of Dietary Supplements: Dietary supplement fact sheet: chromium [article online], 2006. Available from http://ods.od.nih.gov/factsheets/chromium.asp#en55.Accessed 6 October 2006
    123.Olga Muter, Aloizijs Patmalnieks & Alexander Rapoport. Interrelations of Candida utilis and Cr(Ⅵ): metal reduction and its distribution in the cell and medium. Process Biochemistry.2001,36:963~970
    124.Patrick M. Catalano, John P. Kirwan, Sylvie Haugel-de Mouzon et al.. Gestational Diabetes and Insulin Resistance: Role in Short-and Long-Term Implications for Mother and Fetus. J. Nutr. 2003.133: 1674~1683
    125.Pawel Kaszycki, Daria Fedoovych, Helena Ksheminska et al.. Chromium accumulation by living yeast at various environmental conditions. Microbiological Research.2004,159:11~17
    126.Pittler MH, Stevinson C, Ernst E: Chromium picolinate for reducing body weight: meta-analysis of randomized trials. Int J Obes Relat Metab Disord. 2003,27:522~529
    127.Racek J, Trefil L, Rajdl D, Mudrova V,Hunter D, Senft V: Influence of chromium~enriched yeast on blood glucose and insulin variables, blood lipids, and markers of oxidative stress in subjects with type 2 diabetes mellitus. Biol Trace Elem Res. 2006 ,109:215~230
    128.Rajpathak S, Rimm EB, Li T et al.. Lower toenail chromium in men with diabetes and cardiovascular disease compared with healthy men. Diabetes Care.2004,27(9):2211
    129.Ravina A, Slezak L, Mirsky N et al.. Control of steroid-induced diabetes with supplemental chromium. J Trace Elem Exptl Med.1999,12:375
    130.Richard A. Anderson, Anne-Marie Roussel, Nouri Zouari et al.. Potential antioxidant effects of zinc and chromium supplementation in people with type 2 diabetes mellitus. Journal of the American College of Nutrition.2001,20(3):212~218
    131.Richard A. Anderson, Marilyn M Polansky, Noella A Bryden et al.. Supplemental–chromium effects on glucose, insulin, glucagon, and urinary chromium losses in subjects consuming controlled low-chromium diets. The American Journal of Clinical Nurition.1991,54:909~916
    132.Richard A. Anderson, Marilyn M. Polansky, Edward E, et al.. Factors affecting the retention and extraction of yeast chromium. Journal of Agric. Food Chem.,1978(26)4:858~861
    133.Richard A. Anderson. Chromium and parenteral nutrition. Nutrition,1995,11:83
    134.Richard A. Anderson. Chromium in the prevention and control of diabetes. DiabetesMetab.2000,26(1):22
    135.Richard A.Anderson, PhD, FACN. Chromium, Glucose Intolerance and Diabetes[J].Journal of the American College of Nutrition,1998(17)6:548~555
    136.Richard A. Anderson. Chromium as an essential nutrient for humans.Journal of Regulatory Toxicology and Pharmacology.1997(26):35~41.
    137.Rulísek L, Vondrásek J. Coordination geometries of selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+) in metalloproteins. J Inorg. Biochem. 1998, 71:115~127
    138.RW Tuman and RJ Doisy. Metabolic effects of the glucose tolerance factor (GTF) in normal and genetically diabetic mice. Diabetes.1977,26, 9: 820~826,
    139.Ryan GJ, Wanko NS, Redman AR, Cook CB: Chromium as adjunctive treatment for type 2 diabetes. Ann Pharmacother.2003,37:876~885
    140.Samad Shera, Leena Etu Seppala. Increasing diabetes prevalence hit developing countries[J]. Medicine Digest. 2000, 8(5):16~16
    141.Schwarz K and Mertz W. A glucose tolerance factor and its differentiation from factor 3. Archives of Biochemistry & Biophysics. 1957,72,515~518
    142.Scott E. Woods, Vivian Ghodsi, Amy Engel et al.. Serum chromium and gestational diabetes. Journal of the American Board of Family Medicine.2008,21(2):153~157
    143.Stella L. Volpe, Hui-Wen Huang, Kanokwan Larpadisorn et al.. Effect of chromium supplementation and exercise on body composition, resting metabolic rate and selected biochemical parameters in moderately obese women following an exercise program. Journal of the American College of Nutrition.2001,20(4):293~306
    144.Steven J. Haylock, Paul D. Buckley and Leonard F. Blackwell. Separation of biologically active chromium~containing complexes from yeast extracts and other sources of glucose tolerance factor(GTF) activity. Journal of Inorganic Biochemistry.1983,18:195~211
    145.Steven J. Haylock, Paul D. Buckley and Leonard F. Blackwell. The relationship of chromium to the glucose tolerance factor.Ⅱ.Journal of Inorganic Biochemistry. 1983,19:105~117
    146.Sumrall, K. H. & Vincent, J. B. Is glucose tolerance factor an artifact produced by acid hydrolysis of low-molecular-weight chromium-binding substance? Polyhedron.1997,16: 4171~4177.
    147.Swapnil Rajpathak, Mbbs. D Dlab, et al. Lower toenail chromium in men with diabetes and cardiovascular disease compared with healthy men. Diabetes Care. 2004,9(27),2211~2216
    148.Toepfer EW, Mertz W.Roginski EE, Polansky MW. Chromium in food in relation to biological activity. J. Agric food chem..1973,21:69~73
    149.Tony L., Ryan R.J.. Using ESI-MS to probe protein structure by site-specific noncovalent attachment of 18-crown-6. Journal of American Society for Mass Spectrometry 2006, 17: 1209~1215.
    150.Vlatka Gulan Zetic, Vesna Stehlik-Tomas, Slobodan Grba et al. Chromium uptake bySacchaomyces cerevisiae and isolation of glucose tolerance factor from yeast biomass[J].Journal of Biosci,2001(26)2:217~223
    151. Wada, O., Wu, G. Y., Yamamoto, A., Manabe, S. & Ono, T. Purification and chromium-excretory function of low-molecular-weight, chromium-binding substances from dog liver. Environ. Res.1983,32:228~239
    152. Walter Mertz, MD. Chromium Research From a Distance: from 1959 to 1980.J of the American College of Nutrition.1998(17)6,544~547
    153. Walter Mertz,Edward E. Roginski and Henry A. Schroerer. Some aspects of glucose metabolism of chromium-deficient rats raised in a strictly controlled environment. J.Nutrition.1967:107~112
    154.William T. Cefalu, MD and Frank B. Hu, MD, PHD. Role of chromium in human health and in diabetes. Diabetes Care. 2004,27:2741~2751
    155. Lai MH, Chen YY, Cheng HH. Chromium yeast supplementation improves fasting plasma glucose and LDL-cholesterol in streptozotocin-induced diabetic rats. Int J Vitam Nutr Res. 2006 Nov:76(6):391~397
    156. Douglas S Kalman. Chromium picolinate and type 2 diabetes. American Journal of Clinical Nutrition.2003,(78)1: