高速动车组转向架—系橡胶节点频率—刚度特性及其影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橡胶节点是轨道车辆轴箱转臂与构架的重要连接元件,在地铁、轻轨等城市轨道车辆和高速列车上均广泛采用,橡胶节点承担着传递牵引或制动的纵向力、保证列车稳定运行并具有良好导向能力等重要功能,因此优化橡胶节点参数是车辆转向架动力学分析的重要内容。当橡胶节点用于地铁车辆时,其典型工况为较低的速度和较小的曲线半径,线路等级相对客运专线低得多,振动频率范围相对也较低,在橡胶节点的参数优化中主要考虑其对曲线通过性能的影响。当橡胶节点用于高速动车组时,运行速度达到350~380km/h,曲线半径超过5000米,在橡胶节点的参数优化中主要考虑高速列车稳定性及其对参数敏感性的问题,虽然线路平顺度很高,振动方差较小,但整体振动频率范围也更高,在以往研究中较少关注的橡胶元件动态刚度及影响问题变得更加突出,为此,本文结合动车组转臂式定位结构的分析,通过转臂式橡胶节点刚度计算及动力学仿真的方法研究橡胶节点频率-刚度特性对高速动车动力学性能的影响。
     本文主要研究内容有:(一)橡胶材料本构模型的分析。介绍了橡胶材料本构模型的两种研究方法,讨论基于连续介质的唯象学描述法的几种典型的橡胶材料本构模型,即超弹性模型、粘弹性模型和弹塑性模型。分析如何通过试验获得不同橡胶超弹性本构模型的参数,为建立橡胶有限元叠加模型、以及研究橡胶节点的动态特性提供理论依据(第2章)。(二)建立橡胶节点有限元模型并提出参数识别方法。通过简谐剪切试验,进行橡胶节点动态特性试验研究,同时通过橡胶节点叠加模型的有限元方法,计算出橡胶节点的离散刚度,并通过试验加以验证。然后根据离散点拟合出橡胶节点在不同振幅下的频率-刚度曲线,最终得到节点的频率-刚度、振幅-刚度拟合特性曲线。提出了橡胶节点材料试验参数的识别方法,以识别塑性材料参数和粘性材料参数(第3章)。(三)从单自由度系统出发,建立质量-弹簧动力学模型,分析弹簧频率-刚度特性对机械振动系统的响应。在动力学计算中引入了频率-刚度特性的影响,介绍了在SIMPACK车辆多体动力学软件中频率-刚度特性力元的建模过程(第4章)。(四)以某和谐号高速动车组为研究对象,分别建立了未考虑频率-刚度特性的传统动力学模型和引入了橡胶节点频率-刚度特性的动力学模型,对比分析了两个模型中的振动模态和列车临界速度。分析了传统模型中橡胶节点的连接件(轮对及构架)振动频率、橡胶节点的变形和受力分布范围,作为引入橡胶节点动态刚度特性动力学模型的基本依据。通过两种模型的对比,详细分析了橡胶节点的频率-刚度特性对高速动车组动力学性能的影响(第5章)。
     本文采用叠加模型的有限元法描述橡胶节点在实际工程应用环境下的动态力学行为,为分析橡胶元件的动态刚度特性提供了一种新方法。结合CRH2高速动车组,通过建立考虑了橡胶节点频率-刚度特性曲线的车辆动力学模型,研究了橡胶节点的频率-刚度特性对动车组车辆动力学性能的影响。本文的工作可作为进一步开展高速动力车组动力学性能对参数敏感性的分析的基础,也为高速动车组橡胶节点的参数设计优化提供依据。
     研究得到的主要结论有:
     1)动车组的一系橡胶节点的动态特性可以通过叠加模型有限元法计算获得。试验表明该方法具有较好的准确性,针对所研究的橡胶节点样品的试验和计算而言,相对误差未超过5%;
     2)橡胶节点的频率-刚度特性对动车组的动力学性能有较大的影响。针对所研究对象而言,非线性稳定性临界速度较传统计算降低6.25%;当列车速度超过250km/h时,车轴横向力较传统模型随速度的增大增长更加明显,当速度为350km/h时,导向轮对的车轴横向力较传统模型增大约22%;对车辆垂向平稳性的影响较小,但对横向平稳性的影响在速度超过250km/h后,较传统模型更明显,当速度达到350km/h时,两者的Sperling横向平稳性指数分别为2.63、2.52。
     本文的创新点体现在以下2方面:
     1)在高速列车动力学计算中引入了橡胶节点频率-刚度特性,并结合具体车型分析了这一特点对车辆的影响;
     2)提出了采用叠加模型有限元法能够计算橡胶节点的频率-刚度特性,并对此进行了试验验证。
Rubber joint is an important connection component between tumbler journal box and bogie frame in railway vehicles. It is widely used in subway vehicles, light rail vehicles and high-speed trains. It undertakes some important functions, such as transferring the longitudinal force of traction or braking, ensuring the stable operation of the train, therefore optimization of rubber joint parameters is quite important in dynamics analysis of bogie. When rubber joint is used in subway vehicles, the typical case is lower speed and smaller radius, lower track level than passenger dedicated line, and lower vibration frequency range, so the influence of curve negotiation performance is always considered in optimization of rubber joint parameters. When rubber joint is used in high-speed EMU, with the speed350-380km/h and curve radius more than5000meters, the stability of high-speed train and problems sensitive to parameters are always taken into consideration in optimization of rubber joint parameters. In spite of its high track regularity and small vibration variance, the overall vibration frequency range is wider, so dynamic stiffness of rubber components and its influences which are neglected in past researches become more prominent. Therefore, the thesis analyzes tumbler journal box positioning structure of EMU, and then further analyzes the influences of frequency-stiffness properties of rubber joint on dynamic performance of high-speed EMU through calculation of stiffness and dynamic simulation.
     This paper includes the following four aspects.(1) Analysis of rubber material constitutive model. Two research methods of rubber material constitutive model are introduced, and the typical models based on continuous media phenomenological description, i.e. hyperelastic model, viscoelastic model and the elastic-plastic model are discussed. Analysis of how to obtain parameters of different rubber hyperelastic constitutive models by experiment provides theoretic basis for establishing finite element overlay model and studying dynamic properties of rubber joint (chapter2).(2) Establishing rubber joint finite element model and suggesting the method of parameter identification. Dynamic properties of rubber joint are investigated through harmonic shear test. Meanwhile, the discrete stiffness of rubber joint is calculated by finite element method of overlay model, and validated through test. Then rubber joint frequency-stiffness curve in different amplitudes is drawn based on the discrete points, and ultimately its frequency-stiffness curve and amplitude-stiffness curve. Identification method of material experimental parameters of rubber joint is put forward, to identify plastic material parameters and viscous material parameters (chapter3).(3) Starting from single freedom system, establishing quality-spring dynamic model, and analyzing the response of frequency-stiffness properties of spring on mechanical vibration system. The influence of frequency-stiffness properties is taken into consideration in dynamic calculation. The modeling process of frequency-stiffness force element in vehicle multibody dynamics software SIMPACK is introduced (chapter4).(4) With a given CRH high-speed EMU as the research object, a traditional dynamic model without considering frequency-stiffness properties and a dynamic model considering frequency-stiffness properties are established. Vibration modal and critical train speed in the two models are analyzed through comparison. Viberation frequency of connection components, the deformation and stress distribution range of rubber joint in the traditional model are analyzed as a basis for introducing a dynamic model which considers frequency-stiffness properties of rubber joint. Through comparison of the two models, the influence of frequency-stiffness of rubber joint on dynamic performance of high-speed EMU is analyzed in detail (chapter5).
     This paper adopts the finite element method of overlay model to describe dynamic mechanical behavior of rubber joint in practical engineering application environment, providing a new method to analyze dynamic stiffness of rubber components. With a given high-speed EMU, a vehicle dynamic model which considers frequency-stiffness properties curve of rubber joint is established to study the influence of frequency-stiffness of rubber joint on dynamic performance of EMU. The paper can serve as a foundation for further analysis of dynamic performance of high-speed EMU and parameter sensitivity, and also as a basis for optimization of parameter design of high-speed EMU rubber joint.
     Some important conclusions are drawn from this research:
     1) Dynamic properties of rubber joint in primary suspension of EMU can be calculated by the finite element method of overlay model. The experimental result indicates that the method has better accuracy. For the experiment and calculation of the sample rubber joint in this research, the relative error is less than5%;
     2) Frequency-stiffness properties of rubber joint have a major influence on dynamic performance of EMU. As far as the research object is concerned, its nonlinear stability critical speed is6.25%lower than the traditional calculation; When the train speed is more than250km/h, axle transverse force grows more obviously with rising speed than the traditional model; when the speed is350km/h, the axle transverse force of leading wheelsets grows about22%more than the traditional model; it has less influence on vertical stability of the vehicle, but the influence on lateral stability is more obvious than the traditional model with the speed more than250km/h. When the speed reaches350km/h, Sperling lateral stability index of the two models are2.63and2.52respectively.
     The innovation of this paper is reflected in the following two aspects:
     1) Frequency-stiffness properties of rubber joint are introduced into dynamic calculation of high-speed EMU, and its influence on vehicles is analyzed with a specific model EMU.
     2) It is proposed that frequency-stiffness properties of rubber joint can be calculated by the finite element method of overlay model. And it is carried out through experiment.
引文
[1]王华.动车组进口轮对车轮运行情况的调查分析[J].上海铁道科技.2011,(1):104-107.
    [2]Lee Senyung, Cheng Yungchang. Hunting stability analysis of high-speed railway vehicle trucks on tangent tracks[J]. Journal of Sound and Vibration.2005,282(3-5):881-898.
    [3]Krzysztof Zboinski. Dynamical investigation of railway vehicles on a curved track[J]. Eur. J. Mech. A/Solids 1998,17(6):1001-1020.
    [4]吕永鑫,王伯铭,曲文强.转臂式轴箱定位装置等效刚度计算与分析[J].铁道车辆.2008,46(9):5-8.
    [5]程海涛,王黎明,刘兴臣.CW-2系列转向架轴箱定位节点垂向刚度研究[J].铁道车辆.2006,44(1):1-5.
    [6]Ma Weihua, Luo Shihui, Song Rongrong. Influence of Track Irregularity to Wheelset Longitudinal Vibration and the Correlation Performance[J]. Journal of Southwest Jiaotong University.2006.14 (2): 238-252.
    [7]马卫华,罗世辉.提速机车横向振动问题分析[J].铁道学报.2006,26(3):21-27
    [8]王伯铭,罗世辉.高速动车组总体及转向架[M].第一版,成都:西南交通大学出版社,2008.
    [9]严隽耄,傅茂海.车辆工程[M].第三版,北京:中国铁道出版社,2007.
    [10]李芾,安琪.高速动车组转向架的发展及其动力学特性综述[J].铁道车辆.2008,46(4):5-9.
    [11]姚远,张红军.转臂轴箱定位节点位置对机车动力学性能影响分析[J].机车电传动.2007,10(3):27-29.
    [12]谭琳,何益文.CW-2B型转向架轴箱转臂弹性节点失效的原因分析及对策[J].铁道车辆.2003,41(7):37-38.
    [13]池茂儒,张卫华.高速客车转向架悬挂参数分析[J].大连交通大学学报.2007,28(3):13-19.
    [14]马卫华,罗世辉.基于多刚体动力学的机车横向稳定性分析[J].机车电传动.2005,9(5):33-36.
    [15]AustrellP-E, Olsson A K. A method to analyze the non-linear dynamic behavior of carbon-black-filled rubber components using standard FE-codes [A]. Proceedings of the Seeond Conference on Constitutive Models for Rubbers[C].Hannover, Germany,2001,231-235.
    [16]Nashif A. Vibration Damping.Wiley, New York,1985.
    [17]Payne A.R. In Reinforcement of Elastomers. G. Kraus, Ed. Inter-science, ChaP.3, New York, 1965.
    [18]Mullins L. Softening of rubber by deformation [J]. Rubber Chemical Technology,1969,42(2): 339-362.
    [19]Ferry J.D. Viscoelastic Properties of Polymers. J. Wiley and Sons Inc., New York,1970
    [20]Horton J M, Gover M J C, Tupholme G E. Stiffness of rubber bushing mountings subjected to radial loading[J]. Rubber Chemistry and Technology,2000,73(2):253-264.
    [21]Horton J M, Tuphome G E, Stiffness of spherical bonded rubber bush mountings [J]. International Journal of Solids and Structures,2005,42(11/12):3289-3297.
    [22]Hill J M. A review of Partial solutions of finite elasticity and their applications [J].Internal Journal of Nonlinear Mechanics.2001,36(3),447-463.
    [23]Gil-Negretea N, Vinolasa J, Kari L. A Nonlinear rubber material model combining fractional order viscoelasticity and amplitude dependent effects [J]. Journal of Applied Mechanics,2009,76(1):1-9.
    [24]Shangguan W B, LuZH, Shi J J. Finite element analysis of static elastic characteristics of the rubber isolators in automotive dynamic systems[R]. SAE Technical Paper Series,2003.
    [25]ANSYS, Inc. Abaqus Analysis User's,2004.
    [26]Zdunek A B, Berevier M. Numerical evaluation of finite element methods for rubber Parts[R]. SAE Technical Paper Seriers,1986.
    [27]Miller K. Testing Elastomers for hyperelastic material models in finite element analysis [EB/OL]. [July,2000]. httP:www.axelproduets.eoln/Pages/Downloads..htnil#TeehniealPaPers.
    [28]H. Behcir, L. Chiealier, M. Chaouche, K. Boufala. Hyperelastic constitutive model for rubber-like materials based on the first Seth strain measures invariant[J]. Eouopean Journal of Mehanics A/Solids. 2006,25(1):110-124.
    [29]Sasso M, Palmieria G, Chiappinia G, et al. Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods [J]. Polymer Testing.2008, 27(8):995-1004.
    [30]Meunier L. Chagnon G, Favier D, et al. Mechanical experimental characterization and numerical modeling of an unfilled silicone rubber[J]. Polymer Testing.2008,27(6):765-777
    [31]Wang Li Rong, Lu Zhen Hua. Modeling method of constitutive law of rubber hyperelasticity based on finite element simulations[J] Rubber Chemistry and Technology,2003,76(1):271-285.
    [32]王锐.橡胶隔振器动学性能及设计方法研究[D].博士学位论文,华中科技大学,2007.
    [33]J. Lubliner. A model of rubber viscoelasticity[J]. Mechanics Research Communications.1985, 12(1):93-99.
    [34]H.Vinayak and R.Singh. Eigensolutions of annular-like elastic disks with intentionally removed or added material[J]. Journal of Sound and Vibration.1996,192(4):741-769.
    [35]C.Erin and B.Wilson and J.Zapfe. An improved model of a pneumatic vibration isolator:theory and experiment[J]. Journal of sound and vibration.1998,218(1):81-101.
    [36]D.J.Thompson and W.JVan Vliet and J.W.verheij. Developments of the indirect method for measuring the high frequency dynamic stiffness of resilient elements[J]. Journal of Sound and Vibration. 1998,213(1):169-188.
    [37]C.M.Richards and R.Singh. Characterization of rubber isolator nonlinearities in the context of single-and multi-degree-of-freedom experimental systems[J]. Journal of Sound and Vibration.2001, 247(5):807-834.
    [38]Song He and Rajendra Singh. Estimation of Amplitude and Frequency Dependent Parameters of Hydraulic Engine Mount Given Limited Dynamic Stiffness Measurements[J]. Noise Control Engineering Journal.2005,53(6):271-285.
    [39]Y.C. Fung. Foundations of Solid Mechanics[M]. Prentice-Hall Inc., Englewood Cliffs, NJ,1965.
    [40]E. Betz. Spring and dashpot models and their applications in the study of the dynamic properties of rubber[J]. Mechanical and Chemical Engineering Transactions,1969.
    [41]W. Flugge. Viscoelasticity[M], second ed. Springer, Berlin,1975.
    [42]A.R. Johnson, C.J. Quigley, J.L. Mead. Large strain viscoelastic constitutive models for rubber[J]. Rubber Chemistry and Technology.1994,67(5):904-917.
    [43]A.R. Johnson, C.J. Quigley, C.E. Freese. A viscohyperelastic finite element model for rubber[J]. Computer Methods in Applied Mechanics and Engineering.1995,127(1):163-180.
    [44]M. Sjoberg. Rubber isolators-measurements and modelling using fractional derivative and friction[A]. SAE paper no.2000-01-3518,2000.
    [45]N. Gil-Negrete. On the Modelling and Dynamic Stiffness Prediction of Rubber Isolators, PhD Thesis, University of Navarra, Spain,2004.
    [46]Jeung-Hoon Lee, Kwang-Joon Kim. Modeling of nonlinear complex stiffness of dual-chamber pneumatic spring for precision vibration isolations [J]. Journal of Sound and Vibration.2007,301(3-5): 909-926.
    [47]Sasso M, Paknueru Q Amodio D. Application of fractional derivative models in linear viscoelastic problems[J]. Mechanics of Time-Dependent Materials.2011,15(4):367-387.
    [48]J.C. Simo. On a fully three-dimensional finite-strain viscoelastic damage model:formulation and computational aspects[J]. Computer Methods in Applied Mechanics and Engineering.1987,60(1): 153-173.
    [49]Ulmer J. D. Strain Dependence of Dynamic Mechanical Properties of Carbon-Black-Filled Rubber Compounds[J]. Rubber Chemistry and Technology.1995,69(1):15-47.
    [50]Enelund M, Mahler L, Runesson K et al. Formulation and integration of the standard linear viscoelastic solid with fractional order rate laws[J]. International Journal of Solids And Structures.1999, 36(16):2417-2442.
    [51]Sjoberg M. Nonlinear isolator dynamics at finite deformations:an effective hyperelastic, fractional derivative, generalized friction model[J]. Nonlinear Dynamics.2003,33(3):323-336.
    [52]李军强.粘弹性复合结构动力响应的实用数值算法[J].机械.2001,28(2):25-26.
    [53]Park S W, Kim Y R. Fitting prony-series viseoelastic models with Power-law prermoothing [J]. Journal of Materials in Civil Englneerlng.2001,13(1):26-32.
    [54]Olsson A K. Finite element procedures in modeling the dynamic properties of rubber[D], Ph.D Thesis, Lund University, Sweden,2007.
    [55]K.B. Oldham, J. Spanier. The Fractional Calculus[M]. Academic Press, New York,1974.
    [56]R. Bagley, P. Torvik. Fractional calculus-a different approach to the analysis of viscoelastically damped structures[J]. AIAA Journal.1983,21(4):741-748.
    [57]R.C. Koeller. Applications of fractional calculus to the theory of viscoelasticity[J], Journal of Applied Mechanics.1984,51(2):299-307.
    [58]L. Gaul, C.M. Chen. Modeling of viscoelastic elastomer in multibody systems[J]. Advanced Multibody Systems Dynamics.1993:257-276.
    [59]L.B. Eldred, W.P. Baker. A.N. Palazotto. Numerical application of fractional derivative model constitutive relations for viscoelastic materials[J]. Computers and Structures.1996,60(5):875-882.
    [60]N. Shimizu, W. Zhang. Fractional calculus approach to dynamic problems of viscoelastic materials[J]. JSMEC.1999,42(5):825-837.
    [61]M. Sjoberg, L. Kari. Non-linear behaviour of a rubber isolator system using fractional derivatives[J]. Vehicle System Dynamics.2002,37(2):217-236.
    [62]Adolfsson Klas, Enelund Mikael. On the fractional order model of viscoelasticity[J]. Mechanics of Time-Dependent Materials.2005,9(1):15-34.
    [63]Y.A. Rossikhin, M V Shitikova. Application of fractional calculus for dynamic problems of solid mechanics:novel trends and recent results [J]. Applied Mechanics Review.2010,63(1):1-52.
    [64]J. Padovan. Computational algorithms for FE formulations involving fractional operators[J]. Computational Mechanics.1987,2(2):271-287.
    [65]K. Adolfsson, M. Enelund. Fractional derivative viscoelasticity at large deformations[J]. Nonlinear Dynamics.2003,33(2):301-321.
    [66]Berg M. A model for rubber springs in the dynamic analysis of rail vehicle[J]. Proceeding of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit,1997,211(1):95-108.
    [67]Berg M. Non-Linear Rubber Spring Model for Rail Vehicle Dynamics Analysis[J]. Vehicle System Dynamics.1998,30(3/4):197-212.
    [68]N.Chandra Shekhar, H.Hatwal, A.K.Mallik. Performance of non-linear siolators and absorbers to shock excitations[J]. Journal of sound and vibration.1999.
    [69]Sjoberg M. On dynamic Properties of rubber isolators[D]. Doctoral Thesis, MWL, KTH, Sweden, 2002.
    [70]Sjoberg M. Rubber isolators-measurements and modeling using fractional derivatives and friction[R]. SAE Technical Paper Series,2000-01-3518.
    [71]Garela Tarrago M J. Engineering rubber bushing stiffness formulas including dynamic amplitude dependence[D].Licentiate Thesis, Royal Institute of Technology School of Engineering Sciences, Sweden,2006.
    [72]Gareia Tdrrago M J, Kari L, Vinolas J. Frequency and amplitude dependence of the axial and radial stiffness of carbon-black filled rubber bushings[J]. Polymer Testing.2007,26(5):629-638.
    [73]Andrew J.Barber. Accurate Models for Complex Vehicle Components using Empirical Methods[R]. SAE Technical Paper Series,2000-01-1625.
    [74]Andrew J.Barber. Accurate Models for Bushings and Dampers using the Empirical Dynamics Method[J]. Engineering Applications of Artificial Intelligence.2001, (1):59-64.
    [75]苏志勇.轴对称橡胶衬套高精度模型的建立及应用,硕士论文,吉林大学,2007.
    [76]杨树凯.橡胶衬套对悬架弹性运动与整车转向架特性影响的研究[D].博士学位论文,吉林大 学,2008.
    [77]于增亮,张立军,余卓平.橡胶衬套力学特性半经验参数化模型[J].机械工程学报,2010,46(4):115-123.
    [78]王娜.面向汽车耐久性分析的底盘橡胶衬套建模研究.硕士论文,吉林大学,2011
    [79]王福天.车辆系统动力学[M].北京:中国铁道出版社.1994.
    [80]徐明.橡胶类超弹性材料本构关系研究及有限元分析[D].北京:北京航空航天大学博士学位论文,2002.
    [81]李晓芳,杨晓翔.橡胶材料的超弹性本构模型[J].弹性体,2005,15(1):50-58.
    [82]Treloar L R GThe elasticity of a network of long chain molecules [J]. Rubber Chemistry and Technology.1943,16(4):746-751.
    [83]Treloar L R G. The physics of rubber elasticity[M]. Third edition. Oxford:Clarendon Press,1975.
    [84]James H M, Guth E. Theory of elastic properties of rubber [J]. Journal of Chemical Physics, 1943(3):455-481.
    [85]Flory P J, Rehner J. Statistical mechanics of cross-linked polymer networks I:Rubber elasticity[J]. Journal of Chemical Physics,1943,11(3):512-520.
    [86]Arruda E M, Boyce M C.A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials[J]. Journal of the Mechanics and Physics of solids,1993,41(2):389-412.
    [87]Wu P D, Van der Giessen E. On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers[J].Journal of the Mechanics and Physics of Solids,1993,41(3):427-456.
    [88]Ogden R W. Recent advances in the phenomenological theory of rubber elasticity [J]. Rubber Chemistry and Technology,1986,59(2):361-383.
    [89]A.N.Gent. Engineering with Rubber, Oxford University Press, and New York Division of the American Chemical Society.1992.
    [90]兰清群.高速列车转向架定位节点疲劳强度研究.硕士论文.西南交通大学.2009.05.
    [91]陈忠海.黄友剑.机车车辆用弹性元件及发展趋势[J].中国橡胶.2001.9.
    [92]Mooney M. A theory of large elastic deformation [J]. Journal of Applied Physics.1940,11: 582-592.
    [93]Rivlin R S. Large elastic deformation of isotropic material. Ⅳ. Further developments of the general theory[J]. Philosophical Transactions of the Royal society of London,1948, A241:379-39.
    [94]Rivlin R S. Large elastic deformation of isotropic material Ⅰ:Fundamental concepts[J]. Philosophical Transactions of the Royal Society of London.1948, A240:459-490.
    [95]Tschoegl N W. Constitutive equations for elastomers[J]. Journal of Polymer Science.1971, (12):Ⅰ 959-1970.
    [96]Ogden R W. Large deformation isotropic elasticity:on the correlation of theory and experiment for incompressible rubberlike solids[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences.1972,328(3):567-583.
    [97]Ogden R W. Nearly isotropic elastic deformations:application to rubber like solids[J].Journal of the Mechanics and Physics of solids.1978,26(1):37-57.
    [98]Ogden R W, Roxburgh D G. A pseudo-elastic model for the Mullins effect in filled rubber[J]. Proc R Soc Lond Ser A 1999,455:2861-2877.
    [99]Yeoh O H. On the Ogden strain energy function[J]. Rubber Chemistry and Technology.1997,70(2): 175-182.
    [100]Yeoh O H. Characterization of elastic Properties of carbon black-filled rubber vulcanizates [J], Rubber Chemistry and Technology,1990,63(5):792-805.
    [101]Anders K. Olsson. Finite element procedures in modelling the dynamic properties of rubber [D]. Lund University, Lund, Sweden,2007.
    [102]Yeoh O H. Some forms of the strain energy for rubber[J]. Rubber Chemistry and Technology. 1993,66(5):754-771.
    [103]Lockett F J. Nonlinear viscoelastic solids[M]. Lodon:Academic Press,1972.
    [104]Osaki K, Ohta S, Fukuda M et al..Nonlinear viscoelasticity of polystyre solutions[A]. J. Polym. Sci., Polym.Phys.Ed.,1976,14:1701-1715.
    [105]Wagner M H. Network theory of polymer melts[J]. Rheol.Acta.1979,18(1):33-50.
    [106]Shim V P W, Yang L M, Lim C T et al.. A visco-hyperelastic constitutive model to characterize both tensile and compressive behaviour of rubber[J]. Appl. Polym. Sci..2004,92(3):523-531.
    [107]王礼立,杨黎明.固体高分子材料非线性粘弹性本构关系[M].合肥:中国科学技术大学出版社,1992,88-116.
    [108]Austrell P-E, Olsson A K. A method to analyze the non-linear dynamic behaviour of carbon-black-filled rubber components using standardFE-eodes [A]. Proeeedings of the Seeond Conferenee on Constitutive Models for Rubbers [C]. Hannover, Germany,2001:231-235.
    [109]L.A. Gracia, E.Liarte, J.L.Pelegay, B.Calvo. Finite element simulation of the hysteretic behaviour of an industrial rubber. Application to design of rubber components. Finite Elements in Analysis and Design[J].2010,46(2):357-368.
    [110]方俊鑫,陆栋.固体物理学[M].上海:上海科学出版社,1980.
    [111]A.R. Payne. The dynamic properties of carbon black-loaded natural rubber vulcanizates [J]. Appl. Polym. Sci.1962,6(1):57-63.
    [112]J.F. Besseling. A theory of elastic, plastic and creep deformation of an initially isotropic material[J]. Appl. Mech.1998,25(3):529-536.
    [113]J.E. Marsden, T.J.R. Hughes. Mathematical Foundations of Elasticity[M]. New York:Dover Publications,1994.
    [114]J.C. Simo, T.J.R. Hughes. Computational Inelasticity[M], Springer,2000.
    [115]R.M. Christensen. Theory of the Viscoelasticity[M]. New York:Dover Publications,1982.
    [116]田敏,于香凤,王贵春等.隔振器通用规范GJB1948-94.北京:国防科工委军标出版发行部, 1995.
    [117]P.E. Austrell, A.K. Olsson, M. Jonsson. A method to analyze the non-linear dynamic behavior of carbon-black-filled rubber components using standard FE codes. A method to analyze the non-linear dynamic behavior, in:P. Besdo, R.H. Schuster, J. Ihlemann(Eds.), Constitutive Models for Rubber Ⅱ, 2001.
    [118]O.H. Yeoh. Some forms of the strain energy function for rubber[J], Rubber Chem. Technol.1993, 66(3):754-771.
    [119]M.J. Gregory. The stress-strain behaviour of filled rubber at moderate strains[J]. Plastics Rubber Mater.1979,4(1):184-188.
    [120]ANSYS Theory Reference. ANSYS Inc..2004
    [121]Singiresu S.Rao.李欣业.张明路编译.机械振动[M].第4版.清华大学出版社.2011.
    [122]闻邦椿,刘树英,陈照波,李鹤.机械振动理论及应用[M].高等教育出版社,2009.