含水及初始损伤岩体损伤断裂机理与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩体中含有大量的初始缺陷,包括空隙、孔隙、微裂纹、节理等,初始缺陷的存在增加了水与岩体接触的程度,改变了岩体的力学和变形特性。工程实践表明水—岩作用是影响岩体工程稳定性的重要因素之一,水与岩体的相互作用效应,不仅包含渗透压力的作用效应,而且还存在着复杂的水—岩化学腐蚀作用,研究表明大部分岩体工程的失稳破坏均与水—岩作用密切相关。目前,随着大规模的岩体工程的建设和营运,为了保证其长期稳定性,针对岩体工程在水环境影响作用下的研究工作具有重要的理论参考价值和良好的工程应用价值,可为边坡工程、水利坝基、公路涵洞、桥梁隧道、地下采矿、石油开采等工程稳定问题研究提供科学依据。
     本文研究内容依托国家自然科学基金资助项目(50774093:水岩作用下裂隙岩体流变—损伤—断裂耦合理论及应用;51174228:考虑动水压作用和裂隙表面形貌影响的岩体裂隙开裂扩展研究)、湖南省研究生创新基金项目(CX2009B046:裂隙岩体水腐蚀损伤流变效应的非线性研究)以及中南大学优秀博士研究生学位论文扶植基金(2009ybfz06:裂隙岩体损伤流变断裂效应的非线性研究)。采用损伤断裂力学理论,从实验研究、理论分析和数值模拟等多方面研究水岩共同作用下裂隙岩体的损伤变形和断裂破坏机理进行了深入系统的研究。主要开展了以下几个方面的研究工作:
     (1)为研究水化腐蚀对岩石损伤作用,进行了岩体化学损伤效应的动力反应过程分析,研究了水岩接触后矿物成分溶解速率的计算,从理论上探讨了化学腐蚀下等效裂纹扩展的定量化分析方法,通过质量守恒定律计算出裂纹在迹长及隙宽方向的变化,将水化腐蚀后等效成有效裂纹长度,建立了水-岩化学作用下等效裂纹扩展的计算公式。
     (2)为研究水作用下软岩损伤劣化效应的时间相依性,采用RYL-600岩石试验机和Instron1342电液材料伺服试验机对经过水浸泡不同时间后的软岩试验样品进行力学参数以及双扭试件的亚临界裂纹扩展试验,分别得到了软岩含水率、强度与变形参数、亚临界裂纹扩展速度矿与应力强度因子KI、断裂韧度KI等参数。试验结果分析表明:软岩含水率、力学参数等与水岩作用时间具有高度线性相关性,可以通过含水率和弹性模量建立软岩劣化损伤速率6的函数关系;通过采用双对数坐标空间对常位移松弛法所测试的不同浸泡时间的软岩亚临界裂纹扩展速度V与应力强度因子KI之间的关系研究,发现lgKI-lgV关系具有极好的线性相关性,而且水腐蚀损伤对软岩断裂力学性质有弱化作用,能加快膨胀性软岩亚临界裂纹的扩展,并且软岩水腐蚀作用对岩石裂纹的断裂指标影响显著并具有时间效应。
     (3)为研究含初始损伤岩体渐进损伤断裂机制,通过采用预埋抽条法利用水泥砂浆为类岩材料制作不同几何空间分布的多裂纹体进行断裂破坏实验,对单轴加载下含初始损伤裂纹试样的预制裂纹扩展、贯通方式及强度损伤随裂隙空间展布和裂隙数量变化规律进行了探讨。
     (4)为研究渗透压作用下含初始损伤岩体的断裂演化,进行了渗透水压力对岩石的损伤断裂研究。对有充填物的压剪裂纹,将损伤概念引入裂纹模型,定义了新的损伤变量,推导出水损伤作用下压剪裂纹的应力强度因子;对处于压剪和拉剪应力状态的含单裂纹岩体,在水作用下的损伤起裂进行了探讨,给出了考虑水损伤的单裂纹断裂准则。
     (5)为研究在动态载荷作用下脆性岩石损伤断裂的演化过程,利用分离式霍普金森压杆(SHPB)装置中压缩气体发射球体子弹对脆性岩板进行变角度冲击损伤实验,岩板受到冲击后,边缘出现凹坑,表面裂纹从撞击凹坑扩展到岩板边缘,实验中样品的表面裂纹能有效表征其内部的开裂状况,能有效反映冲击能量的耗散。破裂区面积与裂纹表面积随入射能量呈非线性增长趋势,同时与入射角度相关,但当破裂区面积急剧下降时,裂纹表面积反而急剧上升,表明裂纹的发生发展有明显的孕育期,在入射能量达到临界值前,主要表现为裂纹孕育增长,在达到临界值后,发生宏观断裂破坏,裂纹面积呈负增长,破裂区面积增大。
     (6)为揭示岩体的爆破损伤及损伤累积效应,基于裂纹扩展和声速变化,探讨了岩体损伤及其累积情况的计算方法,针对含水裂隙岩体的爆破损伤问题,进行了水作为垫层和空气作为垫层时的损伤分析;对爆破损伤变量进行定义和推导推导。对数值损伤云图进行了分析,结果表明不同介质作为垫层时,在相同爆破能量下,其引起的损伤区不相同,含水岩体的损伤度要大于以空气作为垫层的岩体损伤。现场监测结果表明爆源距离决定了岩体损伤度,离爆源越近,损伤增量和累积损伤愈大,其变化情况呈非线性,随着爆源距离增加,累积损伤值的变化趋势趋缓,实际监测和计算模型的误差在工程容许的范围内,因而本文探讨的计算岩体爆破损伤方法可以为现场监测结果分析的提供比对依据。
The rock mass contains a large number of initial defects, including holes, pores, microcracks, and joints, etc., the existence of initial defects increase the level of water-rock contact and change the mechanics and deformation characteristics of rock mass. The project practice indicates, water-rock interaction is one of the important factors to influence the stability of rock mass engineering, the effect of water-rock interaction does not only includes seepage pressure, but also exists the effect of complex water-rock chemical corrosion, research shows that most rock mass instability and faluire is closely related to water-rock interaction. Nowadays, with the development of large-scale construction project, the studies on mechanical characters of rock mass under the action of water have important theoretical significance and practical value to ensure the long-term stability of rock engineering, The results can provide scientific bases for engineering stability research, such as slope, dam, tunnel, underground mine, oil exploitation.
     This work has been supported by the National Natural Science Foundation of China (NO.10972238), Hunan Provincial Innovation Foundation for Postgraduate (No.CX2009B046), Hunan Safety Production Technology Development Guidance Project (2009) and the Graduate Degree Thesis Innovation Foundation of Central South University (No.2009ybfz06&No.1343-0024). The paper has carried out the research work involving several aspects as follows:
     (1) In order to research the corrosion behavior of hydration effect in rock damage, the dynamical reaction process of rock chemical damage effect has been analyzed. The calculation of dissolution rate of mineral components after the contact of water and rock has been studied. And in theory, it has been discussed the quantification analytical method of equivalent crack propagation under the chemical corrosion. By adopting the Law of conservation of mass, it has been worked out the variables in the directions of crack length and width and the hydration corrosion has been equivalent to the effective crack length. Finally it has been established the calculated formula of effective crack length under the chemical water-rock interaction and the stress intensity factor has been worked out.
     (2)In order to study the time-dependent of damage and degradation effect for soft rock under water corrosion, subcritical crack growth of soft rock was studied by double torsion test using Instron1342type electro hydraulic servo test machine and the mechanics parameters test using RYL-600rock test machine after marinated soft rock in water for different time. Based on testing results, the rate of water content (ω), the mechanics parameters, the subcritical crack growth velocity (V) and the stress intensity factor (KI) and the fracture toughness (KIc) were obtained respectively, the results show that the rate of water content(ω) VS the time of water-rock interaction relations accord with good linear rule and could established the function relationship of damage and degradation velocity(D) for soft rock by means of the rate of water content(ω) and elasticity modulus(E); And the results analysis for the relationship of subcritical crack growth velocity(V)and stress intensity factor(KI) of soft rock in different time were studied by double logarithm coordinate, the results show that lgKrlgV relations accord with good linear rule and the fracture mechanics effect of water corrosion action of swelling soft rock is evident and time-dependent, and the water corrosion damage can accelerate subcritical crack growth velocity(V) and can weaken fracture mechanical characteristic of swelling soft rock.
     (3) In order to study the gradual damage fracture mechanism of initial damage rock mass, the macro-mechanical experiments on regular cracks body in initial damage rock-like materials have been made. Using white cement as the similar materials, the rock-like specimens in which the cracks were arranged in different echelon design through pre-installed steel slice were produced, the research on the models of fracture propagation and coalescence, as well as the law of strength variation with the cracks collocation and crack numbers under uniaxial loading were summarized systematically.
     (4) For studying the fracture evolution of rock mass that contained initial damage under the osmotic pressure, the influence of seepage pressure to rock fracture and damage has been investigated. For those frictional cracks with filler, it has been deduced the stress intensity factor of crack under the osmotic pressure with leading the damage concept into the crack model and new definition of damage variable. For the rocks that have single crack under both the compression-shear and tensile-sheared stresses, their initiation damage has been discussed under water condition. Finally, the fraction criterion of single crack rock has been given with consideration about water damage.
     (5) In order to study the evolutionary process of brittle rock damage and fracture under impact loading, the dynamic damage was studied by variable angle impact test using compressed gas of SHPB to launch the ball to impact the lateral margin of rock plate, when a source of impact loading is applied to a rock plate specimen, damage cracks are developed from the source to the boundaries, and the surface cracks are able to effectively represent sample internal cracking condition and can effectively reflect the impact energy dissipation in these tests. Test results show that the cracks propagation length and break area are not arbitrary, but are influenced by the angle of dynamic impact loading. The crack length and the break area increase with the increase of the impact loading, when the break area decreases abruptly, the crack length increases suddenly, it shows that there was an obvious incubation period of crack forming, at first some pits appeared on the verge of the rock plate and the propagation rate of crack length and break area decreases with increasing the impact velocity.
     (6)In order to reveal blast-induced damage cumulative effect of rock mass, based on crack expansion and sonic speed variation, the calculation method about the rock mass damage and its cumulation has been discussed to discover the explosion damage and the damage accumulation on effect. The numerical damage cloud chart has been analyzed. The result shows that the same explosion energy can cause different damage areas with different cushion, and the damage of water-saturated rock mass is bigger than that of air cushion rock mass. Field monitoring result has been indicated that the source distance determines the rock damage degree:with the distance getting closer, the damage increment and accumulation are getting more. The error between numerical model and field monitoring is in the engineering permissible range. Thus, the calculation method of rock explosion damage in the paper can offer the compared basis for field monitoring. This research puts forward a new calculation method for measuring the damage of rock mass. So, this new calculation method can be used as a comparison basis for site monitoring of blast-induced damage of rock mass.
引文
[1]周创兵,陈益峰,姜清辉.复杂岩体多场广义耦合分析导论[M].北京:中国水利水电出版社,2008.
    [2]何满潮,谢和平,彭苏萍等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813.
    [3]何满潮.深部开采工程岩石力学的现状及其展望[C].中国岩石力学与工程学会编.第八次全国岩石力学与工程学术大会论文集.北京:科学出版社,2004:88-94.
    [4]汪亦显,曹平,陈瑜,等.膨胀性软岩水腐蚀损伤断裂力学效应实验研究[J].中南大学学报(自然科学版),2011.42(6):1685-1691.
    [5]冯夏庭,丁梧秀,崔强,等.岩石破裂过程的化学-应力耦合效应[M].北京:科学出版社,2010.
    [6]赵延林.裂隙岩体渗流—损伤—断裂耦合的理论研究和工程应用研究[D].长沙:中南大学,2009.
    [7]仵彦卿,张悼元.岩体水力学导论[M].成都:西南交通大学出版社.1995.
    [8]A.Dragon, Z.Mroz. On the plastic-brittle behaviour of rock and concrete[J]. Mech. Res. Commun,1976,3:429-434.
    [9]A.Dragon, Z. Mroz, A continuum model for plastic-brittle behaviour of rock and concrete[J]. International Journal of Engineering Science,1979,17(2): 121-137.
    [10]D.Krajcinovic, G.U. Fonseka. The continuous damage theory of brittle materials, Part Ⅰ:General Theory[J]. Journal of Applied Mechanics,1981, 48(4):809-815.
    [11]G.U.Fonseka, D.Krajcinovic. The continuous damage theory of brittle materials, Part II:Uniaxial and Plane Response Modes. [J]. Journal of Applied Mechanics,1981,48(4):816-814.
    [12]Costin, L.S. A microcrack model for the deformation and failure of brittle rock[J]. Journal of geophysical research.1983,88 (B11):9485-9492.
    [13]Costin, L.S. A microcrack damage model for brittle rock, Sandia Report SAND83-1590, Sandia National Laboratories, Albuquerque, NM.1983.
    [14]Kyoya T, Kusabuka M, Ichikawa, Y, et al. Damage mechanics analysis for underground excavation in jointed rock mass[C].Proc International Symposium on Engineering in Complex Rock Formations, Beijing:Science Press,1986:506-513.
    [15]Kavamoto T, Ichikawa Y, Kyoya T. Deformation and fracturing behaviour of discontinuous rock mass and damage mechanics theory[J]. International Journal For Numerical And Analytical Methods in Geomechanics,1988, 12(1):1-30.
    [16]Lemaitre J. A Course on Damage Mechanics[M]. Springer, Second Edition, 1990.
    [17]周维垣,杨延毅.节理岩体损伤断裂模型与验证岩石力学与工程报[J].1991,10(1):43-54.
    [18]李新平,朱瑞赓,朱维申.裂隙岩体的损伤断裂理论与应用[J].岩石力学与工程程学报,1995,14(3):43-54.
    [19]L. Xinping, Z. Weishen. The damage fracture analysis of a jointed rock mass and its application in engineering [J]. Engineering Fracture Mechanics, 1992,43(2):165-170.
    [20]G. Swoboda, X.P. Shen, L. Rosas. Damage model for jointed rock mass and its application to tunnelling[J].Computers and Geotechnics,1998,22 (3-4): 183-203.
    [21]C.A Tang, P.K Kaiser. Numerical simulation of damage accumulation and seismic energy release in unstable failure of brittle rock. Part Ⅰ: fundamentals[J]. International Journal of Rock Mechanics and Mining Sciences,1998,35 (2):113-121.
    [22]P. K. Kaiser, C. A. Tang. Numerical Simulation of Damage Accumulation and Seismic Energy Release During Brittle Rock Failure. Part Ⅱ:Rib Pillar Collapse[J]. International Journal of Rock Mechanics and Mining Sciences, 1998,35 (2):123-134.
    [23]谢和平.岩石混凝土损伤力学[M].徐州:中国矿业大学出版社,1990.
    [24]韩贝传,王思敬.一种计算多组节能系统损伤张量的方法[J].岩石力学与工程学报,1993,1:46-54.
    [25]H.S Lee, Y.J Park, T.F Cho, et al. Influence of asperity degradation on the mechanical behavior of rough rock joints under cyclic shear loading[J]. International Journal of Rock Mechanics and Mining Sciences,2001,38(7): 967-980.
    [26]M. Cai, P.K. Kaiser, C.D. Martin. Quantification of rock mass damage in underground excavations from microseismic event monitoring [J]. International Journal of Rock Mechanics and Mining Sciences,2001,38(8): 1135-1145.
    [27]M. Cai, P.K Kaiser, Y Tasaka, et al. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations [J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(5):833-847.
    [28]L. Jing, J. A. Hudson. Numerical methods in rock mechanics[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(4):409-427.
    [29]A. Fakhimi, F Carvalho, T Ishida, et al.Simulation of failure around a circular opening in rock[J]. International Journal of Rock Mechanics and Mining Sciences,2002.39(4):507-515
    [30]W.Z. Chen, W.S. Chen, Jian-Fu Shao.Damage coupled time-dependent model of a jointed rock mass and application to large underground cavern excavation[J].International Journal of Rock Mechanics and Mining Sciences, 2004,41:669-677.
    [31]W.C. Zhu, J. Liu, C.A. Tang, et al. Simulation of progressive fracturing processes around underground excavations under biaxial compression[J]. Tunnelling and Underground Space Technology,2005,20 (3):231-247.
    [32]Xia-Ting Feng, Peng-Zhi Pan, Hui Zhou. Simulation of the rock microfracturing process under uniaxial compression using an elasto-plastic cellular automaton[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(7):1091-1108.
    [33]X. Y. Wei, Z.Y.Zhao, J. Gu. Numerical simulations of rock mass damage induced by underground explosion[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46 (7):1206-1213.
    [34]Chang-jing Xia, Zhen-duo Song, Lu-lu Tian, et al. Numerical Analysis of Effect of Water on Explosive Wave Propagation in Tunnels and Surrounding Rock[J]. Journal of China University of Mining and Technology,2007, 17(3):368-371.
    [35]A. Golshani, M. Oda, Y. Okui, et al. Numerical simulation of the excavation damaged zone around an opening in brittle rock[J]. International Journal of Rock Mechanics and Mining Sciences,2007,44(6):835-845.
    [36]杨强.岩体损伤力学发展现状和面临的问题[C].西安:中国岩石力学与工程学会第七次学术大会论文集,2002.
    [37]Poston. T. and Stewart, I. Catastrophe Theory and Its Applications[J]. London, SanFrancissco, Melbo,1978.
    [38]Lajtal E. Z. Brittle fracture in compression [J]. International journal of fracture.1977,10(4):12-15.
    [39]Kachanov, L.M. On Rupture Time under Condition of Creep, Izvestia Akademi NaukUSSR, Otd. Techn. Nauk, Moskwa,1958,8:26-31,
    [40]T.Kawamoto.Damage and fracturing of discontinous rock mass and jointed rockmass[J]. Proc.Int.Symp.onEngng.In Complx Rock Formations, Beijing. 1985:506-513.
    [41]M.Cai,H.Horri.A constitutive model and FEM analysis of jointed rockmass[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.1933,30(4):351-359.
    [42]Swoboda, Q.Yang.Damage propagation model and its application to rock engineering problem[C]. Tokyo:International Society for Rock Mechanics, 1995.
    [43]李广平,陶震宇.真三轴条件下的岩石细观损伤力学模型[J].岩土工程学报,1995,17(1):21-25.
    [44]Ingraffea A R, Heuze F E. Finite element models for rock fracture mechanics[J]. Int J Numer Anal Meth Geomech,1980,4(4):25-43.
    [45]Nemat-Nasser S, Horii H. Compression-induced nonplanar crack extension with application to splitting, exfoliationand rockburst[J].. J.Geophys Res,1982,87(B8):6805-6821.
    [46]Huang J F, Chen G L, Zhao Y H, et al. An experimental study of the strain field development prior to failure of a marble plate under compression[J]. Tectonoohvsics.1990,175:269-284.
    [47]张平,李宁,贺若兰.含裂隙类岩石材料的局部化渐进破损模型研究[J].岩石力学与工程学报,2006,25(10):2043-2050.
    [48]张平,李宁,贺若兰;徐建光.不同应变速率下非贯通裂隙介质的力学特性研究[J].岩土工程学报,2006,28(6):750-755.
    [49]张平,李宁,贺若兰,徐建光.动载下3条断续裂隙岩样的裂缝贯通机制[J].岩土力学,2006,27(9):1457-1464.
    [50]张平,李宁,李夕兵.静动载下共面非贯通裂隙贯通机制分析[C].北京:第一届中国水利水电岩土力学与工程学术讨论会论文集(上册),2006.
    [51]李宁,张平,陈蕴生.裂隙岩体试验研究进展与思考[C].北京:岩石力学新进展与西部开发中的岩土工程问题—中国岩石力学与工程学会第七次学术大会论文集,2002.
    [52]张平.裂隙介质静动应力条件下的破坏模式与局部化渐进破损模型研究[D].西安理工大学,2004年.
    [53]R.H.C. Wong, K.T.Chau, C.A.Tang, et al. Analysis of crack coalescence in rock-like materials containing three flaws-PartⅠ:experimental approach[J]. International Journal of Rock Mechanics & Mining Sciences.2001,38: 909-924.
    [54]C.A. Tang, P.Lin, R.H.C. Wong, et al. Analysis of crack coalescence in rock-like materials containing threeflaws-PartⅡ:numerical approach[J]. International Journal of Rock Mechanics & Mining Sciences.2001.(38): 925-939.
    [55]R.H.C. Wong, C.A. Tang, K.T. Chau, et al. Splitting failure in brittle rocks containing pre-existing flaws under uniaxial compression Engineering[J]. Fracture Mechanics.2002,69:1853-1871.
    [56]杨天鸿,唐春安,朱万成,等.岩石破裂过程渗流与应力耦合分析[J].岩土工程学报,2001,23(4):489-493.
    [57]朱维申,冯光北.不同连通率的单排裂隙岩体模型的抗剪试验研究[C].中国科学院武汉岩土力学所,1984.
    [58]张强勇,朱维申.节理岩体脆弹性断裂损伤模型及其工程应用[J].岩石力学与工程学报,1999,18(3):1-6.
    [59]王建华,宋锦良.受压剪应力作用闭合裂纹的光弹性研究[J].地震学报,1990,12(2):204-211.
    [60]王仁,赵豫生,阎红.大理岩试件中裂缝的逆向共轭剪破裂[J].地震学报,1986,8(2):191-196.
    [61]范景伟,何江达.含定向闭合节理岩体的强度特性[J].岩石力学与工程学报,1992,11(2):190-199.
    [62]张之立,方兴.断裂构造体系的形成和扩展过程的力学分析及应用[J].中国科学,B辑,1987,11:1214-1224.
    [63]周小平王建华等压剪应力作用下断续节理岩体的破坏分析[J].岩石力学与工程学报,2003,22(9):1437-1440.
    [64]黎立云,许凤光,高峰.岩桥贯通机理的断裂力学分析[J].岩石力学与工程学报,2005,24(23):4328-4334.
    [65]周家文,徐卫亚,石崇.基于破坏准则的岩石压剪断裂判据研究[J].岩石力学与工程学报,2007,26(6):1194-1201.
    [66]刘东燕,严春风,陈彦峰.压剪应力条件下岩体裂纹扩展概率模型研究[J].岩土工程学报,1999,21(1):56-59.
    [67]凌建明.岩石蠕变裂纹起裂与扩展的损伤力学分析方法[J].同济大学学报,1995,23:141-145.
    [68]孙钧,凌建明.三皖船闸高边坡岩体的细现损伤及长期稳定性研究[J].岩石力学与工程学报,1997,16(1):1-7.
    [69]Labuz J F, Cben C N, Berger D J.Microcrack-dependent fracture of damaged rock[J]. International j ournal of fracture,1991,51:231-249.
    [70]Kemeny J M. A model for nonlinear rock deformation under compression due to sub-critical crack growth. Int J Rock Mech Min Sci & Geomech Abstr,1991,28(6):459-467.
    [71]万琳辉,曹平,黄永恒,等.水对岩石亚临界裂纹扩展及门槛值的影响研究[J].岩土力学,2010,31(9):2737-2742.
    [72]万琳辉,曹平,黄永恒,等.岩石亚临界裂纹扩展及其应用研究[J],科技导报,2010,9:44-48.
    [73]Yahya O.M.L, Aubertin M, Julien M.R. A unified representation of plasticity, creep and relaxation behaviour of rock salt [J].Int J Rock Mech Min Sci and Geomech Abstr,2000,37:787-800.
    [74]Guijun Wang. A new constitutive creep-damage model for salt rock and its characteristics[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(Sl):61-67.
    [75]J.F. Shao, K.T. Chau, X.T. Feng. Modeling of anisotropic damage and creep deformation in brittle rocks [J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(4):582-592.
    [76]Geraldine Fabre, Frederic Pellet. Creep and time-dependent damage in argillaceous rocks[J].International Journal of Rock Mechanics and Mining Sciences,2006,43 (6):950-960.
    [77]Fu Zhiliang, Guo Hua, Gao Yanfa.Creep damage characteristics of soft rock under disturbance Loads [J]. Journal of China University of Geosciences, 2008,19 (3):292-297.
    [78]Yazdani S, Schreyer H L. Combined plasticity and damage mechanics model for plain concrete[J]. Journal of Engineering Mechanics.1990.116:1435-1449
    [79]Abu-Lebdeh T M, Voyiadjis G Z. Plasticity-damage models for concrete under cyclic multiaxial loading[J].Journal of Engineering Mechanics.1993, 119:1465-1434.
    [80]Li Zhaoxia. Damage model for hardening and softening material in general state of stress[J]. Acta Mechanica Solida Sinica,1994,7:323-333.
    [81]王贵君.一种盐岩流变损伤模型[J].岩土力学,2003,24(S):81-84.
    [82]谢和平,董毓利,孝世平.不同围压下混龌土受压弹塑性本构模型的研究[J].煤炭学报,1996,21(3):245-270.
    [83]缪协兴,陈至达.岩石材料的一种蠕变损伤方程[J].固体力学学报,1995,16(4):343-346.
    [84]Cheng H, Dusseault M B. Deformation and difusion behavior in a solid experiencing damage:a continuous damage model and its numerical implementation [J].International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1993,30:1323-1331.
    [85]Aubertin M, Gill D E, Ladanyi B. Constitutive equations with internal state variables for the inelastical behavior of soft rocks[J]. Appl Mech Rev,1994, 47(3), Part 2:s97-s106.
    [86]朱昌星,阮怀宁,朱珍德,等.岩石非线性蠕变损伤模型的研究[J].岩土工程学报,2008,30(10):1510-1513.
    [87]张忠亭,罗居剑.分级加载下岩石蠕变特性研究[J].岩石力学与工程学报,2004,23(2):218-222.
    [88]袁海平,曹平,许万忠,等.岩体黏弹塑性本构关系及改进Burgers蠕变模型[J].岩土工程学报,2006,28(6):796-799.
    [89]Chen K S, Bodner S R, San Antonio. A damage mechanics treatment of creep failure in rock salt. Int J damage mech.1997.6:121-153.
    [90]何满潮,谢和平,彭苏萍等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813.
    [91]CAO Ping, WAN Lin-hui, WANG Yi-xian, et al. Experimental study on viscoelasto plastic properties of deep hard rocks under water environment [J]. Transactions of nonferrous metals society of China,2011,(11):2711-2718.
    [92]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1996.
    [93]许传华,任青文.围岩稳定分析的非线性理论研究[J].岩土工程技术,2003.3:142-146.
    [94]秦四清,王思敬,孙强,等著.非线性岩土力学基础[M].北京:地质出版社,2008.
    [95]林振山,非线性科学及其在地学中的应用[M].北京:气象出版社,2003.
    [96]朱旺喜.非线性科学在矿山灾害及控制研究中的应用[J].岩石力学与工程学报,2007,26(1):211-214.
    [97]张强勇,朱维申,陈卫忠.三峡船闸高边坡开挖卸荷弹塑性损伤分析[J].水利学报,1998,(8):19-22.
    [98]李建林.岩体三轴强度、破坏准则及参数研究[J].武汉水利电力大学(宜昌)学报,1998,20(2):1-5.
    [99]哈秋龄,李建林.岩石边坡卸荷岩体宏观力学参数研究[M].北京:中国建筑工业出版社,1996.
    [100]哈秋舲.岩石边坡工程与卸荷非线性岩石(体)力学[J].岩石力学与工程学报,1997,16(4):386-391.
    [101]刘小燕.二氧化碳深含水层隔离的二相渗流模拟与岩石物理学研究[D].合肥:中国科学技术大学,2006.
    [102]TANG C A, THAM L G, LEE P K K, et al. Coupled analysis of flow, stress and damage(FSD) in rock failure[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(4):477-489.
    [103]蔡美峰,孔广亚,贾立宏.岩体工程系统失稳的能量突变判断准则及其应用.北京科技大学学报,1997,19(4):325-328.
    [104]席道瑛,王鑫,陈运平.描写岩石非线性弹性滞后和记忆的宏观模型[J].岩石力学与工程学报,2005,24(13):2212-2219.
    [105]陈健云,胡志强,林皋.考虑混凝土应变率变化的高拱坝非线性动力响应研究[J].计算力学学报,2004,21(1):45—49.
    [106]赵宝友,马震岳,梁冰,等.基于损伤塑性模型的地下洞室结构地震作用分析[J].岩土力学,2009,30(5):1515-1521.
    [107]黄润秋,许强.非线性理论在工程地质中的应用[J].中国科学基金,1996,2:79-85.
    [108]黄润秋,许强.开挖过程的非线性理论分析[J],工程地质学报,1999,7(1):9-15.
    [109]王建秀,腐蚀损伤岩体中的水化—水力损伤及其在隧道工程中的应用研究[D],西南交通大学博士学位论文,2002.
    [110]L.S.Burshtein. Effect of moisture on the strength and deformability of sandstone[J]. Journal of Mining Seienee,1969,5(5):573-576.
    [111]C.G.Dyke, L. Dobereiner. Evaluating the strength and deformability of sandstones[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 1991,24(1):123-134.
    [112]陈钢林,周仁德.水对受力岩石变形破坏宏观力学效应的实验研究[J].地球物理学报,1991,34(3):335-342.
    [113]黄宏伟,车平.泥岩遇水软化微观机理研究[J].同济大学学报(自然科学版),2007,35(7):866-870.
    [114]张永安,李峰,陈军.红层泥岩水岩作用特征研究[J].工程地质学报,2008,16(1):22-26.
    [115]马水山,雷俊荣,张保军等.滑坡体水岩作用机制与变形机理研究[J].长江科学院院报,2005,22(5):37-48.
    [116]陈近中,赵其华.水-岩相互作用对滑坡的影响[J].路基工程,2007,2:9-11.
    [117]孙钧,胡玉银.三峡工程饱水花岗岩抗拉强度时效特性研究[J].同济大学学报,1997,25(2):127-134.
    [118]朱珍德,邢福东,王思敬,等.地下水对泥板岩强度软化的损伤力学分析[J].岩石力学与工程学报,2004,23(52):4739-4743.
    [119]朱珍德,胡定.裂隙水压力对岩体强度的影响[J].岩土力学,2000,21(1):64-67.
    [120]朱合华,叶斌.饱水状态下隧道围岩蠕变力学性质的试验研究[J].岩石力学与工程学报,2002,21(12):1791-1796.
    [121]徐则民,扬立中,黄润秋.路基边坡水岩相互作用机理及病害防治[M].成都:西南交通大学出版社,2000.
    [122]汤连生,张鹏程,王思敬.水-岩化学作用之岩石断裂力学效应的试验研究[J].岩石力学与工程学报.2002,21(6):522-527.
    [123]王思敬,汤连生,张鹏程.水化学损伤对岩石弹性模量的影响[J].中山大学学报(自然科学版).2000,39(5):126-128.
    [124]汤连生,周翠英.渗透与水化学作用之受力岩体的破坏机理[J].中山大学学报,1999,35(6):95-100.
    [125]汤连生,王思敬,岩石水化学损伤的机理及量化方法探讨[J],岩石力学与工程学报,2002,21(3):314-319.
    [126]汤连生,王思敬,水-岩化学作用对岩体变形破坏力学效应研究进展[J],地球科学进展,1999,14(5):433-439.
    [127]汤连生,王思敬.水-岩土化学作用与地质灾害防治[J],中国地质灾害与防治学报,1999,10(3):61-69.
    [128]周翠英,邓毅梅,谭祥韶,等.饱水软岩力学性质软化的试验研究与应用[J].岩石力学与工程学报,2005,24(1):394-400.
    [129]周翠英,彭泽英,尚伟等.论岩土工程中水岩相互作用研究的焦点问题—特殊软岩的力学变异性[J].岩土力学,2002,23(1):124-125.
    [130]陈四利,冯夏庭,李邵军.化学腐蚀对黄河小浪底砂岩力学特性的影响[J].岩土力学,2002,23(3):284-287.
    [131]陈四利,冯夏庭,李邵军.化学腐蚀下三峡花岗岩的破裂特征[J].岩土力学、2003,24(5):817-821.
    [132]陈四利,冯夏庭,周辉.化学腐蚀下砂岩三轴压缩力学效应的试验[J].东北大学学报(自然科学版),2003,24(3):292-295.
    [133]陈四利,冯夏庭,周辉.化学腐蚀下砂岩三轴细观损伤机理及损伤变量分析[J].岩土力学,2004,25(9):1363-1367.
    [134]姚华彦,冯夏庭,崔强,等.化学溶液及其水压作用下单裂纹灰岩破裂的细观试验[J].岩土力学,2009,30(1):59-66.
    [135]姚华彦,冯夏庭,崔强,等.化学侵蚀下硬脆性灰岩变形和强度特性的试验研究[J].岩土力学,2009,30(2):338-344.
    [136]姚华彦.化学溶液及其水压作用下灰岩破裂过程宏细观力学试验与理论分析[D].武汉:中国科学院研究生院(武汉岩土力学研究所),2008.
    [137]鲁祖德,丁梧秀,冯夏庭,等.裂隙岩石的应力-水流-化学祸合作用试验研究[J1.岩石力学与工程学报,2008,27(4):796-804.
    [138]丁梧秀.水化学作用下岩石变形破裂全过程实验与理论分析[D].武汉:中国科学院研究生院(武汉岩土力学研究所),2005.
    [139]Snow D T. Rock Fracture Spacing, Openings and Porosities[J] J.Soil Mech. Found. Div., Proc. ASCE,1968,94(SM1):73-91.
    [140]Louis C. Rock Hydraulics InRock Mechanics[M], Ed. By L Mullen 1974.
    [141]Jones F O. A Laboratory Study of the Effects of Confining Pressure Flow and Storage Capacity in Carbonate Tocks[M].J. Petrol. Technol.1975.
    [142]Gale J E. The Effects of Fracture Type (Indeed Versus Natural) on the Stress-Fracture Closure Permeabity Relationships [C]. In:Proc.23th Symp. on Rock Mech., Berkeley, California,1982.
    [143]Barton N, et al. Strength Deformationed Conductivity Coupling of Rock Joints[J]. Int. J. Rock Mech. Min.Sci.&Geomech., Abstr.,1985,22(3): 121-140.
    [144]Walsh J B.New Model for Analyzing the Effect of Fracture on Compressibility[J]. J. Geophs. Resear.,1979,84(B7):3532-3536.
    [145]Walsh J B.Effect of Pore Pressure and Confining Pressure on Fracture Premeability[J].Int:J. Rock Mech. Min Sci&Geomech._Abstr.1981,18(5): 429-435.
    [146]Tsang Y W Witherspoon P A. Hydromechanical Behavior of a Deformable Rock Fracture Subject to NormalStress[J]. J. Geophys. Resear.1981,86(b10): 9187-9198.
    [147]Esaki J. Shear-Flow Coupling Test on Rock Joints[J]. In:Proc.7th. Int. Conf ISRM,1992.
    [148]刘继山.单裂隙受正应力作用时的渗流公式[J].水文地质工程地质.1987,4:22-28.
    [149]仵彦卿.裂隙岩体应力与渗流关系研究[J].水文地质工程地质.1995,12(2):30-35.
    [150]柴军瑞,仵彦卿.岩体渗流与应力相互作用关系综述[C].武汉:第六届岩石力学与工程会议论文集.
    [151]陈祖安,伍向阳等.岩渗透率随静水压力变化的关系研究[J].岩石力学与工程学报.1995,6:155-159.
    [152]王媛,徐志英等.复杂裂隙岩体渗流与应力弹塑性全耦合分析[J].岩石力学与工程学报.2000,18(3):177-181.
    [153]Feng Xiating, Li Shaojun, Chen Sili. Effect of water chemical corrosion on strength and cracking characteristics of rocks [J]. Key Engineering Materials, 2004,261-263:1355-1360.
    [154]Masahiro S, Venkata S, Dilip K, et al. The effect of chemical additives on the strength of rock[A]. Rock Mechanics 98[C]. [s.1.]:Japanese.Committee for IRSM,1998,201-210.
    [155]Jing Z Z, Kimio W, Jonathan W, et al. A 3D water/rock chemical interaction model for prediction of HDR/HWR geothermal reservoir performance[J]. Geothermics,2002,31:1-28.
    [156]Feng X T, Chen S L, Li S. Study on nonlinear damage localization process of rocks under water chemical corrosion[C]. In:The 10th Congress of the ISRM Technology Roadmap for Rock Mechanics,2003,325-327.
    [157]霍润科,姚志飞,杨俊卿等.酸性环境下岩石及混凝土的耐久性分析[J]. 西安建筑科技大学学报:自然科学版,2007,39(5):657-662.
    [158]杨慧,水岩作用下多裂隙岩体断裂机制研究[D],长沙:中南大学,2010.
    [159]朱珍德,孙钧.裂隙岩的渗流场与损伤场耦合分析模型及其工程应用[J].长江科学院院报,1999,16(5):22-27.
    [160]朱珍德.地下水对裂隙岩体强度的影响[J].山东科技大学学报(自然科学版),2000,19(1):18-20.
    [161]Dunning J D, Miller M E. Effect of pore fluid chemistry on stable sliding of Berea sandstone[J]. Pageoph.,1984,122:447-462.
    [162]Rebinder P A, Schreiner L A, Zhigach K F. Hardness Reducers in Driling: a Physico-Chemical Method of Faclitating Mechanical Destruction of Rocks During[M]. Moscow:Akad Naunk, Tansl. By Melboune:CSIRO,1994.
    [163]赵延林,曹平,汪亦显等.裂隙岩体渗流-损伤-断裂耦合模型及其应用[J].岩石力学与工程学报,2008,27(8):1634-1643.
    [164]赵延林,曹平,林杭等.渗透压作用下压剪岩石裂纹流变断裂贯通机制及破坏准则探讨[J].岩土工程学报,2008,30(4):511-517.
    [165]鲁祖德.裂隙岩石水岩作用力学特性试验研究与理论分析[D].武汉:中科院武汉岩土所,2010.
    [166]申林方,冯夏庭,潘鹏志,等.应力作用下岩石的化学动力学溶解机制研究[J].岩土力学,2011,23(5).1320-1326.
    [167]杨慧,曹平,江学良.水—岩化学作用等效裂纹长度细观模型[J].岩土力学,2010,31(7):2104-2110.
    [168]中国科学院地球化学研究所.高等地球化学[M].北京:科学出版社,1998.
    [169]缪协兴,软岩力学[M],徐州:中国矿业大学出版社,1995.
    [170]何满潮,软岩工程力学[M],北京:科学出版社,2002.
    [171]周翠英,朱凤贤,张磊.软岩饱水试验与软化临界现象研究[J].岩土力学,2010,31(6):1709-1716.
    [172]朱凤贤,周翠英.软岩遇水软化的耗散结构形成机制[J].地球科学(中国地质大学学报),2009,34(3):525-533.
    [173]周翠英,邓毅梅,谭祥韶,等.软岩在饱水过程中微观结构变化规律研究[J].中山大学学报(自然科学版),2003,42(4):98-103.
    [174]周翠英,张乐民,.软岩与水相互作用的非线性动力学过程分析[J].岩石力学与工程学报,2005,24(22):4036-4041.
    [175]周翠英,邓毅梅,谭祥韶,等.软岩在饱水过程中水溶液化学成分变化规 律研究[J].岩石力学与工程学报,2004,23(22):3813-3818.
    [176]周翠英,谭祥韶,邓毅梅,等.特殊软岩软化的微观机制研究[J].岩石力学与工程学报,2005,24(3):394-401.
    [177]李刚,丛丽莉,梁冰.富水软岩巷道变形特征及其控制方法研究[J].水资源与水工程学报,2010,21(5):25-29.
    [178]李刚,梁冰.水影响下软岩巷道变形规律及其控制[J].辽宁工程技术大学学报(自然科学版),2009,28(S1):219-221.
    [179]刘镇,周翠英,朱凤贤,等.软岩饱水软化过程微观结构演化的临界判据[J].岩土力学,2011,32(3):661-666.
    [180]缪协兴,茅献彪,卢爱红.湿度应力场理论在软岩巷道围岩稳定性控制中的应用[J].矿山压力与顶板管理,2002,3:1-5.
    [181]缪协兴.用湿度应力场理论分析膨胀岩巷道围岩变形[J].中国矿业大学学报,1995,24(1):58-64.
    [182]缪协兴,杨成永,陈至达.膨胀岩体中的湿度应力场理论[J].岩土力学,1993,14(4):49-56.
    [183]Li Ning, Zhu Yunming, Su Bo, et al. A chemical damage model of sandstone in acid solution[J].International Journal of Rock Mechanics and Mining Sciences, 2003,40(2):243-249.
    [184]李江腾.硬岩矿柱失稳及时间相依性研究[D].长沙:中南大学,2005
    [185]Atkinson, B.K., Stress corrosion and the rate-dependent tensile failure of a fine-grained quartz rock. Tectonophysics 1980,65:281-290.
    [186]Atkinson,B-K., Subcritical crack-propagation in rocks-theory, experimental results and applications. J. Struct. Geol.1982,4:41-56.
    [187]Atkinson, B.K., Subcritical crack growth in geological materials. J. Geophys.Res.1984,89:4077-4114.
    [188]Atkinson, B.K., Meredith, P.G., The theory of subcritical crack growth with applications to minerals and rocks. In:Atkinson, B.K. (Ed.), Fracture Mechanics of Rock. Academic Press, London,1987,111-166.
    [189]Atkinson, B.K., Rawlings, R.D., Acoustic emission during stress corrosion cracking in rocks. In:Simpson, D.W., Richards, P.G. (Eds.), Earthquake Prediction-An International Review. American Geophysical Union, Washington,DC,1981,605-616.
    [190]Sano, O., Kudo, Y., Relation of fracture resistance to fabric for granitic rocks.Pure Appl. Geophys.1992,138:657-677.
    [191]Anderson OL, Grew PC. Stress corrosion theoryof crack propagation with application to geophysics. Rev Geophys Space Phys 1977,15:77-104.
    [192]Masuda K, Mizutani H, Yamada I, Imanishi Y. Effects of water on time-dependent behavior of granite. J Phys Earth 1988,36:291-313.
    [193]Masuda K. Effects of water on rock strength in a britle regime. J Struct Geol 2001,23:1653-1657.
    [194]Martin Ⅲ RJ. Time-dependent crack growth in quartz and its application to the creep of rocks. J Geophys Res 1972,77:1406-1419.
    [195]Martin Ⅲ RJ, Durham WB. Mechanisms of crack growth in quartz. J Geophys Res 1975,80:4837-4844.
    [196]Meredith PG, Atkinson BK. Stress corrosion and acoustic emission during tensile crack propagation in Whin Sill dolerite and other basic rocks. Geophys J Astr Soc 1983,75:1-21.
    [197]孙训方编,材料力学[M],北京:人民教育出版社,1979.
    [198]张福初,王西成,陆坚等译,断裂力学[M],北京:中国建筑工业出版社,1981.
    [199]徐健.浅析节理对岩体物理力学性质的影响[J].地下空间,2001,21(5):365-368.
    [200]刘远明,夏才初,李宏哲.节理研究进展及在非贯通节理岩体研究的应用[J].地下空间与工程学报,2007,3(4):683-687.
    [201]李宏哲,夏才初,王晓东,等.含节理大理岩变形和强度特性的试验研究[J].岩石力学与工程学报,2008,27(10):2118-2123.
    [202]Kawamoto T, Ichikawa Y, Kyoya T. Deformation and fracturing behaviour of discontinuous rock mass and damage mechanics theory[J]. Int. J. for Num. and Analy. Meth. Geomechanics,1988,12(2):1-30.
    [203]Lematre J. How to use damage mechanics.Nuclear Engineering and Design 1984,80(1):233-244.
    [204]朱维申,周奎,余大军,等.脆性裂隙围岩的损伤力学分析及现场监测研究[J].岩石力学与工程学报,2010,29(10):1963-1973.
    [205]朱维申,李术才,陈卫忠,著.节理岩体破坏机理和锚固效应及工程应用[M],北京:科学出版社,2002.
    [206]郑少河.裂隙岩体渗流场—损伤场耦合理论研究及应用[D].武汉:中国科学院武汉岩土力学研究所,2000.
    [207]郑少河,赵阳升,段康廉.三维应力作用下天然裂隙渗流规律的实验研 究[J].岩石力学与工程学报,1999,18(2):133-136.
    [208]唐春安,杨天鸿,李连崇,等孔隙水压力对岩石裂纹扩展影响的数值模拟[J].岩土力学,2003,24(增):17-20.
    [209]高文龙,姜耀东,湛川.软弱结构面表面形态与充填度的力学特性研究[J].工程地质学报,2010,18(1):127-131.
    [210]Lee Y.H.The fractal dismension as a measure of the roughness of discontinuity profiles[J].Int.J.Rock Mech.Min, Sci.1990,27(6):395-404.
    [211]谢和平.岩石节理粗糙系数(JRC)的分形估计[J].中国科学(B辑)1994,(5):123-128.
    [212]周创兵,熊文林.不连续面的形维数及其在渗流分析中的应用[J].水文地质与工程地质.1996,6:1-5.
    [213]E.Charlaix.Percolation Threshold of a random array of disics:a Numerical Simulation[J].J.Phys.A.1986,19(7):533-536.
    [214]朱珍德,郭海庆.裂隙岩体水力学基础[M].北京:科学出版社,2007.
    [215]Dunning J D, Miller M E. Effect of pore fluid chemistry on stable sliding of Bereasandstone[J]. Pageoph.,1984,122:447-462.
    [216]Rebinder P A, Schreiner L A, Zhigach K F. Hardness Reducers in Driling: A Physico-Chemical Method of Faclitating Mechanical Destruction of Rocks During[M]. Moscow:Akad Naunk, Tansl. By Melboune:CSIRO,1994.
    [217]Dugdale D S., Yielding of Steel sheets containing slits [J]. Mech. Phys. Solids,1960,8:100-104.
    [218]周群力.岩石压剪断裂判据及其应用[J].岩土工程学报,1987,9(3):73-78.
    [219]Ashby M F, Hallam S D. The failure of brittle solids containing small cracks under compressive stress states[J]. Acta Metall,1986,34(3):497-510.
    [220]Lemaitre J损伤力学[M].倪金刚,陶春虎,译.北京:科学出版社,1996.
    [221]J. T. Gomez, A. Shukla. Static and dynamic behavior of concrete and granite in tension with damage [J]. Theoretical and Applied Fracture Mechanics, 2001,36(1):Pages 37-49.
    [222]J.F. Georgin, J.M. Reynouard. Modeling of structures subjected to impact: concrete behaviour under high strain rate[J]. Cement & Concrete Composites 2003,25:131-143
    [223]J Z.L. Wang, L.P. Wu. A study of constitutive relation and dynamic failure for SFRC in compression[J]. Construction and Building Materials, 2010,24(8):1358-1363.
    [224]王道荣,胡时胜.冲击载荷下混凝土材料损伤演化规律的研究[J].岩石力学与工程学报,2003,22(2):223-226.
    [225]焦楚杰,孙伟,高培正等.钢纤维混凝土抗冲击实验研究[J].中山大学学报(自然科学版),2005,44(6):41-44.
    [226]沈刘军,许金余,李为民等.玄武岩纤维增强混凝土静、动力性能实验研究[J].混凝土,2008,222(4):66-69.
    [227]高文学,刘运通.岩石动态损伤的数值模拟[J].北京工业大学学报,2000,26(2):5-10.
    [228]Wong T F. Micromechanics of faulting in Westerly granite[J]. Int. J.Rock Mech. Min. Sci. & Geomech. Abstr.,1982,19(2):49-64.
    [229]Lajtai E Z. Microscopic fracture processes in a granite[J]. Rock Mech.Rock Engng,1998,31(4):237-250.
    [230]马振珠,岳汉威,包亦望等.岩石、混凝土受颗粒冲击后接触损伤形貌的特征[J].燕山大学学报,2009,33(6):510-516.
    [231]J Hadjigeorgiou, J.F. Lessard. Numerical investigations of ore pass hang-up phenomena [J]. International Journal of Rock Mechanics & Mining Sciences,2007,44:820-834.
    [232]Z.S. Liu, H.P. Lee, C. Lua. Structural intensity study of plates under low-velocity impact[J]. International Journal of Impact Engineering. 2005,31:957-975.
    [233]Corbett G. G., Ried S. R., Johnson, W. Impact loading of plates and shells by free flying projectiles:a review[J], International Journal of Impact Engineering,1996,18:141-230.
    [234]Corran R. S. J., Shadbolt P. J., Ruiz, C., Impact loading of plates an experimental investigation[J]. International Journal of Impact Engineering, 1989,1:3-22.
    [235]Lee HP, Lu C, Liu ZS, et al. The structural intensity analysis of plates under dynamic loading. In:Mathisen KM, Kvamsdal T, Okstad KM, editors. Proceedings of the 16th Nordic Seminar on Computational Mechanics. Trondheim, Norway:Trondheim; 2003:145-148.
    [236]D. D. Tannant, Rockbolt behaviour under dynamic loading:Field tests and modelling[J].International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts,1995,32:537-550.
    [237]刘明贵,张国华,刘绍波,等.大帽山小净距隧道群中夹岩累计损伤效应研究[J].岩石力学与工程学报,2009,28(7):1363-1369.
    [238]田运生,李战军,汪旭光,等.爆破开挖基坑地震波的频谱特征[J].爆破,2005,22(4):29-31.
    [239]闫长斌,徐国元,杨飞,等.爆破动荷载作用下围岩累积损伤效应声波测试研究[J].岩土工程学报,2007,29(1):88-93.
    [240]林从谋,蔡丽光,蒋丽丽,等.小净距隧道爆破中夹岩累积损伤测试研究[J].兵工学报,2009,30(增刊2):228-232.
    [241]K.L.Johnson.Contact mechanics[M]. Cambridge:Cambridge university press,2003.
    [242]包亦望,陈志城.接触损伤及其在脆性构件无损在线检测中的应用[J].建筑材料学报,2000,3(3):195-201.
    [243]H.H.Hertz, Hertz's Miscellaneous Papers; Chs.5 and 6. Macmillan, London, U.K.,1896.
    [244]Kachanov L M. Variational methods of solution of plasticity problems[J]. Journal of Applied Mathematics and Mechanics,1959,23:880-883.
    [245]宗琦,孟德君.炮孔不同装药结构对爆破能量影响的理论探讨[J].岩石力学与工程学报,2003,22(4):641-645.
    [246]中华人民共和国行业标准编写组.SL47-94水工建筑物岩石基础开挖工程施工技术规范[S].北京:中国水利水电出版社,1994.
    [247]马建军.岩石爆破的相对损伤与损伤累积计算[J].岩土力学,2006,27(6):961-964.
    [248]孟凡兵,林从谋,蔡丽光,等.小净距隧道爆破开挖中夹岩累积损伤计算方法及其应用[J].岩土力学,2011,32(5):1491-1495.
    [249]吴立,张天锡.槽孔断裂控制爆破的试验研究[J].爆破.1993,22:51-55.
    [250]Livermore Software Technology Corporation. LS2DYNA Theoretical Manual[Z]. Livermore Software Technology Corporation,1998.
    [251]周钟,王肖钧,赵凯,等.水饱和岩石中爆炸应力波传播的数值模拟[J].爆炸与冲击,2005,25(4):296-302.