去整合素Echistatin对糖尿病兔晶状体后囊膜混浊的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病性白内障是糖尿病第二位常见眼部并发症,手术是其唯一有效治疗手段,后发性白内障(即后囊膜混浊(posterior capsular opacification,PCO))是白内障摘除术后最常见并发症,不仅导致术后视力下降,还对糖尿病眼后段病变的诊断和治疗效果造成较大影响。晶状体上皮细胞增殖和上皮-间质转分化(epithelial-mesenchymal transition, EMT)在PCO的发生和发展中起重要作用,而细胞间及细胞与细胞外基质间粘附是其生存和增殖的基础。细胞粘附分子-整合素参与调控细胞粘附、迁移、增殖及分化等众多生理过程,对阻断整合素的调控作用是否可以有效抑制糖尿病性PCO发生和发展的研究目前甚少。前期实验已证实去整合素Echistatin (Ecs)可明显抑制体外培养的人晶状体上皮细胞(LensePitheliumcells,LECs)的增殖、粘附及移行;并发现糖尿病兔晶状体囊外摘除术后(extrocapsular lensextration,ECLE)出现PCO的最早时间(10天)和最显著时间(6周)均较正常血糖兔(14天,12周)提前,同期后囊膜混浊程度较正常血糖兔提高。因此为探索去整合素能否有效抑制糖尿病性PCO的发生发展,本实验拟利用糖尿病兔眼晶状体后囊膜混浊模型,观察去整合素Ecs对糖尿病性PCO分级的影响,及体内LECs增殖、细胞粘附和上皮-间质转分化(EMT)的变化;同时检测血清和房水中糖尿病并发症相关因子,即AGEs及IGF-1的含量变化,探讨Ecs是否通过对糖尿病并发症致病因子的调控从而影响PCO的发生发展;并进一步探讨Ecs对细胞内信号传导通路中的关键信号因子PI3K及其下游信号因子ILK基因表达的干预作用,初步明确Ecs在LECs中作用的分子途径,为去整合素Ecs防治糖尿病性后发性白内障提供有力的理论依据。
     第一部分Ecs对糖尿病兔PCO分级,LECs增殖、细胞间连接及EMT的影响
     目的:
     LECs在晶状体后囊膜上的增殖和上皮细胞-间质转化(EMT)是形成PCO的重要环节。细胞粘附则是LECs生存及出现其他生物学行为的基础,细胞间连接蛋白的表达可以在一定程度上反映细胞粘附的情况。亦是PCO形成的重要环节。整合素不仅介导了细胞的粘附,还在细胞增殖、EMT中发挥了重要作用,本实验拟通过观察整合素的阻滞剂-去整合素echistatin对糖尿病兔PCO形成,LECs增殖、粘附及间质转化的影响,了解去整合素是否能有效抑制糖尿病兔PCO的发生发展,并尝试阐述其分子机制。
     方法:
     应用四氧嘧啶建立糖尿病兔模型,每只兔右眼均行晶状体囊外摘除术(extrocapsular lens extration,ECLE),术毕随机分组,对照组在术眼晶状体囊袋内注入0.2ml高压蒸馏水,Ecs组则注入0.2ml10μg/ml Ecs。分别在术后10天(10d)及6周(6w)观察以下指标:⑴裂隙灯下观察术眼晶状体后囊膜混浊情况并分级;⑵应用免疫组化法检测Ecs对LECs中PCNA表达的影响。⑶应用免疫荧光法检测Ecs对晶状体后囊膜上LECs中连接蛋白43表达的影响;⑷应用免疫组化法和荧光定量PCR(Real-TimeQuantitative PCR, RT-PCR)法检测Ecs对晶状体后囊膜上α-SMA和Ⅳ型胶原表达的影响。
     结果:
     ⑴术后10天对照组和Ecs组间PCO分级无明显差异(P=0.495),术后6周Ecs可明显降低糖尿病兔PCO分级(P=0.025)。⑵术后10天及6周Ecs
     组LECs中PCNA的表达明显低于对照组(p=0.031,0.021)。⑶术后10天及6周对照组晶状体后囊膜上Cx43表达明显增强,而Ecs组仅见少量表达,两组间存在显著差异(p=0.007,<0.001),提示Ecs可有效抑制糖尿病兔模型中LECs间连接蛋白43的表达。⑷术后10天,免疫组化及RT-PCR结果均显示α-SMA在晶状体后囊膜上的表达两组间无明显差异(p>0.05),术后6周对照组晶状体后囊膜上α-SMA表达显著增多,而Ecs组仅少量增加,表达较对照组明显降低(p<0.05),提示Ecs可有效抑制术后晚期α-SMA的表达。⑸RT-PCR结果显示晶状体后囊膜上Ⅳ型胶原表达,术后10天两组间无明显差异(p=0.157),术后6周Ecs组较对照组表达明显增降低(p=0.049);而免疫组化结果显示无论是10d或6w,Ecs组Ⅳ型胶原表达均较对照组显著减少(p=0.037,0.001)。提示Ecs可有效抑制Ⅳ型胶原的表达,可能部分Ⅳ型胶原mRNA未翻译为蛋白。
     结论:
     糖尿病兔PCO模型中,Ecs可有效抑制PCNA、Cx43、α-SMA、Ⅳ型胶原表达,降低PCO的分级,抑制PCO的发生和发展。
     第二部分Ecs对糖尿病相关因子AGEs、IGF-1及PI3K/ILK信号通路的影响研究
     目的:
     晚期糖基化终末产物(advanced glycation end products,AGEs)和胰岛素样生长因子-1(insulin-like growth actor1,IGF-1)与多种糖尿病并发症的发生均有密切关系,其是否也参与了糖尿病兔PCO的形成? Ecs发挥抑制PCO的作用是否与改变以上两种糖尿病并发症相关因子的表达相关?整合素信号通路中哪些信号因子参与了上述作用的调控?本课题中我们通过一系列实验来探讨以上三个问题的答案,以期进一步了解Ecs抑制PCO发生发展的机制。
     方法:
     将兔子分为正常血糖对照组,糖尿病组及Ecs组,所有兔子行ECLE术,分别采集术后10天和6周血清及术眼房水,通过ELISA法检测各标本中AGEs和IGF-1含量的变化。取糖尿病组及Ecs组中兔术眼晶状体后囊膜,通过RT-PCR法检测ILK、PI3K的基因表达变化。
     结果:
     ELISA检测结果提示术后10d及6w,糖尿病组及Ecs组血清和房水中AGEs和IGF-1的含量均明显高于对照组(P<0.05);在糖尿病兔模型中,Ecs组房水中IGF-1含量明显低于糖尿病组(P<0.05),但血清及房水中AGEs含量及血清中IGF-1含量Ecs组与糖尿病组间差异无统计学意义(P>0.05)。RT-PCR检测结果显示术后10天及6周,与糖尿病组相比,Ecs组晶状体后囊膜上PI3K及ILK mRNA表达下调(P<0.05)。
     结论:
     AGEs和IGF-1可能参与了糖尿病兔PCO的发生发展过程,Ecs对糖尿病兔房水中IGF-1的表达有明显抑制作用,可能是其抑制PCO发展的机制之一。Ecs通过下调糖尿病兔晶状体后囊膜上ILK和PI3K的表达,阻碍ILK和PI3K之间信号传导,从而抑制PCO发展。
Diabetes is a kind of chronic disease with high incidence in the world.There are2.8%of people with it in global population, and it will increase to4.4%by2030. Including China, the United States and India occupied the topthree of the world. Diabetes usely incorporates many kinds of complications.Among them, diabetic cataract is the second common eye diabetes complication.Although the control of blood glucose can slow down its development, once thevision affected significantly, surgery is the only effective treatment. Aftercataract is the most common complication late surgery causing the restoredvision falling again. It affects the diabetic fundus examination, retinalphotocoagulation and vitreous surgery et al. Based on the status quo, muchattention has been paid to the solution that how to restore the best vision forthese patients and how to reduce the PCO formation.
     Current research suggests the main reason causing posterior capsularopacity is the lens epithelial cells residualed in anterior lens capsule and theequator postoperative proliferates, migrates and adheres to the posterior capsular,and epithelial-mesenchymal transition (EMT). Adhesion between cells to cellsand cells to extracellular matrix (ECM) is the foundation of their survival and proliferation, migration. And this kind of adhesive is regulated by cell adhesionmolecules. In cell adhesion molecule super family, integrin is considered thattake the most important role in above adhesion function. Integrin has been foundthat it not only participates in adhesion between cells and cells with extracellularmatrix, also affect cell proliferation, differentiation, survival and apoptosisprocess, etc. It is not only the essential cell molecular in embryonic period forlens epithelial cells normal growth and maintain normal phenotype, but alsoparticipated in the adhesion, migration, proliferation and epithelial-mesenchymal transition of lens epithelial cells after cataract surgery andpromoted the PCO occurrence and development.
     In addition to the LECs anomalies biological behavior stimulated bysurgical trauma and inflammation, high glucose and many diabetes relatedpathogenic factors all make the incidence of diabetic PCO significantly higherthan PCO with normal blood glucose. Whether integrin plays an important rolein it? Whether blocking integrin can effectively restrain the development andprogression of the diabetic PCO? Related research is currently very little.Disintegrin is a kind of protein molecule consists of49-84amino acids. It is richin the arginine-glycine-aspartate (Arg-Gly-Asp, RGD) sequence or glycine–aspartic-acid lysine (Lys-Gly-Asp, KGD is) sequence which can be identifiedby integrin. Through them, disintegrin bind with integrin receptors on cells andcompetitively inhibiting the connection between integrins and extracellularmatrix which owns RGD or KGD sequence, thereby inhibiting the physiologicalfunctions of integrins in cell adhesion, migration and other.
     Our previous studies have confirmed that disintegrin Echistatin (Ecs) caninhibit the adhesion, migration and proliferation of human LECs in vitro. Nowwe took advantage of diabetic rabbits PCO model to study the role of Ecs on PCO, LECs proliferation, cells connection, EMT and the levels change ofdiabetes complications related factors of diabetic rabbits(AGEs, IGF–1)andthe key signal factor (PI3K, ILK) to provide a theoretical basis for applyingdisintegrin Ecs on prevention and treatment diabetic PCO.
     PART Ⅰ the role of Ecs in PCO grading and proliferating cell nuclearantigen(PCNA), Cx43, nchymal-epithelial transition (EMT) on LECs ofdiabetic rabbit
     Objective:
     LECs proliferation and epithelial-mesenchymal transition (EMT) is closelyrelated to the formation of PCO. Migration of the residual LECs in capsular bagafter surgery to posterior capsular and the proliferation, EMT, abnormalsynthesis and secretion of a large number of extracellular cell matrix(ECM) andcollagen deposition cause opacity and shrinkage of the posterior capsular,followed by the formation of PCO. Currently, integrin, the cell adhesionmolecules, is considered not only mediated cell adhesion, also plays animportant role in PCO. In this study we proposed to understand whetherdisintegrin can effectively inhibit the diabetic PCO and try to expound itsmolecular mechanism by observing the role of disintegrin echistatin in PCOgrade, LECs PCNA, cell connection and EMT in diabetic rabbit PCO model.
     Method:
     Rabbits were induced diabetes with alloxan and implemented lensextraction surgery. Then the rabbits in control group or Ecs group were injectedsterilization distilled water or10μg/ml echistatin in len capsule respectively.Ten days after surgery (10d) and6weeks (6w), the following indicators were observed: the posterior capsular opacity grade were assessed by slit lamp. Theexpression of LECs PCNA was determined by immunohistochemistry. Theexpression of connection43on posterior capsular was evaluated byimmunofluorescence. The expressions of α-SMA and collagen type Ⅳweredetermined by immunohistochemistry and RT-PCR.
     Results:
     The PCO grading of Ecs group was significantly lower than that of thecontrol group at6weeks after surgery though no significant difference betweenthem at10days.. The expression of PCNA and Cx43was decreased in Ecsgroup at10d and6w postoperatively. Immunohistochemistry and RT-PCRresults indicated that, at6weeks after surgery, α-SMA was down-regulated inEcs group. RT-PCR results showed that, compared with the control group,theexpression of collagen type Ⅳon lens posterior capsular membrane in Ecsgroup has no significant difference at10days postoperatively, but at6weekswhich was significantly increased; while immunohistochemistry showed either10days or6weeks, the expression of collagen type Ⅳ in Ecs group wassignificantly reduced. It is suggesting that maybe part collagen type Ⅳ mRNAwas not translated into proteins ultimately.
     Conclusion:
     In diabetic rabbit model, PCNA, Cx43, α-SMA, Ⅳcollagen expression onlens posterior capsule membrane can be effectively inhibited by Ecs. This maythe reason that Ecs restrain the development of PCO and decrease it grading.
     PART Ⅱ Impact of study Ecs on diabetes-related factors AGES, IGF-1and PI3K/ILK signaling pathways
     Purpose:
     Studies have shown that advanced glycation end products (AGEs) andinsulin-like growth factor-1(IGF-1) are closely linked with the occurrence ofvarious complications of diabetes. whether they are involved in the formation ofPCO diabetic rabbit? Whether Ecs played a role in suppressing PCO are relatedwith the content change of of these two factors and what signal factors involvedin the above process?In this study, we designed a series of experiments toexplore the answers to these questions in order to further understanding themolecular mechanism of Ecs inhibition of PCO development.
     Methods:
     rabbits were divided into nondiabetes group(NDM), diabetes group(DM)and Ecs group. Ten days or6weeks after extrocapsular lens extration (ECLE),all rabbits were executed and collected serum and aqueous humor, which weredetected the content change of AGEs and IGF-1by ELISA method. Theexpression of ILK, PI3K on diabetic rabbits lens posterior capsule membrane indiabetes group and Ecs group were determined by RT-PCR.
     Results:
     ELISA results indicated, at either10days or6weeks postoperative, theAGEs and IGF-1levels in serum and aqueous humor of diabetes rabbits weresignificantly higher than that of nondiabetes rabbit. Compared with diabetesgroup, the IGF-1in aqueous humor of Ecs group was significantly decreasedand the expressions of ILK and PI3K on posterior capsular were down-regulation.
     Conclusion:
     AGEs and IGF-1may be involved in the development of diabetic rabbitPCO, Ecs decreased the content of IGF1in aqueous humor may be one of thereasons for prevention PCO. ILK and PI3K are downstream signaling moleculesof integrin. Ecs inhibited the development of PCO by down-regulating ILK andPI3K expression.
引文
1纪立农.大力开展转化医学研究,促进糖尿病防治指南的落实,努力实现国际糖尿病联盟全球糖尿病防治10年规划[J].中国糖尿病杂志,2012,1:003.
    2Yang W.,Lu J.,Weng J.,et al. Prevalence of diabetes among men andwomen in China[J]. New England Journal of Medicine,2010,362(12):1090-1101.
    3张超,王陆飞,董宇晨,et al.糖尿病性白内障发病机制,流行病学与治疗的新进展[J].中国老年学杂志,2012,32(005):1082-1085.
    4Koo E.,Chang J.R.,Agron E.,et al. Ten-year incidence rates ofage-related cataract in the Age-Related Eye Disease Study (AREDS):AREDS report no.33[J]. Ophthalmic Epidemiol,2013,20(2):71-81.
    5Awasthi N.,Guo S.,Wagner B.J. Posterior capsular opacification: aproblem reduced but not yet eradicated[J]. Arch Ophthalmol,2009,127(4):555-62.
    6Guarino M.,Tosoni A.,Nebuloni M. Direct contribution of epitheliumto organ fibrosis: epithelial-mesenchymal transition[J]. Hum Pathol,2009,40(10):1365-76.
    7Laurent M.,Kern P.,Courtois Y.,et al. Synthesis of types I, III and IVcollagen by bovine lens epithelial cells in long-term culture[J].Experimental cell research,1981,134(1):23-31.
    8Eldred J.,Dawes L.,Wormstone I. The lens as a model for fibroticdisease[J]. Philosophical Transactions of the Royal Society B: BiologicalSciences,2011,366(1568):1301-1319.
    9Walker J.,Menko A.S. Integrins in lens development and disease[J]. ExpEye Res,2009,88(2):216-25.
    10Grashoff C.,Thievessen I.,Lorenz K.,et al. Integrin-linked kinase:integrin’s mysterious partner[J]. Current opinion in cell biology,2004,16(5):565-571.
    11Han S.Y.,Kang Y.S.,Jee Y.H.,et al. High glucose and angiotensin IIincrease beta1integrin and integrin-linked kinase synthesis in culturedmouse podocytes[J]. Cell Tissue Res,2006,323(2):321-32.
    12Ohnishi M.,Hasegawa G.,Yamasaki M.,et al. Integrin-linked kinaseacts as a pro-survival factor against high glucose-associated osmotic stressin human mesangial cells[J]. Nephrology Dialysis Transplantation,2006,21(7):1786-1793.
    13Liu X.C.,Liu B.C.,Zhang X.L.,et al. Role of ERK1/2and PI3-K inthe regulation of CTGF-induced ILK expression in HK-2cells[J]. ClinChim Acta,2007,382(1-2):89-94.
    14周星,谭少健,梁皓,et al.去整合素echistatin对人晶状体上皮细胞增生,黏附,移行的影响[J].中华实验眼科杂志ISTIC,2013,31(4)
    15韦琦,陈金卯,黄敏丽,et al.糖尿病兔晶状体后囊膜混浊模型的建立[J].中华实验眼科杂志,2011,29(002):130-134.
    16丁文君,韦琦,梁皓,et al.糖尿病兔后发性白内障发生过程中晶状体上皮细胞增殖的变化[J].眼科新进展,2012,32(1):5-7.
    17Wang S.C. PCNA: a silent housekeeper or a potential therapeutictarget?[J]. Trends Pharmacol Sci,2014,35(4):178-186.
    18Frisch S.M.,Francis H. Disruption of epithelial cell-matrix interactionsinduces apoptosis[J]. J Cell Biol,1994,124(4):619-26.
    19Khwaja A.,Rodriguez-Viciana P.,Wennstrom S.,et al. Matrixadhesion and Ras transformation both activate a phosphoinositide3-OHkinase and protein kinase B/Akt cellular survival pathway[J]. EMBO J,1997,16(10):2783-93.
    20Odrich M.G.,Hall S.J.,Worgul B.V.,et al. Posterior capsuleopacification: experimental analyses[J]. Ophthalmic Res,1985,17(2):75-84.
    21Shearer M.,Taylor‐Papadimitriou J. Anchorage‐independent growthof normal calf lens epithelial cells and effect of SV40transformation ontheir growth properties[J]. Journal of cellular physiology,1981,108(3):385-391.
    22Geiger B.,Yamada K.M. Molecular architecture and function of matrixadhesions[J]. Cold Spring Harb Perspect Biol,2011,3(5)
    23金伯泉.细胞和分子免疫学[M].科学出版社,2001.
    24Barbour W.,Saika S.,Miyamoto T.,et al. Expression patterns of β1-related α integrin subunits in murine lens during embryonicdevelopment and wound healing[J]. Current eye research,2004,29(1):1-10.
    25Nishi O.,Nishi K.,Akaishi T.,et al. Detection of cell adhesionmolecules in lens epithelial cells of human cataracts[J]. InvestOphthalmol Vis Sci,1997,38(3):579-85.
    26Beck R.,Nebe B.,Guthoff R.,et al. Inhibition of lens epithelial celladhesion by the calcium antagonist Mibefradil correlates with impairedintegrin distribution and organization of the cytoskeleton[J]. Graefes ArchClin Exp Ophthalmol,2001,239(6):452-8.
    27Colitz C.M.,Malarkey D.,Dykstra M.J.,et al. Histologic andimmunohistochemical characterization of lens capsular plaques in dogswith cataracts[J]. Am J Vet Res,2000,61(2):139-43.
    28Lovicu F.J.,Schulz M.W.,Hales A.M.,et al. TGFbeta inducesmorphological and molecular changes similar to human anteriorsubcapsular cataract[J]. Br J Ophthalmol,2002,86(2):220-6.
    29Latvala T.,Uusitalo M.,Puolakkainen P.,et al. Immunolocalization oftransforming growth factor-beta1and tenascin in human secondarycataract[J]. Acta Ophthalmol Scand,2000,78(3):344-7.
    30Wunderlich K.,Pech M.,Eberle A.N.,et al. Expression of connectivetissue growth factor (CTGF) mRNA in plaques of human anteriorsubcapsular cataracts and membranes of posterior capsule opacification[J].Curr Eye Res,2000,21(2):627-36.
    31Galliher A.J.,Schiemann W.P. Beta3integrin and Src facilitatetransforming growth factor-beta mediated induction ofepithelial-mesenchymal transition in mammary epithelial cells[J]. BreastCancer Res,2006,8(4): R42.
    32Gould R.J.,Polokoff M.A.,Friedman P.A.,et al. Disintegrins: a familyof integrin inhibitory proteins from viper venoms[J]. Proc Soc Exp BiolMed,1990,195(2):168-71.
    33Kim J.T.,Lee D.H.,Chung K.H.,et al. Inhibitory effects of salmosin,a disintegrin, on posterior capsular opacification in vitro and in vivo[J].Exp Eye Res,2002,74(5):585-94.
    34张鸿侃,谭少健,梁皓,et al.去整合素kistrin对人晶状体上皮细胞株凋亡的影响[J].眼科新进展,2009,29(9):667-670.
    35谭少健,韦琦,姬翔,et al.蛇毒去整合素Kistrin对正常及糖尿病兔LECs增殖的抑制作用[J].眼科新进展,2011,31(1):1-4.
    36储昭节.整合素连接激酶在高浓度葡萄糖诱导的人晶状体上皮细胞生物学行为变化中的作用[D].第四军医大学,2009.
    37White T.W.,Bruzzone R. Intercellular communication in the eye:clarifying the need for connexin diversity[J]. Brain Res Brain Res Rev,2000,32(1):130-7.
    38Goliger J.A.,Paul D.L. Expression of gap junction proteins Cx26,Cx31.1, Cx37, and Cx43in developing and mature rat epidermis[J]. DevDyn,1994,200(1):1-13.
    39Harris A.L. Emerging issues of connexin channels: biophysics fills thegap[J]. Q Rev Biophys,2001,34(3):325-472.
    40李祖国,张进华.整合素β1对大肠癌细胞与血管内皮细胞间细胞通讯的影响[J].第一军医大学学报,2001,21(3):171-172.
    41Batra N.,Burra S.,Siller-Jackson A.J.,et al. Mechanicalstress-activated integrin α5β1induces opening of connexin43hemichannels[J]. Proceedings of the National Academy of Sciences,2012,109(9):3359-3364.
    42Re F.,Zanetti A.,Sironi M.,et al. Inhibition of anchorage-dependentcell spreading triggers apoptosis in cultured human endothelial cells[J]. JCell Biol,1994,127(2):537-46.
    43胡凤婷,谭少健,梁皓,et al.去整合素kistrin对兔晶状体上皮细胞凋亡及连接蛋白43表达的影响[J].眼科新进展,2010,30(3):207-209.
    44Cusato K.,Ripps H.,Zakevicius J.,et al. Gap junctions remain openduring cytochrome c-induced cell death: relationship of conductance to'bystander' cell killing[J]. Cell Death Differ,2006,13(10):1707-14.
    45Kalluri R.,Neilson E.G. Epithelial-mesenchymal transition and itsimplications for fibrosis[J]. J Clin Invest,2003,112(12):1776-84.
    46Pau H.,Novotny G.E.,Arnold G. Ultrastructural investigation ofextracellular structures in subcapsular white corrugated cataract (anteriorcapsular cataract)[J]. Graefes Arch Clin Exp Ophthalmol,1985,223(2):96-100.
    47Hatae T.,Ishibashi T.,Yoshitomi F.,et al. Immunocytochemistry oftypes I-IV collagen in human anterior subcapsular cataracts[J]. GraefesArch Clin Exp Ophthalmol,1993,231(10):586-90.
    48De Iongh R.,Wederell E.,Lovicu F.,et al. Transforming growthfactor-β-induced epithelial-mesenchymal transition in the lens: a modelfor cataract formation[J]. Cells Tissues Organs,2005,179(1-2):43-55.
    49Olivero D.K.,Furcht L.T. Type IV collagen, laminin, and fibronectinpromote the adhesion and migration of rabbit lens epithelial cells invitro[J]. Invest Ophthalmol Vis Sci,1993,34(10):2825-34.
    50Oharazawa H.,Ibaraki N.,Lin L.R.,et al. The effects of extracellularmatrix on cell attachment, proliferation and migration in a human lensepithelial cell line[J]. Exp Eye Res,1999,69(6):603-10.
    51储昭节,周健,惠延年. ILK siRNA对高浓度葡萄糖诱导的人LECs增生和上皮向间质转化的抑制作用[J].眼科研究,2009,(05):353-357.
    52Zablocki G.J.,Ruzycki P.A.,Overturf M.A.,et al. Aldosereductase-mediated induction of epithelium-to-mesenchymal transition(EMT) in lens[J]. Chemico-biological interactions,2011,191(1):351-356.
    53J. W.,S. M.A. Integrins in lens development and disease[J]. Exp Eye Res,2009,88(2):216-25.
    54Marcantonio J.M.,Syam P.P.,Liu C.S.,et al. Epithelialtransdifferentiation and cataract in the human lens[J]. Exp Eye Res,2003,77(3):339-46.
    55谈艳,杜勤,盛净.高糖对大鼠GMC表面β_1整合素表达和ECM分泌的影响[J].上海第二医科大学学报,2004,(08):635-637+666.
    56!!! INVALID CITATION!!!,
    57Mamuya F.A.,Wang Y.,Roop V.H.,et al. The roles of alpha integrinsin lens EMT and posterior capsular opacification[J]. J Cell Mol Med,2014,
    58朱玉广,朱艳,王杰,et al.整合素-β1在转化生长因子-β2诱导晶状体上皮细胞转化中的作用[J].山东大学学报(医学版),2012,(11):58-61+66.
    59Shah P.P.,Fong M.Y.,Kakar S.S. PTTG induces EMT through integrinαVβ3-focal adhesion kinase signaling in lung cancer cells[J]. Oncogene,2012,31(26):3124-3135.
    60Ebihara Y.,Kato S.,Oshika T.,et al. Posterior capsule opacificationafter cataract surgery in patients with diabetes mellitus[J]. J CataractRefract Surg,2006,32(7):1184-7.
    61Elgohary M.A.,Hollick E.J.,Bender L.E.,et al. Hydrophobic acrylicand plate-haptic silicone intraocular lens implantation in diabetic patients:pilot randomized clinical trial[J]. J Cataract Refract Surg,2006,32(7):1188-95.
    62Lu Q.,Yang T.,Zhang M.,et al. Preventative Effects of Ginkgo bilobaExtract (EGb761) on High Glucose-Cultured Opacity of Rat Lens[J].Phytother Res,2013,
    63Liu Y. New insights into epithelial-mesenchymal transition in kidneyfibrosis[J]. Journal of the American Society of Nephrology,2010,21(2):212-222.
    64Yang Y.,Guo L.,Blattner S.M.,et al. Formation and phosphorylationof the PINCH-1–integrin linked kinase–α-parvin complex areimportant for regulation of renal glomerular podocyte adhesion,architecture, and survival[J]. Journal of the American Society ofNephrology,2005,16(7):1966-1976.
    65丁文君,韦琦,梁皓,et al.糖尿病兔后发性白内障发生过程中晶状体上皮细胞增殖的变化[J].眼科新进展,2012,(01):5-7.
    66陈颖,杜之渝.糖基化终末产物在眼部疾病中的作用[J].眼科研究,2008,4:028.
    67Herold K.,Moser B.,Chen Y.,et al. Receptor for advanced glycationend products (RAGE) in a dash to the rescue: inflammatory signals goneawry in the primal response to stress[J]. J Leukoc Biol,2007,82(2):204-12.
    68Hong S.B.,Lee K.W.,Handa J.T.,et al. Effect of advanced glycationend products on lens epithelial cells in vitro[J]. Biochem Biophys ResCommun,2000,275(1):53-9.
    69罗怡,吴继红,张圣海,et al.老年性白内障合并2型糖尿病患者晶状体上皮细胞转化生长因子β表达及其与晚期糖基化终末产物的相关性[J].中国眼耳鼻喉科杂志,2010,(04):212-214+273.
    70Xu Z.,Ma D.Z.,Wang L.Y.,et al. Transforming growth factor-beta1stimulated protein kinase B serine-473and focal adhesion kinase tyrosinephosphorylation dependent on cell adhesion in human hepatocellularcarcinoma SMMC-7721cells[J]. Biochem Biophys Res Commun,2003,312(2):388-96.
    71Zaman G.,Sunters A.,Galea G.L.,et al. Loading-related regulation oftranscription factor EGR2/Krox-20in bone cells is ERK1/2protein-mediated and prostaglandin, Wnt signaling pathway-, andinsulin-like growth factor-I axis-dependent[J]. J Biol Chem,2012,287(6):3946-62.
    72Ruberte J.,Ayuso E.,Navarro M.,et al. Increased ocular levels ofIGF-1in transgenic mice lead to diabetes-like eye disease[J]. J Clin Invest,2004,113(8):1149-57.
    73褚俏梅,李方都,张树芬,et al.糖尿病性白内障房水中细胞因子IGF-1, bFGF和IL-6的含量测定[J].眼科新进展,2010,30(6):531-533.
    74何花,张虹,罗爱珍.糖尿病性白内障晶状体上皮细胞凋亡与增殖特性的实验研究[J].眼科新进展,2003,23(5):323-327.
    75Iyengar L.,Patkunanathan B.,McAvoy J.W.,et al. Growth factorsinvolved in aqueous humour-induced lens cell proliferation[J]. GrowthFactors,2009,27(1):50-62.
    76Kampmeier J.,Baldysiak-Figiel A.,de Jong-Hesse Y.,et al. Effect ofgrowth factors on proliferation and expression of growth factor receptorsin a human lens epithelial cell line[J]. J Cataract Refract Surg,2006,32(3):510-4.
    77丁小艳,张林,马波,et al.胰岛素样生长因子-1对人晶状体上皮细胞增殖的影响[J].新乡医学院学报,2012,(09):653-655.
    78Chandrasekher G.,Sailaja D. Phosphatidylinositol3-kinase (PI-3K)/Aktbut not PI-3K/p70S6kinase signaling mediates IGF-1-promoted lensepithelial cell survival[J]. Invest Ophthalmol Vis Sci,2004,45(10):3577-88.
    79Basu S.,Rajakaruna S.,Menko A.S. Insulin-like growth factorreceptor-1and nuclear factor kappaB are crucial survival signals thatregulate caspase-3-mediated lens epithelial cell differentiation initiation[J].J Biol Chem,2012,287(11):8384-97.
    80Lynch L.,Vodyanik P.I.,Boettiger D.,et al. Insulin-like growth factorI controls adhesion strength mediated by alpha5beta1integrins in motilecarcinoma cells[J]. Mol Biol Cell,2005,16(1):51-63.
    81Meyer A.,van Golen C.M.,Kim B.,et al. Integrin expressionregulates neuroblastoma attachment and migration[J]. Neoplasia,2004,6(4):332-42.
    82Fujita M.,Takada Y.K.,Takada Y. Insulin-like growth factor (IGF)signaling requires alphavbeta3-IGF1-IGF type1receptor (IGF1R) ternarycomplex formation in anchorage independence, and the complexformation does not require IGF1R and Src activation[J]. J Biol Chem,2013,288(5):3059-69.
    83Wederell E.D.,de Iongh R.U. Extracellular matrix and integrin signalingin lens development and cataract[J]. Semin Cell Dev Biol,2006,17(6):759-76.
    84Voigt P.,Brock C.,Nürnberg B.,et al. Assigning functional domainswithin the p101regulatory subunit of phosphoinositide3-kinase γ[J].Journal of Biological Chemistry,2005,280(6):5121-5127.
    85King W.G.,Mattaliano M.D.,Chan T.O.,et al. Phosphatidylinositol3-kinase is required for integrin-stimulated AKT andRaf-1/mitogen-activated protein kinase pathway activation[J]. Molecularand Cellular Biology,1997,17(8):4406-4418.
    86Hannigan G.,Leung-Hagesteijn C.,Fitz-Gibbon L.,et al. Regulationof cell adhesion and anchorage-dependent growth by a new[J]. Nature,1996,379(6560):91-96.
    87陈卫,苏踊跃,梁光萍,et al.人β1整合素近端和远端启动子报告基因载体的构建和鉴定及启动活性分析[J].医学研究生学报,2007,20(2):135-137.
    88Qian Y.,Zhong X.,Flynn D.C.,et al. ILK mediates actin filamentrearrangements and cell migration and invasion through PI3K/Akt/Rac1signaling[J]. Oncogene,2005,24(19):3154-65.
    89Wu C. Integrin-linked kinase and PINCH: partners in regulation ofcell-extracellular matrix interaction and signal transduction[J]. J Cell Sci,1999,112(Pt24):4485-9.
    90Wu C.,Keightley S.Y.,Leung-Hagesteijn C.,et al. Integrin-linkedprotein kinase regulates fibronectin matrix assembly, E-cadherinexpression, and tumorigenicity[J]. Journal of Biological Chemistry,1998,273(1):528-536.
    91Li Y.,Yang J.,Dai C.,et al. Role for integrin-linked kinase inmediating tubular epithelial to mesenchymal transition and renalinterstitial fibrogenesis[J]. J Clin Invest,2003,112(4):503-16.
    92Eddy A.A. Serine proteases, inhibitors and receptors in renal fibrosis[J].Thromb Haemost,2009,101(4):656-64.
    93Persad S.,Attwell S.,Gray V.,et al. Inhibition of integrin-linkedkinase (ILK) suppresses activation of protein kinase B/Akt and inducescell cycle arrest and apoptosis of PTEN-mutant prostate cancer cells[J].Proc Natl Acad Sci U S A,2000,97(7):3207-12.
    94Abboud E.R.,Coffelt S.B.,Figueroa Y.G.,et al. Integrin-linked kinase:a hypoxia-induced anti-apoptotic factor exploited by cancer cells[J]. Int JOncol,2007,30(1):113-22.
    95Wu C.,Dedhar S. Integrin-linked kinase (ILK) and its interactors: a newparadigm for the coupling of extracellular matrix to actin cytoskeletonand signaling complexes[J]. J Cell Biol,2001,155(4):505-10.
    96顾云娟,陈香美,崔世维,et al.整合素连接激酶在衰老鼠肾间质损害中的表达及意义[J].中华内科杂志,2005,44(10):764-768.
    97Shafiei M.S.,Rockey D.C. The role of integrin-linked kinase in liverwound healing[J]. J Biol Chem,2006,281(34):24863-72.
    98Kagami S.,Shimizu M.,Kondo S.,et al. Up-regulation ofintegrin-linked kinase activity in rat mesangioproliferativeglomerulonephritis[J]. Life Sci,2006,78(16):1794-800.
    99Guo L.,Sanders P.W.,Woods A.,et al. The distribution and regulationof integrin-linked kinase in normal and diabetic kidneys[J]. Am J Pathol,2001,159(5):1735-42.
    100Ohnishi M.,Hasegawa G.,Yamasaki M.,et al. Integrin-linked kinaseacts as a pro-survival factor against high glucose-associated osmotic stressin human mesangial cells[J]. Nephrol Dial Transplant,2006,21(7):1786-93.
    101Weaver M.S.,Toida N.,Sage E.H. Expression of integrin-linked kinasein the murine lens is consistent with its role in epithelial-mesenchymaltransition of lens epithelial cells in vitro[J]. Molecular vision,2007,13:707.
    102Weaver M.S.,Workman G.,Sage E.H. The copper binding domain ofSPARC mediates cell survival in vitro via interaction with integrin beta1and activation of integrin-linked kinase[J]. J Biol Chem,2008,283(33):22826-37.
    103de Iongh R.U.,Wederell E.,Lovicu F.J.,et al. Transforming growthfactor-beta-induced epithelial-mesenchymal transition in the lens: a modelfor cataract formation[J]. Cells Tissues Organs,2005,179(1-2):43-55.
    104Teo Z.L.,McQueen-Miscamble L.,Turner K.,et al. Integrin linkedkinase (ILK) is required for lens epithelial cell survival, proliferation anddifferentiation[J]. Exp Eye Res,2014,
    1Hynes R.O. Integrins: a family of cell surface receptors[J]. Cell,1987,48(4):549-54.
    2Hynes R.O. Integrins: versatility, modulation, and signaling in celladhesion[J]. Cell,1992,69(1):11-25.
    3Schoenwaelder S.M.,Burridge K. Bidirectional signaling between thecytoskeleton and integrins[J]. Curr Opin Cell Biol,1999,11(2):274-86.
    4Alam N.,Goel H.L.,Zarif M.J.,et al. The integrin-growth factorreceptor duet[J]. J Cell Physiol,2007,213(3):649-53.
    5Plopper G.E., McNamee H.P., Dike L.E., et al. Convergence ofintegrin and growth factor receptor signaling pathways within the focaladhesion complex[J]. Mol Biol Cell,1995,6(10):1349-65.
    6李凤鸣.眼科全书(中),北京:人民卫生出版社,1999.
    7Wride M. Minireview: apoptosis as seen through a lens[J]. Apoptosis,2000,5(3):203-209.
    8Barbour W.,Saika S.,Miyamoto T.,et al. Expression patterns ofbeta1-related alpha integrin subunits in murine lens during embryonicdevelopment and wound healing[J]. Curr Eye Res,2004,29(1):1-10.
    9Oharazawa H.,Ibaraki N.,Lin L.R.,et al. The effects of extracellularmatrix on cell attachment, proliferation and migration in a human lensepithelial cell line[J]. Exp Eye Res,1999,69(6):603-10.
    10Wu J.E.,Santoro S.A. Complex patterns of expression suggest extensiveroles for the alpha2beta1integrin in murine development[J]. Dev Dyn,1994,199(4):292-314.
    11Simirskii V.N.,Wang Y.,Duncan M.K. Expression of Integrins DuringMouse Lens Development and Differentiation[J]. Invest Ophthalmol VisSci,2006,47:1991.
    12Menko A.S.,Philip N.J. Beta1integrins in epithelial tissues: a uniquedistribution in the lens[J]. Exp Cell Res,1995,218(2):516-21.
    13Wederell E.D., Brown H., O'Connor M., et al. Laminin-bindingintegrins in rat lens morphogenesis and their regulation during fibredifferentiation[J]. Exp Eye Res,2005,81(3):326-339.
    14Menko S.,Philp N.,Veneziale B.,et al. Integrins and development:how might these receptors regulate differentiation of the lens[J]. Ann N YAcad Sci,1998,842:36-41.
    15Parmigiani C.M.,McAvoy J.W. The roles of laminin and fibronectin inthe development of the lens capsule[J]. Curr Eye Res,1991,10(6):501-11.
    16Walker J.L.,Menko A.S. alpha6Integrin is regulated with lens celldifferentiation by linkage to the cytoskeleton and isoform switching[J].Dev Biol,1999,210(2):497-511.
    17Walker J.L.,Zhang L.,Zhou J.,et al. Role for alpha6integrin duringlens development: Evidence for signaling through IGF-1R and ERK[J].Dev Dyn,2002,223(2):273-84.
    18Gimond C.,Baudoin C.,van der Neut R.,et al. Cre-loxP-mediatedinactivation of the alpha6A integrin splice variant in vivo: evidence for aspecific functional role of alpha6A in lymphocyte migration but not inheart development[J]. J Cell Biol,1998,143(1):253-66.
    19Georges-Labouesse E.,Messaddeq N.,Yehia G.,et al. Absence ofintegrin alpha6leads to epidermolysis bullosa and neonatal death inmice[J]. Nat Genet,1996,13(3):370-3.
    20MK D.,VN S. Deletion of the1-integrin gene in the developing lensleads to epithelial mesenchymal transition (EMT) of lens epithelialcells[J]. Invest Ophthalmol Vis Sci,2006,47:2942.
    21Joo C.K., Lee E.H., Kim J.C., et al. Degeneration andtransdifferentiation of human lens epithelial cells in nuclear and anteriorpolar cataracts[J]. J Cataract Refract Surg,1999,25(5):652-8.
    22Marcantonio J.M., Syam P.P., Liu C.S., et al. Epithelialtransdifferentiation and cataract in the human lens[J]. Exp Eye Res,2003,77(3):339-46.
    23Saika S., Miyamoto T., Ohnishi Y. Histology of anterior capsuleopacification with a polyHEMA/HOHEXMA hydrophilic hydrogelintraocular lens compared to poly(methyl methacrylate), silicone, andacrylic lenses[J]. J Cataract Refract Surg,2003,29(6):1198-203.
    24Wormstone I.M.,Tamiya S.,Anderson I.,et al. TGF-beta2-inducedmatrix modification and cell transdifferentiation in the human lenscapsular bag[J]. Invest Ophthalmol Vis Sci,2002,43(7):2301-8.
    25Dawes L.J., Elliott R.M., Reddan J.R., et al. Oligonucleotidemicroarray analysis of human lens epithelial cells: TGFbeta regulatedgene expression[J]. Mol Vis,2007,13:1181-97.
    26Liu C.S.,Wormstone I.M.,Duncan G.,et al. A study of human lenscell growth in vitro. A model for posterior capsule opacification[J]. InvestOphthalmol Vis Sci,1996,37(5):906-14.
    27Hales A.M.,Chamberlain C.G.,McAvoy J.W. Cataract induction inlenses cultured with transforming growth factor-beta[J]. InvestOphthalmol Vis Sci,1995,36(8):1709-13.
    28Liu J.,Hales A.M.,Chamberlain C.G.,et al. Induction of cataract-likechanges in rat lens epithelial explants by transforming growth factorbeta[J]. Invest Ophthalmol Vis Sci,1994,35(2):388-401.
    29Srinivasan Y.,Lovicu F.J.,Overbeek P.A. Lens-specific expression oftransforming growth factor beta1in transgenic mice causes anteriorsubcapsular cataracts[J]. J Clin Invest,1998,101(3):625-34.
    30Robertson J.V.,Nathu Z.,Najjar A.,et al. Adenoviral gene transfer ofbioactive TGFbeta1to the rodent eye as a novel model for anteriorsubcapsular cataract[J]. Mol Vis,2007,13:457-69.
    31Colitz C.M., Malarkey D., Dykstra M.J., et al. Histologic andimmunohistochemical characterization of lens capsular plaques in dogswith cataracts[J]. Am J Vet Res,2000,61(2):139-43.
    32Latvala T.,Uusitalo M.,Puolakkainen P.,et al. Immunolocalization oftransforming growth factor-beta1and tenascin in human secondarycataract[J]. Acta Ophthalmol Scand,2000,78(3):344-7.
    33Lovicu F.J., Schulz M.W., Hales A.M., et al. TGFbeta inducesmorphological and molecular changes similar to human anteriorsubcapsular cataract[J]. Br J Ophthalmol,2002,86(2):220-6.
    34Wunderlich K.,Pech M.,Eberle A.N.,et al. Expression of connectivetissue growth factor (CTGF) mRNA in plaques of human anteriorsubcapsular cataracts and membranes of posterior capsule opacification[J].Curr Eye Res,2000,21(2):627-36.
    35Sponer U.,Pieh S.,Soleiman A.,et al. Upregulation of alphavbeta6integrin, a potent TGF-beta1activator, and posterior capsuleopacification[J]. J Cataract Refract Surg,2005,31(3):595-606.
    36Galliher A.J., Schiemann W.P. Beta3integrin and Src facilitatetransforming growth factor-beta mediated induction ofepithelial-mesenchymal transition in mammary epithelial cells[J]. BreastCancer Res,2006,8(4): R42.
    37Walker J.L.,Wolff I.M.,Zhang L.,et al. Activation of SRC kinasessignals induction of posterior capsule opacification[J]. Invest OphthalmolVis Sci,2007,48(5):2214-23.
    38Kim J.T.,Lee D.H.,Chung K.H.,et al. Inhibitory effects of salmosin,a disintegrin, on posterior capsular opacification in vitro and in vivo[J].Exp Eye Res,2002,74(5):585-94.
    39Wipff P.J.,Rifkin D.B.,Meister J.J.,et al. Myofibroblast contractionactivates latent TGF-beta1from the extracellular matrix[J]. J Cell Biol,2007,179(6):1311-23.
    40Lygoe K.A.,Norman J.T.,Marshall J.F.,et al. AlphaV integrins playan important role in myofibroblast differentiation[J]. Wound RepairRegen,2004,12(4):461-70.
    41Kass L., Erler J.T., Dembo M., et al. Mammary epithelial cell:influence of extracellular matrix composition and organization duringdevelopment and tumorigenesis[J]. Int J Biochem Cell Biol,2007,39(11):1987-94.
    42Lee E.H.,Seomun Y.,Hwang K.H.,et al. Overexpression of thetransforming growth factor-beta-inducible gene betaig-h3in anterior polarcataracts[J]. Invest Ophthalmol Vis Sci,2000,41(7):1840-5.
    43Dawes L.J.,Eldred J.A.,Anderson I.K.,et al. TGF beta-inducedcontraction is not promoted by fibronectin-fibronectin receptor interaction,or alpha SMA expression[J]. Invest Ophthalmol Vis Sci,2008,49(2):650-61.
    44Fontana L.,Chen Y.,Prijatelj P.,et al. Fibronectin is required forintegrin alphavbeta6-mediated activation of latent TGF-beta complexescontaining LTBP-1[J]. FASEB J,2005,19(13):1798-808.
    45Kim J.T.,Lee E.H.,Chung K.H.,et al. Transdifferentiation of culturedbovine lens epithelial cells into myofibroblast-like cells by serummodulation[J]. Yonsei Medical Journal,2004,45(3):380-391.
    46Yoshino M.,Kurosaka D.,Obazawa M.,et al.[Presence of alpha5beta1integrin and fibronectin in the anterior subcapsular cataract][J].Nihon Ganka Gakkai Zasshi,2001,105(2):83-7.
    47Zuk A., Hay E.D. Expression of beta1integrins changes duringtransformation of avian lens epithelium to mesenchyme in collagengels[J]. Dev Dyn,1994,201(4):378-93.
    48Simirskii V.N., Wang Y., Duncan M.K. Conditional deletion ofbeta1-integrin from the developing lens leads to loss of the lens epithelialphenotype[J]. Dev Biol,2007,306(2):658-68.
    49Bissell M.J.,Labarge M.A. Context, tissue plasticity, and cancer: aretumor stem cells also regulated by the microenvironment?[J]. Cancer Cell,2005,7(1):17-23.
    50De Arcangelis A.,Mark M.,Kreidberg J.,et al. Synergistic activitiesof alpha3and alpha6integrins are required during apical ectodermal ridgeformation and organogenesis in the mouse[J]. Development,1999,126(17):3957-68.
    51Wederell E.D.,de Iongh R.U. Extracellular matrix and integrin signalingin lens development and cataract[J]. Semin Cell Dev Biol,2006,17(6):759-76.
    52Lim J.M.,Kim J.A.,Lee J.H.,et al. Downregulated expression ofintegrin alpha6by transforming growth factor-beta(1) on lens epithelialcells in vitro[J]. Biochem Biophys Res Commun,2001,284(1):33-41.
    53Duncan M.K.,Kozmik Z.,Cveklova K.,et al. Overexpression ofPAX6(5a) in lens fiber cells results in cataract and upregulation of(alpha)5(beta)1integrin expression[J]. J Cell Sci,2000,113(Pt18):3173-85.
    54Donner A.L.,Ko F.,Episkopou V.,et al. Pax6is misexpressed in Sox1null lens fiber cells[J]. Gene Expr Patterns,2007,7(5):606-13.
    55Nishi O.,Nishi K.,Mano C.,et al. Inhibition of migrating lensepithelial cells by blocking the adhesion molecule integrin: a preliminaryreport[J]. J Cataract Refract Surg,1997,23(6):860-5.
    56Latz C.,Migonney V.,Pavon-Djavid G.,et al. Inhibition of lensepithelial cell proliferation by substituted PMMA intraocular lenses[J].Graefes Arch Clin Exp Ophthalmol,2000,238(8):696-700.
    57Beck R.,Nebe B.,Guthoff R.,et al. Inhibition of lens epithelial celladhesion by the calcium antagonist Mibefradil correlates with impairedintegrin distribution and organization of the cytoskeleton[J]. Graefes ArchClin Exp Ophthalmol,2001,239(6):452-8.
    58Nebe B.,Kunz F.,Peters A.,et al. Induction of apoptosis by the
    calcium antagonist mibefradil correlates with depolarization of the
    membrane potential and decreased integrin expression in human lens
    epithelial cells[J]. Graefes Arch Clin Exp Ophthalmol,2004,242(7):
    597-604.