分类问题的智能优化算法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能优化算法(Intelligent optimization algorithms)通过模仿生物的智能行为来实现优化功能。例如,遗传算法(Genetic Algorithm, GA)模仿生物种群中自然选择的机制来求解优化问题;粒子群优化算法模仿鸟群觅食迁移中,个体与群体协调一致的机理来指导优化搜索等。智能优化方法具有简单通用、鲁棒性强和适于并行等优点,在模式识别、智能控制、并行搜索、联想记忆等方面得到了广泛的应用。
     支持向量机(Support Vector Machines, SVM)是一种应用广泛的数据分类技术,当高斯核支持向量机应用于各种各样的数据分类领域时,首先面临的至关紧要的问题是:怎样选择惩罚参数C和核参数γ(即怎样进行支持向量机模型选择),怎样优化输入特征子集以提高分类准确率和减小特征子集。通过用户使用枚举法进行参数选择,往往降低支持向量机分类性能,得出的分类准确率很低,不能满足分类要求。采用网格搜索算法进行支持向量机参数优化,由于一定程度地提高了分类准确率,初步满足分类要求。随着数据分类领域对分类准确率的要求不断提高,采用智能优化算法和支持向量机的结合同时优化输入特征子集和支持向量机参数,进一步提高了分类准确率。本论文在上述研究工作的基础上,将支持向量机的渐进性能融入智能优化算法,提出了基于特征染色体的遗传算法、基于特征粒子的粒子群优化算法、基于特征抗体的克隆选择算法,分别构建提出的算法和支持向量机的混合系统以同时优化输入特征子集和支持向量机参数,取得了更高的准确率、更小的特征子集和更少的处理时间。通过将支持向量机的渐进性能融入智能优化算法,构建智能优化算法和支持向量机的混合系统解决上述问题是
     本论文的基本研究方法。
     本论文以分类问题的智能优化算法及其应用研究、智能优化算法和支持向量机混合研究为课题,本论文的贡献和创新点概括如下:
     (1)基于特征染色体的遗传算法
     基于遗传算法的原理和搜索机制,将支持向量机的渐进性能融入遗传算法,通过生成特征染色体操作将遗传算法的搜索导向到超参数空间中的最佳泛化误差直线,提出一种基于特征染色体的遗传算法,构造基于特征染色体的遗传算法和支持向量机混合系统以同时进行特征选择和参数设置的优化。对提出的算法的收敛性进行了分析。与类似方法相比,提出的算法不仅具有更高的分类准确率和更小的特征子集,而且具有更少的处理时间。
     (2)基于特征粒子的粒子群优化算法
     基于粒子群优化算法的原理和搜索机制,通过生成特征粒子操作将支持向量机的渐进性能融入粒子群优化算法,提出一种基于特征粒子的粒子群优化算法,构造基于特征粒子的粒子群优化算法和支持向量机混合系统以同时进行特征选择和参数设置的优化。分析了提出算法的复杂度。实验指出,提出的算法具有更高的分类准确率、更小的特征子集和更少的处理时间。
     (3)基于特征抗体的克隆选择算法
     基于克隆选择算法的原理和搜索机制,通过生成特征抗体操作将支持向量机渐进性能引入克隆选择算法,提出一种基于特征抗体的克隆选择算法,构造基于特征抗体的克隆选择算法和支持向量机混合系统以同时进行特征选择和参数优化。通过算法性能对比实验,得出提出的算法具有更高的分类准确率和更小的特征子集。
     (4)混合智能优化算法研究
     提出一种基于特征染色体的遗传算法和量子遗传算法的混合算法,构造基于特征染色体的遗传算法、量子遗传算法和支持向量机混合系统,给出了详细的实验结果和算法性能对比,验证了该算法是一种有效的方法。除此之外,还提出一种基于特征抗体的克隆选择算法和差分进化算法的混合算法,构造基于特征抗体的克隆选择算法、差分进化算法和支持向量机混合系统,给出了详细的实验结果和算法性能对比,实验指出提出的算法是一种有用的方法。
     (5)智能优化算法应用研究
     根据微阵列基因表达数据的特点,提出一种基于特征染色体的遗传算法包装法、信噪比过滤法和支持向量机混合系统的信息基因搜索方法,以同时搜索到基因数量少而分类准确率高的信息基因子集,实验结果表明,与其它优秀的肿瘤分类方法相比,提出的方法在信息基因数量及分类准确率方面具有明显的优越性。另外,提出一种基于特征染色体的遗传算法、共空间模式和支持向量机混合系统以进行脑-机接口分类参数优化,取得了提高分类准确率的明显效果。
Intelligent optimization algorithms implement optimal functions by imitating biologic intelligent behavior. For example, genetic algorithm (GA) imitates the mechanism of natural selection in biologic population to solve optimal problem, and particle swarm optimization (PSO) imitates the coordinated mechanism of individual and swarm in migration of birds foraging to guiding the optimization search. Intelligent optimization algorithms have the characteristics of simple operations, generalization, robustness and parallelism, which have been extensively applied in various fields of pattern recognize, intelligent control, parallel search and associative memory.
     Support vector machines (SVM) are a kind of popular data classification technique. When SVM with Gaussian kernel are used in various fields of classification problems, first, some crucial problems to be confronted are: how to select the error penalty parameter C and the Gaussian kernel parameterγ(namely how to conduct SVM model selection), how to optimize input feature subset so as to improve classification accuracy for SVM and reduce the feature subset. Parameter selection by user Enumeration method tends to reduce the classification performance of SVM and obtains very low classification accuracy, so that it can not meet the classification requirements. Grid search algorithm using SVM parameter optimization improves the accuracy of classification to a certain extent, initially to meet the classification requirements. As the requirements of data classification field to the classification accuracy are ever increasing, the use of the combination of intelligent optimization algorithm and SVM optimize the input feature subset and SVM parameters at the same time so as to further improve the classification accuracy. In the basis of above work, the asymptotic behaviors of SVM are fused with intelligent optimization algorithm. The genetic algorithm based on feature chromosomes, the particle swarm optimization algorithm based on feature particles and the clonal selection algorithm based on feature antibodies are proposed by this dissertation to construct the proposed algorithm and SVM hybrid system respectively to simultaneously optimize the feature subset and the SVM parameters, so as to obtain higher classification accuracy, smaller feature subset and shorter processing time. The basic methods of this dissertation are to construct hybrid systems of intelligent optimization algorithms and SVM to solve the above problems by fusing asymptotic behaviors of SVM into intelligent optimization algorithms.
     The topic of this dissertation is the study on intelligent optimization algorithms and its application for classification problems and the hybrid study of intelligent optimization algorithms and SVM. The contributions and innovations of this dissertation are summarized as follows.
     (1) Genetic algorithm based on feature chromosomes
     Based on the basic principles and search mechanism of genetic algorithm, the asymptotic behaviors of support vector machines are fused with genetic algorithm, which thereby directs the search of genetic algorithm to the straight line of optimal generalization error in the superparameter space by generating feature chromosomes operation. A genetic algorithm based on feature chromosomes, termed GAFC, is proposed to construct GAFC-SVM hybrid system so as to simultaneously optimize the feature subset and the parameters for SVM. The convergence of the proposed algorithm is analyzed. Compared with the similar approaches, the proposed approach not only has higher classification accuracy and smaller feature subsets, but also has fewer processing time.
     (2) Particle swarm optimization algorithm based on feature particles
     Based on the basic principles and search mechanism of particle swarm optimization algorithm, the asymptotic behaviors of SVM are fused with particle swarm optimization algorithm by generating feature particles operation. A particle swarm optimization algorithm based on feature particles, called PSOFP, is proposed to construct PSOFP-SVM hybrid system so as to simultaneously optimize the feature subset and the parameters for SVM. The complexity of the proposed algorithm is analyzed. The experimental results indicate that the proposed algorithm has higher classification accuracy rates, smaller feature subsets and fewer processing time.
     (3) Clonal selection algorithm based on feature antibodies
     Based on the basic principles and search mechanism of clonal selection algorithm, the asymptotic behaviors of SVM are fused with clonal selection algorithm by the generating feature antibodies operation. A clonal selection algorithm based on feature antibodies, termed CSAFA, is proposed to construct CSAFA-SVM hybrid system so as to simultaneously optimize the feature subset and the parameters for SVM. The experimental results indicate that the proposed algorithm has higher classification accuracy rate, smaller feature subset and better performance compared with the existing clonal selection algorithm and other classification ones.
     (4) Study on hybrid intelligent optimization algorithms
     A hybrid algorithm of genetic algorithm based on feature chromosomes and quantum-inspired genetic algorithm, called GAFC-QGA hybrid algorithm, is proposed to construct GAFC-QGA-SVM hybrid system. The detailed experimental results are given to validate that the proposed algorithm is an effect method. In addition, a hybrid algorithm of clonal selection algorithm based on feature antibodies and differential evolution, termed CSAFA-DE hybrid algorithm, is proposed to construct CSAFA-DE-SVM hybrid system. The detailed experimental results are given to indicate that the proposed algorithm is a useful one.
     (5) Study on intelligent optimization algorithms application
     According the characteristics of microarray gene expression data, a hybrid system of wrapper method based on GAFC, filter method based on SNR and SVM, called GAFC-SNR-SVM hybrid system, is proposed so as to search the informative gene subset of small number of genes and high classification accuracy simultaneously. Experimental results indicate that the proposed algorithm has obvious advantages on the number of informative genes and classification accuracy rate. Moreover, a hybrid system of genetic algorithm based feature chromosomes, common spatial patterns and SVM, termed CSAFA-DE-SVM hybrid system, is proposed to perform classification parameter optimization of brain-computer interface, which obtains obvious effect in improving classification accuracy.
引文
[1] Russell C. Eberhart, Yuhui Shi. Computational Intelligence: concepts to implementation. Elsevier, 2007
    [2] Leandro Nunes de Castro. Fundamentals of natural computing: an overview. Physics of Life Reviews, 2007, 4: 1-36
    [3]汪定伟,王俊伟,王洪峰,张瑞友,郭哲.智能优化方法.北京:高等教育出版社,2007
    [4]雷德明,严新平.多目标智能优化算法及应用.北京:科学出版社,2009
    [5]高永超.智能优化算法的性能及搜索空间研究: [博士学位论文].山东大学, 2007
    [6] Patrick Ngatchou. Intelligent Techniques for Optimization and Estimation: [Doctoral Dissertation]. University of Washington Graduate School, 2006
    [7] Rafal Kicinger, Tomasz Arciszewski, Kenneth De Jong. Evolutionary computation and structural design: A survey of the state-of-the-art. Computers and Structures, 2005, 83 (23-24): 1943-1978
    [8]徐宗本.计算智能(第一册)─模拟进化计算.北京:高等教育出版社,2004
    [9] James Kennedy, Russell C. Eberhart, Yuhui Shi. Swarm Intelligence: First Edition. Elsevier, 2001
    [10] Rui Mendes, James Kennedy, JoséNeves. The Fully Informed Particle Swarm: Simpler, Maybe Better. IEEE Transactions on Evolutionary Computation, 2004, 8 (3): 204-210
    [11] Alec Banks, Jonathan Vincent, Chukwudi Anyakoha. A review of particle swarm optimization. Part I: background and development. Natural Computing, 2007, 6 (4): 467-484
    [12] Alec Banks, Jonathan Vincent, Chukwudi Anyakoha. A review of particle swarm optimization. Part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Natural Computing 2008, 7 (1): 109-124
    [13]冯春时,群智能优化算法及其应用: [博士学位论文].中国科学技术大学, 2009
    [14]焦李成,杜海峰,刘芳,公茂果.免疫优化计算、学习与识别.北京:科学出版社,2006
    [15]薛文涛.基于免疫的智能优化算法理论及应用研究:[博士学位论文].南京理工大学,2008
    [16] V. N. Vapnik. The nature of statistical learning theory. New York: Springer_Verlag, 1995
    [17] S. S. Keerthi, Chih-Jin Lin. Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel. Neural Computation, 2003, 15 (7): 1667-1689
    [18] Fabien Lauer, Gérard Bloch. Incorporating prior knowledge in support vector machines for classification: A review. Neurocomputing, 2008, 71 (7-9): 1578-1594
    [19]王国胜.支持向量机的理论与算法研究: [博士学位论文].北京邮电大学, 2007
    [20] J. H. Holland. Adaptation in natural and artificial systems. The University of Michigan press, 1975
    [21] D. E. Goldberg. Genetic algorithms in search, optimization and machine learning. MA: Addison–Wesley, 1989
    [22] Li-Min Liu, Nian-Peng Wang, Fa-Chao Li. Study on convergence of self-adaptive and multi-population composite Genetic Algorithm. In: Proceedings of the Eighth International Conference on Machine Learning and Cybernetics. Baoding, 2009, 2680-2685
    [23] Liang Ming, Yuping Wang, Yiu-Ming Cheung. On Convergence Rate of a Class of Genetic Algorithms. In: Proceedings of the World Automation Congress. 2006 (WAC '06)
    [24] W. Kosiński, S. Kotowski, Z. Michalewicz. On convergence and optimality of genetic algorithms. In: Proceedings of the 2010 IEEE Congress on Evolutionary Computation (CEC). 2010
    [25] Taejin Park, Kwang Ryel Ryu. A Dual-Population Genetic Algorithm for Adaptive Diversity Control. IEEE Transactions on Evolutionary Computation, 2010, 14 (6): 865-884
    [26] Yongming Li, Xiaoping Zeng, Liang Han, Pin Wang. Two coding based adaptive parallel co-genetic algorithm with double agents structure. Engineering Applications of Artificial Intelligence, 2010, 23 (4): 526-542
    [27] S. Bandyopadhyay, S. Saha, U. Maulik, K. Deb. A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA. IEEE Transactions on Evolutionary Computation, 2008, 12 (3): 269-283
    [28] Jie Yao, Nawwaf Kharma, Peter Grogono. Bi-Objective Multipopulation Genetic Algorithm for Multimodal Function Optimization. IEEE Transactions on Evolutionary Computation, 2010, 14 (1): 80-102
    [29] Mehmet Aci, Cigdem ?nan, Mutlu Avci. A hybrid classification method of k nearest neighbor, Bayesian methods and genetic algorithm. Expert Systems with Applications, 2010, 37 (7): 5061-5067
    [30] Edmundo Bonilla Huerta, Béatrice Duval, Jin-Kao Hao. A hybrid LDA and genetic algorithm for gene selection and classification of microarray data. Neurocomputing, 2010, 73 (13-15): 2375-2383
    [31] Sheng-Yong Yang, Qi Huang, Lin-Li Li, Chang-Ying Ma, Hui Zhang, Ru Bai, Qi-Zhi Teng, Ming-Li Xiang, Yu-Quan Wei. An integrated scheme for feature selection and parameter settingin the support vector machine modeling and its application to the prediction of pharmacokinetic properties of drugs. Artificial Intelligence in Medicine, 2009, 46 (2): 155-163
    [32] Cheng-Lung Huang, Chieh-Jen Wang. A GA-based feature selection and parameters optimization for support vector machines. Expert Systems with Applications, 2006, 31: 231-240
    [33] Kusum Deep, Krishna Pratap Singh, M.L. Kansal, C. Mohan. An interactive method using genetic algorithm for multi-objective optimization problems modeled in fuzzy environment. Expert Systems with Applications, 2011, 38 (3): 1659-1667
    [34] M. Bagheri, A.A. Jafari, M. Sadeghifar. Multi-objective optimization of ring stiffened cylindrical shells using a genetic algorithm. Journal of Sound and Vibration, 2011, 330 (3): 374-384
    [35] Yong Liang, Kwong-Sak Leung, Genetic Algorithm with adaptive elitist-population strategies for multimodal function optimization. Applied Soft Computing, 2011, 11 (2): 2017-2034
    [36] Eugene Edison, Tal Shima. Integrated task assignment and path optimization for cooperating uninhabited aerial vehicles using genetic algorithms. Computers & Operations Research, 2011, 38 (1): 340-356
    [37] Selma Ay?e ?zel. A Web page classification system based on a genetic algorithm using tagged-terms as features. Expert Systems with Applications, 2011, 38 (4): 3407-3415
    [38] Engin Avci. Selecting of the optimal feature subset and kernel parameters in digital modulation classification by using hybrid genetic algorithm–support vector machines: HGASVM. Expert Systems with Applications, 2009, 36 (2): 1391-1402
    [39] Chien-Pang Lee, Wen-Shin Lin, Yuh-Min Chen, Bo-Jein Kuo. Gene selection and sample classification on microarray data based on adaptive genetic algorithm/k-nearest neighbor method. Expert Systems with Applications, 2011, 38 (5): 4661-4667
    [40] A. Khazaee, A. Ebrahimzadeh. Classification of electrocardiogram signals with support vector machines and genetic algorithms using power spectral features. Biomedical Signal Processing and Control, 2010, 5 (4): 252-263
    [41] Kyung-Joong Kim, Sung-Bae Cho. An Evolutionary Algorithm Approach to Optimal Ensemble Classifiers for DNA Microarray Data Analysis. IEEE Transactions on Evolutionary Computation, 2008, 12 (3): 377-388
    [42] Hasan Ocak. Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm. Signal Processing, 2008, 88 (7): 1858-1867
    [43] Shijin Li, Hao Wu, Dingsheng Wan, Jiali Zhu. An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine. Knowledge-Based Systems, 2011, 24 (1): 40-48
    [44] Guo Yiqiang, Wu Yanbin, Ju Zhengshan, Wang Jun, Zhao Luyan. Remote sensing image classification by the Chaos Genetic Algorithm in monitoring land use changes. Mathematical and Computer Modelling, 2010, 51 (11-12): 1408-1416
    [45] J. Kennedy, R. Eberhart. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks. 1995, 4: 1942-1948
    [46] R. Eberhart, J. Kennedy. A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science. 1995, 39-43
    [47] M. Clerc, J. Kennedy. The particle swarm-explosion, stability and convergence in a multidimensional complex space. IEEE Transaction on Evolutionary Computation, 2002, 6 (2): 58-73
    [48] F. Van den Bergh, A. P. Engelbrecht. A new locally convergent particle swarm optimizer. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. 2002, 96-101
    [49] I. C.Trelea. The particle swarm optimization algorithm: Convergence analysis and parameter selection. Information Processing Letters, 2003, 85 (6): 317-325
    [50] V. Kadirkamanathan, K. Selvarajah, P. J. Fleming. Stability analysis of the particle dynamics in particle swarm optimizer. IEEE Transaction on Evolutionary Computation, 2006, 10 (3): 245-255
    [51] A. Chatterjee, P. Siarry. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Computers and Operations Research, 2006, 33 (3): 859-871
    [52] Z. H. Zhan, J. Xiao, et al. Adaptive control of acceleration coefficients for particle swarm optimization based on clustering analysis. In: Proceeding IEEE Congress on Evolutionary Computation. Singapore. 2007, 3276-3282
    [53] A. Ratnaweera, S. K. Halgamuge, H. Watson. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Transactions on Evolutionary Computation, 2004, 8 (3): 240-255
    [54] R. Mendes. Population Topologies and Their Influence in Particle Swarm Performance: [Doctoral Dissertation]. Braga, Portugal: Department of Information, University of Minho, 2004
    [55] J. Kennedy, R. Mendes. Population structure and particle swarm performance. In: Proceedings of the IEEE CEC. 2002, 1671-1676
    [56] Hu X, Eberhart R C. Multiobjective optimization using dynamic, neighborhood particle swarm optimization. In: Proceedings of the IEEE International Congress on Evolutionary Computation, Piscataway, NJ: IEEE Service Center, 2002: 1677-1681
    [57] Xiaodong Li, Niching Without Niching Parameters: Particle Swarm Optimization Using a Ring Topology. IEEE Transactions on Evolutionary Computation, 2010, 14 (1): 150-169
    [58] C.A.C. Coello, G.T. Pulido, M.S. Lechuga. Handling Multiple Objectives with Particle Swarm Optimization. IEEE Transactions on Evolutionary Computation, 2004, 8 (3): 256-279
    [59] Yixiong Feng, Bing Zheng, Zhongkai Li. Exploratory study of sorting particle swarm optimizer for multiobjective design optimization. Mathematical and Computer Modelling, 2010, 52, (11-12): 1966-1975
    [60] Kuo-Yang Tu, Zhan-Cheng Liang. Parallel computation models of particle swarm optimization implemented by multiple threads. Expert Systems with Applications, 2011, 38 (5): 5858-5866
    [61] S. Yang, M, Wang, L. Jiao. A Quantum Particle Swarm Optimization. In: Proceedings of the 2004 Congress on Evolutionary Computation. Piscataway, NJ: IEEE Press, 2004, 320-324
    [62] Xihuai Wang, Junjun Li. Hybrid Particle Swarm Optimization with Simulated Annealing. In: Proceedings of The 3rd International Conference on Machine Learning and Cybernetics. Piscataway, NJ: IEEE Press, 2002. 2402-2405
    [63] Fevrier Valdez, Patricia Melin, Oscar Castillo. An improved evolutionary method with fuzzy logic for combining Particle Swarm Optimization and Genetic Algorithms. Applied Soft Computing, 2011, 11 (2): 2625-2632
    [64] Shih-wei Lin, Kuo-ching Ying, Shih-chieh Chen, Zne-jung Lee. Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Systems with Applications, 2008, 35: 1817-1824
    [65] Cheng-Lung Huang, Jian-Fan Dun. A distributed PSO–SVM hybrid system with feature selection and parameter optimization. Applied Soft Computing, 2008, 8 (4): 1381-1391
    [66] J. Zhang, Y. Shi, Z. H. Zhan. Power electronic circuits design: A particle swarm optimization approach. SEAL, 2008:605-614
    [67] Revna Acar Vural, Ozan Der, Tulay Yildirim. Investigation of particle swarm optimization for switching characterization of inverter design. Expert Systems with Applications, 2011, 38 (5): 5696-5703
    [68] Ataollah Ebrahim Zadeh. Automatic recognition of radio signals using a hybrid intelligent technique. Expert Systems with Applications, 2010, 37 (8): 5803-5812
    [69] Alireza Alfi, Hamidreza Modares. System identification and control using adaptive particle swarm optimization. Applied Mathematical Modelling, 2011, 35 (3): 1210-1221
    [70] B. Samanta, C. Nataraj. Use of particle swarm optimization for machinery fault detection. Engineering Applications of Artificial Intelligence, 2009, 22 (2): 308-316
    [71] Z. H. Zhan, J. Zhang. Discrete particle swarm optimization for multiple destination routing problems. Evo Workshops, 2009: 117-122
    [72] E. Assareh, M. A. Behrang, M. R. Assari, A. Ghanbarzadeh. Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran. Energy, 2010, 35 (12): 5223-5229
    [73] Shih-Wei Lin, Yeou-Ren Shiue, Shih-Chi Chen, Hui-Miao Cheng. Applying enhanced data mining approaches in predicting bank performance: A case of Taiwanese commercial banks. Expert Systems with Applications, 2009, 36 (9): 11543-11551
    [74] M. P. Wachowiak, R. Smolikova, Y. F. Zheng. An approach to multimodal biomedical image registration utilizing particle swarm optimization. IEEE Transactions on Evolutionary Computation, 2004, 8 (3): 289-301
    [75] K. Gnanambal, N.S. Marimuthu, C.K. Babulal. Three-phase power flow analysis in sequence component frame using Hybrid Particle Swarm Optimization. Applied Soft Computing, 2011, 11 (2): 1727-1734
    [76] TAA Victoire, A. E. Jeyakumar. Reserve constrained dynamic dispatch of units with valve-point effects. IEEE Trans Power Syst, 2005, 20 (3): 1273-1282
    [77] Aris Kornelakis. Multiobjective Particle Swarm Optimization for the optimal design of photovoltaic grid-connected systems. Solar Energy, 2010, 84 (12): 2022-2033
    [78] N. K. Jerne. Towards a network theory of the immune system. Annual immunology,1974,125C: 373-389
    [79] J. D. Farmer, N. H. Paekard. The immune system,adaptation,and machine learning. Physica, 1986, 22 (l): 187-204
    [80] L. N. de Castro, F. J. Von Zuben. Learning and optimization using the clonal selection principle. IEEE Transaction on Evolutionary Computation, 2002, 6 (3): 239-251
    [81] S. Forrest, A. S. Perelson,L .Allen,et al. Self-nonself discrimination in a computer. In: Proceedings of the IEEE Symposium on Research in Security and Privacy. CA: IEEEComputer Society Press, 1994, 221-231
    [82] L. N. de Castro, Fernando J Von Zuben. AiNet: An Artificial Immune Network for Data Analysis. Internal Journal of Computation Intelligence and Application (IJCIA), 2001, 1 (3)
    [83] V. Cutello,G. Nicosia,M. Romco,P. S. Oliveto. On the convergence of immune algorithms. In: Proceedings of the IEEE Symposium on Foundations of Computational Intelligence. Honolulu, USA, 2007, 409-415
    [84] K. Y. Yang,Z. H. Sun,Y. Liang. A new multi-modal immune algorithm and its complete convergence analysis. In: Proceedings of the Third International Conference on Natural Computation. 2007, 3: 813-818
    [85] Ti eying Tang; Jiaju Qiu. An Improved Multimodal Artificial Immune Algorithm and its Convergence Analysis. In: Proceedings of the Sixth World Congress on Intelligent Control and Automation (WCICA 2006). 2006
    [86] Ilhan Aydin, Mehmet Karakose, Erhan Akin. A multi-objective artificial immune algorithm for parameter optimization in support vector machine. Applied Soft Computing, 2011, 11 (1): 120-129
    [87] Zhi-Hua Hu. A multiobjective immune algorithm based on a multiple-affinity model. European Journal of Operational Research, 2010, 202 (1): 60-72
    [88] Licheng Jiao; Yangyang Li; Maoguo Gong; Xiangrong Zhang. Quantum-Inspired Immune Clonal Algorithm for Global Optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38 (5): 1234-1253
    [89] Chenggong Zhang, Zhang Yi. A danger theory inspired artificial immune algorithm for on-line supervised two-class classification problem. Neurocomputing, 2010, 73: 1244–1255
    [90] Jiaquan Gao, Jun Wang. A hybrid quantum-inspired immune algorithm for multiobjective optimization. Applied Mathematics and Computation, 2011, 217 (9): 4754-4770
    [91] Jianyong Chen, Qiuzhen Lin, Zhen Ji. A hybrid immune multiobjective optimization algorithm. European Journal of Operational Research, 2010, 204 (2): 294-302
    [92] Rui Zhang, Cheng Wu. A hybrid immune simulated annealing algorithm for the job shop scheduling problem. Applied Soft Computing, 2010, 10 (1): 79-89
    [93] Rodrigo R. Sumar, Antonio Augusto Rodrigues Coelho, Leandro dos Santos Coelho. Use of an artificial immune network optimization approach to tune the parameters of a discrete variable structure controller. Expert Systems with Applications, 2009, 36 (3): 5009-5015
    [94] Zhuhong Zhang. Multiobjective optimization immune algorithm in dynamic environments andits application to greenhouse control. Applied Soft Computing, 2008, 8 (2): 959-971
    [95] Bruno B. Souza, Eduardo G. Carrano, Oriane M. Neto, Ricardo H.C. Takahashi Immune system memetic algorithm for power distribution network design with load evolution uncertainty. Electric Power Systems Research, 2011, 81 (2): 527-537
    [96] Anqiang Li, Liping Wang, Jiqing Li, Changming Ji. Application of immune algorithm-based particle swarm optimization for optimized load distribution among cascade hydropower stations. Computers & Mathematics with Applications, 2009, 57 (11-12): 1785-1791
    [97] Fábio Bertequini Le?o, Rodrigo A.F. Pereira, JoséR.S. Mantovani. Fault section estimation in electric power systems using an optimization immune algorithm. Electric Power Systems Research, 2010, 80 (11): 1341-1352
    [98] Anqiang Li, Liping Wang, Jiqing Li, Changming Ji. Application of immune algorithm-based particle swarm optimization for optimized load distribution among cascade hydropower stations. Computers & Mathematics with Applications, 2009, 57 (11-12): 1785-1791
    [99] Ali R?za Y?ld?z. A new design optimization framework based on immune algorithm and Taguchi's method. Computers in Industry, 2009, 60 (8): 613-620
    [100] Ali R?za Y?ld?z A novel hybrid immune algorithm for global optimization in design and manufacturing. Robotics and Computer-Integrated Manufacturing, 2009, 25 (2): 261-270
    [101] Maoguo Gong, Licheng Jiao, Xiangrong Zhang. A population-based artificial immune system for numerical optimization. Neurocomputing, 2008, 72 (1-3): 149-161
    [102] Konstantinos K. Delibasis, Pantelis A. Asvestas, George K. Matsopoulos. Automatic point correspondence using an artificial immune system optimization technique for medical image registration. Computerized Medical Imaging and Graphics, 2011, 35 (1): 31-41
    [103] A. Bagheri, M. Zandieh, Iraj Mahdavi, M. Yazdani. An artificial immune algorithm for the flexible job-shop scheduling problem. Future Generation Computer Systems, 2010, 26 (4):, 533-541
    [104] V. Cutello, G. Nicosia, M. Pavone, J. Timmis. An Immune Algorithm for Protein Structure Prediction on Lattice Models. IEEE Transactions on Evolutionary Computation, 2007, 11 (1): 101-117
    [105] N. Takahashi, T. Nishi. Global Convergence of Decomposition Learning Methods for Support Vector Machines. IEEE Transactions on Neural Networks, 2006, 17 (6): 1362-1369
    [106] Chih-Jen Lin. On the convergence of the decomposition method for support vector machines. IEEE Transactions on Neural Networks, 2001, 12 (6): 1288-1298
    [107] Hong Qiao, Yan-Guo Wang, Bo Zhang. A simple decomposition algorithm for support vector machines with polynomial-time convergence. Pattern Recognition, 2007, 40 (9): 2543-2549
    [108] C. Cortes, V. Vapnik. Support Vector Networks. Machine Learning, 1995, 20 (3): 273-297
    [109] E. Osuna, R. Freund, F. Girosi. An Improved Training Algorithm for Support Vector Machines. In: Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing. New York, 1997, 276-285
    [110] T. Joachims. Text Categorization with Support Vector Machines: Learning with Many Relevant Features. In: Proceedings of the European Conference on Machine Learning. Berlin: Springer, 1998, 137-142
    [111] J. Platt. Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines. Tech. Rep. MSR-TR-98-14, Microsoft Research, 1998
    [112] Zhongwei Li. A Support Vector Machine training Algorithm based on Cascade Structure. In: Proceedings of the First International Conference on Innovative Computing, Information and Control (ICICIC '06). 2006, 440-443
    [113] Chih-Chia Yao; Pao-Ta Yu. Effective Training of Support Vector Machines using Extractive Support Vector Algorithm. In: Proceedings of the 2007 International Conference on Machine Learning and Cybernetics. 2007, 3: 1808-1814
    [114] Liefeng Bo; Ling Wang; Licheng Jiao Training Hard-Margin Support Vector Machines Using Greedy Stagewise Algorithm. IEEE Transactions on Neural Networks, 2008, 19 (8): 1446-1455
    [115] Ying Zhang, Lijie Li. Model Selection in Support Vector Machines Using Self-Adaptive Genetic Algorithm. In: Proceedings of the 2010 International Symposium on Computational Intelligence and Design (ISCID). 2010, 114-118
    [116] J. Blondin, A. Saad. Metaheuristic techniques for Support Vector Machine model selection. In: Proceedings of the 2010 10th International Conference on Hybrid Intelligent Systems (HIS). 2010, 197-200
    [117] Xinjun Peng, Yifei Wang. A geometric method for model selection in support vector machine. Expert Systems with Applications, 2009, 36 (3): 5745-5749
    [118] Lei Wang, Ping Xue, Kap Luk Chan. Two Criteria for Model Selection in Multiclass Support Vector Machines. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38 (6): 1432-1448
    [119] Zongben Xu, Mingwei Dai, Deyu Meng. Fast and Efficient Strategies for Model Selection of Gaussian Support Vector Machine. IEEE Transactions on Systems, Man, and Cybernetics, PartB: Cybernetics, 2009, 39 (5): 1292-1307
    [120] M. Varewyck, J.-P. Martens. A Practical Approach to Model Selection for Support Vector Machines With a Gaussian Kernel. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2010, Accepted and in Press
    [121] Wei Jin, Jian-qi Zhang, Xiang Zhang. Face recognition method based on support vector machine and particle swarm optimization. Expert Systems with Applications, 2011, 38 (4): 4390-4393
    [122] Kyung-Soon Lee, Kyo Kageura. Virtual relevant documents in text categorization with support vector machines. Information Processing and Management, 2007, 43 (4)
    [123] Vikramjit Mitra, Chia-Jiu Wang, Satarupa Banerjee. Text classification: A least square support vector machine approach. Applied Soft Computing, 2007, 7 (3)
    [124] Kwang-Kyu Seo. An application of one-elass support vector machines ineontent-based image retrieval. Expert Systems with Applications, 2007, 33 (2): 491-498
    [125] Sheng-Fa Yuan, Fu-Lei Chu. Fault diagnostics based on particle swarm optimisation and support vector machines. Mechanical Systems and Signal Processing, 2007, 21 (4): 1787-1798
    [126] Xianlun Tang, Ling Zhuang, Jun Cai, Changbing Li. Multi-fault classification based on support vector machine trained by chaos particle swarm optimization. Knowledge-Based Systems, 2010, 23 (5): 486-490
    [127] Qi Wu, Zhonghua Ni. Car assembly line fault diagnosis based on triangular fuzzy support vector classifier machine and particle swarm optimization. Expert Systems with Applications, 2011, 38 (5): 4727-4733
    [128] L. J. Cao, F. Tay. Support Vector Machine with Adaptive Parameters in Financial Time Series Forecasting. IEEE Transactions on Neural Networks, 2003, 14 (6): 1506-1518
    [129] Ping-Feng Pai, Ming-Fu Hsu, Ming-Chieh Wang. A support vector machine-based model for detecting top management fraud. Knowledge-Based Systems, 2011, 24 (2): 314-321
    [130] Cheng-Lung Huang, Mu-Chen Chen, Chieh-Jen Wang. Credit scoring with a data mining approach based on support vector machines. Expert Systems with Applications, 2007, 33 (4): 847-856
    [131] Sheng-wei Fei. Diagnostic study on arrhythmia cordis based on particle swarm optimization-based support vector machine. Expert Systems with Applications, 2010, 37 (10):, 6748-6752
    [132] Qi Wu. A hybrid-forecasting model based on Gaussian support vector machine and chaoticparticle swarm optimization. Expert Systems with Applications, 2010, 37 (3): 2388-2394
    [133] Irene Kotsia, Ioannis Pitas. Facial expression recognition in image sequences using geometric deformation features and support vector machines. IEEE Transactions on Image Processing, 2007, 16 (1): 172-187
    [134] Jianmin Ma, Minh N. Nguyen, Jagath C. Rajapakse. Gene classification using codon usage and support vector machines. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2009, 6 (1): 134-143
    [135] Farid Melgani, Yakoub Bazi. Classification of Electrocardiogram signals with support vector machines and swarm optimization. IEEE Transactions on Information Technology in Biomedicine, 2008, 12 (5): 667-677
    [136] Hui-Ling Huang, Fang-Lin Chang. ESVM: Evolutionary support vector machine for automatic feature selection and classification of microarray data. BioSystems, 2007, 90: 516–528
    [137] Xiujuan Xu, Chunguang Zhou, Zhe Wang. Credit scoring algorithm based on link analysis ranking with support vector machine. Expert Systems with Applications, 2008
    [138] J. Yang, V. Honavar. Feature subset selection using a genetic algorithm. IEEE Intelligent Systems, 1998, 13 (2): 44–49
    [139] C. W. Hsu, C. C. Chang, C. J. Lin. A practical Guide to Support Vector Classification. http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf. 2008
    [140] M. L. Raymer, W. F. Punch, E. D. Goodman, L. A. Kuhn, & A. K. Jain. Dimensionality reduction using genetic algorithms. IEEE Transactions on Evolutionary Computation, 2000, 4 (2): 164–171
    [141] I. Guyon, J. Weston, J. Barnhill S., V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 2002, 46 (1–3): 389–422
    [142] K. Z Mao. Feature subset selection for support vector machines through discriminative function pruning analysis. IEEE Transactions on Systems, Man, and Cybernetics, 2004, 34 (1): 60–67
    [143] Mingyuan Zhao, Chong Fu, Luping Ji, Ke Tang, Mingtian Zhou. Feature selection and parameter optimization for support vector machines: A new approach based on genetic algorithm with feature chromosomes. Expert Systems with Applications, 2011, 38 (5): 5197-5204
    [144] L. Davis. Handbook of genetic algorithms. New York: Van Nostrand Reinhold, 1991
    [145] C.-C. Chang and C.-J. Lin. LIBSVM: A Library for Support Vector Machines.http://www.csie.ntu.edu.tw/~cjlin/libsvm. 2001
    [146] P. M. Murphy, D. W. Aha. UCI repository of machine learning database. http://www.ics.uci.edu/~mlearn/MLRepository.html. 1994
    [147] G. R?tsch. Benchmark data sets. http://ida.first.gmd.de/~raetsch/data/benchmarks.htm. 1999
    [148] J. Han & M. Kamber. Data mining: concepts and techniques. San Francisoc: Morgan Kaufmann, 2003
    [149] Kemal Polat, Seral Sahan, Halife Kodaz, Salih Gunes. Breast cancer and liver disorders classification using AIRS with performance evaluation by fuzzy resource allocation mechanism. Expert Systems with Applications, 2007, 32: 172-183
    [150] Kemal Polat, Salih Gunes. Breast cancer diagnosis using least square support vector machine. Digital signal processing, 2007, 17: 694-701
    [151] Janos Abonyi, Ferenc Szeifert. Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognition Letters, 2003, 24: 2195-2207
    [152] D. E. Goodman, L. Boggess, A. Watkins. Artificial immune system classification of multiple-class problems. In: Proceedings of the artifical neural networks in engineering. 2002, 179-183
    [153] Seral Ozsen, Salih Gunes. Attribute weighting via genetic algorithms for attribute weighted artificial immune system (AWAIS) and its application to heart disease and liver disorders problem. Expert Systems with Applications, 2009, 36: 386-392
    [154] Seral Sahan, Halife Kodaz, Salih Gunes, Kemal Polat. The medical applications of attribute weighted artificial immune system (AWAIS): Diagnosis of heart and diabetes. In: Proceedings of 4th international conference of on artificial immune systems-ICARIS. Canada, 2005, 456-468
    [155] Newton Cheung. Machine learning techniques for medical analysis: [B.Sc. Thesis]. School of Information Technology and Electrical Engineering, University of Queenland, 2001
    [156] Kwang In Kim, Keechul Jung, and Jin Hyung Kim. Texture-Based Approach for Text Detection in Images Using Support Vector Machines and Continuously Adaptive Mean Shift Algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligent, 2003, 25 (12): 1631-1639
    [157] Farid Melgani, Yakoub Bazi. Classification of Electrocardiogram Signals with Support Vector Machines and Particle Swarm Optimization. IEEE Transactions on Information Technology in Biomedicine, 2008, 12 (5): 667-677
    [158] Mingyuan Zhao, Jian Ren, Chong Fu, Luping Ji, Jianping Li, Mingtian Zhou. Parameter Optimization and Feature Selection for SVM Using PSO Algorithm Based on Feature Particles. Soft Computing, Submitted, under Review, 2011
    [159] Lin Shih-Wei, Chen Shih-Chieh, Wu Wen-Jie,·Chen Chih-Hsien. Parameter determination and feature selection for back-propagation network by particle swarm optimization. Knowledge Information System, 2009, 21: 249-266
    [160] Lin Shih-Wei, Chen Shih-Chieh. PSOLDA: A particle swarm optimization approach for enhancing classification accuracy rate of linear discriminant analysis. Applied Soft Computing, 2009, 9: 1008-1015
    [161] Yeh Wei-Chang, Chang Wei-Wen, Chung Yuk Ying. A new hybrid approach for mining breast cancer pattern using discrete particle swarm optimization and statistical method. Expert Systems with Applications, 2009, 36: 8204-8211
    [162] O’Neill Michael, Brabazon Anthony. Self-organising swarm (SOSwarm). Soft Comput, 2008 12: 1073–1080
    [163] L. N. de Castro, F. J. Von Zuben. Artificial Immune Systems: Part I—Basic Theory and Applications. http://www.dca.fee.unicamp.br/~lnunes/immune.html. 1999
    [164] Xinfu Li, Xuedong Tian. Two Steps Features Selection and Support Vector Machines for Web Page Text Categorization. Journal of Computational Information Systems, 2008, 4 (1): 133-138
    [165] L. Yu, H Chen, S. Wang, K. K. Lai. Evolving Least Squares Support Vector Machines for Stock Market Trend Mining. IEEE Transactions on Evolutionary Computation, 2009, 13 (1): 87-102
    [166] Mingyuan Zhao, Chong Fu, Luping Ji, Ke Tang, Mingtian Zhou. Clonal Selection Algorithm Based on Feature Antibodies for Feature Selection and Parameter Optimization of Support Vector Machines. Journal of Computational Information Systems, 2011, 7 (4): 1163-1172
    [167] Shih-Wei Lin, Zne-Jung Lee, Shih-Chieh Chen, Tsung-Yuan Tseng. Parameter determination of support vector machine and feature selection using simulated annealing approach. Applied Soft Computing, 2008, 8: 1505–1512
    [168] P. Benioff. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Statist. Phys., 1980, 22: 563-591
    [169] P. W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium: Foundations Computer Science. Sante Fe, NM,1994, 124-134
    [170] L. K. Grover. A fast quantum mechanical algorithm for database search. In: Proceedings of 28th ACM Symposium: Theory Computing. 1996, 212-219
    [171] K. H. Han, J. H. Kim. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Transactions on Evolutionary Computation, 2002, 6 (6): 580-593
    [172] K. H. Han, J. H. Kim. Quantum-inspired evolutionary algorithm with a new termination criterion, Hεgate and two-phase scheme. IEEE Transactions on Evolutionary Computation, 2004, 8 (2): 156-169
    [173] A. Narayanan, M. Moore. Quantum-inspired genetic algorithms. In: Proceedings of the IEEE 1996 International Conference on Evolutionary Computation. Nogaya, Japan, 1996, 61-66
    [174] Xiangrong Zhang and Licheng.Jiao. Simultaneous Feature Selection and Parameters Optimization for SVM by Immune Clonal Algorithm. Lecture Notes in Computer Science, Springer-Verlag. 2005: 905-912
    [175] E. P. William. Fundamental Immunology, 5th edition. Lippincott-Raven, 2003
    [176] T. J. Kindt, R. A. Goldsby, B. Osborn. Kuby Immunology, 6th edition. W.H. Freeman & Co Ltd, 2006
    [177] J. W. Kim, P J. Bentley. Towards an artificial immune system for network intrusion detection: an investigation of clonal selection with a negative selection operator. In: Proceedings of the 2001 Congress on Evolutionary Computation. Piscataway, NJ, USA: IEEE Press, 2001, 2: 1244–1252
    [178] Lei Zhang, Ren-hou Li. Designing of classifiers based on immune principles and fuzzy rules. Information Sciences, 2008, 178: 1836–1847
    [179] Seral Sahana, Kemal Polata, Halife Kodazb, Salih Gunes. A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis. Computers in Biology and Medicine, 2007, 37: 415-423
    [180] R, Storn, K. Price Price. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11 (4): 341?359
    [181] T. R. Golub, D .K. Slonim, P. Tamayo, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 1999, 286: 531–537
    [182] Cheng Cao, Richard Laurence Tutwiler, Semyon Slobounov. Automatic Classification of Athletes with Residual Functional Deficits Following Concussion by Means of EEG Signal Using Support Vector Machine. IEEE Transactions on Neural Systems and RehabilitationEngineering, 2008, 16 (4): 327-335
    [183] S. Peng, Q. Xu, X. B. Ling, X. Peng, W. Du, L. Chen. Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines. FEBS Lett. 2003, 555 (2): 358–362
    [184] Y. Wang, F. S. Makedon, J. C. Ford, J. Pearlman. HykGene: a hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data. Bioinformatics, 2005, 21 (8): 1530–1537
    [185] S. Li, X, Wu, X, Hu. Gene selection using genetic algorithm and support vectors machines. Soft Comput, 2008, 12:693–698
    [186] F. Tan, X. Fu, Y. Zhang, A. G. Bourgeois. A genetic algorithm-based method for feature subset selection. Soft Comput, 2008, 12:111–120
    [187] S. Li, X. Wu, M. Tan. Gene selection using hybrid particle swarm optimization and genetic algorithm. Soft Comput, 2008, 12:1039–1048
    [188] Chien-Pang Lee Yungho Leu. A novel hybrid feature selection method for microarray data analysis. Applied Soft Computing, 2011, 11: 208-213
    [189] Mingyuan Zhao, Chong Fu, Luping Ji, Mingtian Zhou. An Effective Search Method Based on Genetic Algorithm with Feature Chromosomes for Informative Gene Selection on Microarray Data. Journal of Information and Computational Science, 2010, 7 (13): 2837-2846
    [190] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra. D. Mack, A. Levine. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues by oligonucleotide arrays. Proceedings National Academy of Sciences, 1999, 96 (12), 6745-6750
    [191] I. Wadman, J. X. Li, R. O. Bash, A. Forster, H. Osada, Rabbitts, T. H. R. Baer. Specific in vivo association between the bHL H and LIM proteins implicated in human T cell leukemia. EMBO Journal, 1994, 13 (20): 4832-4839
    [192] M. Tatsuta, H. Iishi, M. Baba, R. Yamamoto, H. Uehara, A. Nakaizumi. Attenuation of vasoactive intestinal peptide enhancement of colon carcinogenesis by ornithine decarboxylase inhibitor. Cancer Lett, 1995, 93 (2): 219-225
    [193] A. Kübler, V. K. Mushahwar, L. R. Hochberg, J. P. Donoghue. BCI Meeting 2005—Workshop on Clinical Issues and Applications. IEEE Transaction on Neural Systems and Rehabilitation Engineering, 2006, 14 (2): 131-134
    [194] Jonathan R. Wolpaw, Gerald E. Loeb, Brendan Z. Allison, et al. BCI Meeting 2005—Workshop on Signals, Recording Methods. IEEE Transaction on Neural Systems andRehabilitation Engineering, 2006, 14 (2): 138-141
    [195] Febo Cincotti, Luigi Bianchi, Gary Birch, et al. BCI Meeting 2005—Workshop on Technology: Hardware and Software. IEEE Transaction on Neural Systems and Rehabilitation Engineering, 2006, 14 (2): 128-131
    [196] Dennis J. McFarland, Charles W. Anderson, Klaus-Robert Müller, Alois Schl?gl, Dean J. Krusienski. BCI Meeting 2005—Workshop on BCI Signals Processing: Feature Extraction and Translation. IEEE Transaction on Neural Systems and Rehabilitation Engineering, 2006, 14 (2): 135-138
    [197] U. Hoffmann, J.-M. Vesin, T. Ebrahimi. Spatial Filters for the Classification of Event-Related Potentials. In: Proceedings of 14th Eur. Symposium on Artif. Neural Networks (ESANN 2006), Bruges Belgium, 2006, 47-52
    [198] Gilles Blanchard, Benjamin Blankertz. BCI Competition 2003—Data SetⅡa: Spatial Patterns of Self-Controlled Brain Rhythm Modulations. IEEE Transaction on Biomedical Engineering, 2004, 51 (6): 1062-1066
    [199] Yijun Wang, Zhiguang Zhang, Yong li, Xiaorong Gao, Shangkai Gao, Fushang Yang. BCI Competition 2003—Data SetⅣ: An Algorithm Based on CSSD and FDA for Classifying Single-Trial EEG. IEEE Transaction on Biomedical Engineering, 2004, 51 (6): 1081-1086
    [200] Matthias Kaper, Peter Meinicke, ULF Grosselathoefer, Thomas Lingner, Helge Ritter. BCI Competition 2003—Data SetⅡb: Support Vector Machines for the P300 Speller Paradigm. IEEE Transaction on Biomedical Engineering, 2004, 51 (6): 1073-1076
    [201] Mingyuan Zhao, Mingtian Zhou, Qingxin Zhu, Ping Yang. Feature Extraction and Parameters Selection of Classification Model on Brain-Computer Interface. In: Proceedings of the 7th IEEE International Conference on Bioinformatics and Bioengineering (BIBE 2007). 2007
    [202] Mingyuan Zhao, Ke Tang, Fengli Zhang, Mingtian Zhou, Ling Zeng. Model Parameter Selection of Support Vector Machines. In: Proceedings of the IEEE International Conferences on Cybernetics & Intelligent Systems and Robotics, Automation & Mechatronics (CIS-RAM 2008). 2008