粉煤灰微珠/有机高分子复合材料及其偶联剂界面作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着对粉煤灰本质认识的不断深化,在粉煤灰高层次的开发研究上已取得一定进展,特别是在高分子材料中的应用研究为粉煤灰综合利用开辟了新的领域。粉煤灰微珠作为有机高分子复合材料的添加剂应经过活化改性,以解决微珠与高分子材料的相容性,本文通过合成和优选偶联剂,确定了微珠在PVC、天然橡胶及不饱和聚酯树脂不同体系中的偶联剂及改性工艺条件,为微珠及其它无机填料的偶联改性提供技术支持。
     本文采用废铝为原料合成铝酸酯偶联剂。铝酸酯的合成分为中间体异丙醇铝的合成和铝酸酯的合成。异丙醇铝的合成最佳条件为:反应温度82℃,反应时间5小时,异丙醇铝用量为理论量的5倍,收率大于90%。降粘实验研究表明,经偶联剂处理后,微珠表面极性得到改变,使活化微珠在液体石蜡中的亲和性和分散性得以提高,铝酸酯偶联剂和硅烷偶联剂APS降粘效果显著,偶联剂改性微珠后其表面变为亲油性,活性微珠聚集态颗粒减少,分散程度得以提高。
     通过XRD分析,粉煤灰中的主要晶相为莫来石和磁铁矿、赤铁矿以及硅线石和磁赤铁矿。添加碱后焙烧对粉煤灰晶相有显著的影响,表现为粉煤灰主要晶相莫来石与硅线石在反应中消失,生成了具有霞石结构的高形态NaAlSiO_4晶相。由SEM分析看出,在1000℃下焙烧0.5小时后,粉煤灰微珠已经与碱发生了反应,形成部分的晶相重组,部分的微珠被包围在破坏了的晶相内部。反应进行2小时后,反应基本完毕,SEM照片表现为致密均匀的集合体。
     在微珠/PVC复合体系加工过程中,最高转矩随微珠填充量增加而下降,与未加微珠的PVC体系相比,填加微珠后的PVC体系最高转矩和平衡转矩都有所降低,加工中热稳定时间大于30分钟。在活性微珠、活性碳酸钙填充PVC管材体系中,拉伸强度随填料份数增加而减小,在同等填加量时,活性微珠/PVC复合材料拉伸强度高于活性碳酸钙/PVC复合材料,材料拉断伸长率随填料填加份数增加而减少。SEM分析表明,未活化微珠与树脂是明显分离的,微珠界面清晰,而活化微珠在PVC树脂中没有清晰的界面,微珠被树脂缠绕、覆盖,明显看到偶联剂在微珠与树脂间的交联现象。经耐腐蚀实验发现,用铝酯偶联酸剂活化的微珠填充的PVC,无论在酸性还是在碱性条件下,都具有良好的稳定性,明显优于用铝酸酯偶联剂活化的碳酸钙填充的PVC材料。
     在微珠/橡胶复合体系中,未活化微珠填充橡胶制品的硬度和拉伸强度与CaCO_3填充制品性能相当,在伸长率和永久变形上优于CaCO_3填充NR,微珠可完全代替CaCO_3作为橡胶的新型填料。铝酸酯活化微珠填充NR制品在伸长率和永久变形性
    
    重庆大学博士学位论文
    能上优于半补强炭黑填充NR和超细活性钙填充NR制品,但在硬度和拉伸强度上
    有所降低。硅烷偶联剂活化微珠填充NR的力学性能优于铝酸活化微珠填充NR制
    品性能。硅烷偶联剂活化微珠填充SRf加R体系的硫化加工过程中焦烧时间比半补
    强炭黑填充SB凡NR体系有所延长。采用si一l和si一3协同处理微珠,其填充制品性
    能优于单一硅烷偶联剂处理微珠效果。复合硅烷偶联剂协同活化微珠可部分(50%)
    代替SRF填充SB凡NR,其加工工艺性良好。
     不饱和聚酷树脂凝胶化时间随固化温度的升高而缩短,微珠的加入使树脂凝胶
    化时间缩短。水法处理微珠使硅烷在微珠表面形成一连续的偶联剂层,增强了微珠
    与树脂间的亲和力,使微珠/不饱和聚醋树脂复合材料拉伸强度和弯曲强度提高。铝
    酸酷活化微珠与硅烷偶联剂和钦酸酷活化微珠相比,其填充UP制品的力学性能不
    如后两种偶联剂。在介质中的腐蚀结果表明,未经偶联剂处理的微珠/不饱和聚酷
    体系耐 NaCI腐蚀性好,但耐沸水、酸、碱和丙酮有机溶剂腐蚀性差,用硅烷偶联
    剂处理后,改进了界面之间的粘结,能耐沸水和饱和NaCI,耐盐酸腐蚀性有所改善,
    但仍不耐碱和有机溶剂。
     用气相色谱分析表明,硅烷偶联剂与微珠表面的硅经基发生缩合反应,产生乙
    醇新峰。经FT-IR光谱分析,硅烷与微珠表面作用出现515一O一siL键,证明了硅烷与
    微珠表面硅轻基的化学作用。在非水体系中,硅烷的烷氧基与微珠的si一O一反应而
    不发生自聚,硅烷分子是以单分子形态存在。在水体系中,硅烷偶联剂发生部分水
    解、自聚,与微珠作用后在微珠表面形成二、三聚体形式。经差示IR光谱研究,
    证明铝酸酷与微珠表面有新的51一(卜勺叼键的生成,证实了偶联机理的化学键理论,
    并提出了铝酸酷在微珠表面的分子层模型,根据该模型计算所得铝酸醋最佳用量与
    实验所得结果吻合较好。经偶联剂活化微珠与高分子基材界面粘接良好,润湿性提
    高,断裂后微珠表面有残余树脂,说明偶联剂在微珠与树脂界面间有强烈的化学作
    用,结合微珠份VC复合材料力学性能分析,除了化学键作用外,微脚高分子界面
    间还具有较强的物理吸附作用。
The application in the polymer material opens up a new field for the complex application of flyash. As a kind of ploymer compound additive, flyash microspheres must be activized and modified. In this paper, the coupling agent and the technological conditions used in the PVC, nature rubber and unsaturated polyester resin are defined, it provides the technical support for the coupling and modification of microspheres and other inorganic fillers.
    The synthesis of aluminate ester coupling agent consists of the synthesis of isopropanolaluminium and aluminate ester. The best synthesis conditions of isopropanolaluminium is as follows: reaction temperature is 80 , reaction time is 5 hours, the actual amount of isopropanolaluminium is 5 times of the theroetical amount, the collecting ratio is more than 90%. The experiment results show that the surface polarity of microspheres is changed through the treatment of coupling agent, its affinity and the dispersion properties in the liquid wax are improved. The modification effect of microspheres is good through the using of ester aluminate coupling agent and silane coupling agent. The experiment results show that the surface becomes oilphilic after the modification, the particle number of gathering state is decreased, the dispersion degree is improved.
    The main crystal phase of flyash includes mullite, magnetite, hematiite, sillimante and maghemite through the XRD analysis. The crystal phase is changed after roast with alkali, the main crystal phase, mullite and sillimante, disappears during the reaction process, and produces high form crystal phase NaAlSiO4. Through the SEM analysis, it shows that, after roast for 0.5 hour hi 1000, the reaction between flyash microspheres and aickle occured, the crystal phase was recombinated, part of the microspheres was surrounded by the destructive crystal phase. After 2 hours, the reaction finished, SEM photo shows that it has become compact uniform aggregate.
    The highest moment will decreased with the increasing filling amount of microspheres. Comparing with the PVC without microspheres, The highest moment and balance moment of microspheres/PVC system decreases, the thermal stable time is more than 30 minutes during the processing course, hi the active microspheres/PVC systems and active CaCO3/PVC systems tensile strength decreases with the increasing amount of fillers. The tensile strength of active microspheres/ PVC system is stronger than that of active CaCO3/PVC system. The SEM analysis shows that unactive
    
    
    
    microspheres are separated from the rosin clearly, the interface of microspheres is distinct, but the active microspheres have not distinct interface in the rosin system, the coupling agent links the microspheres and rosin. Through the against corrosion experiment, it proves that the anti-corrosion property of active microspheres/ PVC is better than that of active CaC03/PVC.
    Under the same preparing conditions, the hardness and tensile strength of unactivized microspheres/rubber composite as the same as CaCO3/rubber composite. So flyash microspheres can substitute CaCO3 as new filler in rubber. If the flyash microspheres are activized by aluminate ester and doped in NR, the extend ration and permanent set of NR is better than the NR doped with SRF and superfine CaCO3, but the hardness and tensile strength is worse than the last one. If the microspheres are activized by silane coupling agent and aluminate ester coupling agent, the mechanic properties of the first one are better than the second one.. If the microspheres are activized by silane coupling agent and doped in SBR/NR, the coal carbonization time is longer than the SBR/NR doped with SRF. The micropheres activized by composite silane coupling agent can partly subsitute SRF and be doped in SBR/NR.
    The gel time of unsaturated polyester resin shortens with the increasing of solidifying temperature. Check the microspheres activized by aluminate ester coupling agent against the microspheres activized by silane coupling agent and ester titanate coupling agent, we can get the ef
引文
[1] 电力部.我国火电厂灰渣处置和利用现状及2000年控制目标.粉煤灰综合利用,1995,4(1):62~65
    [2] 李国栋.粉煤灰的结构、形态与活性特征。粉煤灰综合利用,1998,5(3):35~37
    [3] 蒋林华.粉煤灰—水泥浆体中[SiO_4]~(4-)四面体聚合结构和分形结构研究.粉煤灰综合利用,1998,1(1):34~37
    [4] 蒋永惠.粉煤灰粒度分布对水性能的影响.建筑材料学报,1998,7(3):245~250
    [5] 田倩.高性能水泥基复合材料的抗冻性能研究.混凝土与水泥制品,1997,6(93):12~14
    [6] 潘志华.粉煤灰贝利特水泥用作土壤用化材.南京化工学院学报,1994,1(2):37~39
    [7] Ganesh Babu K. Efficiency of fly ash in concrete. Cement and Concrete Composites, 1993, 4(15):223~229
    [8] Y Maltals. Influence of Curing Temperature on Cement Hydrathon and Mechanical Strength Development of Flyash Mortars. Cement and Concret Ressarch, 1997,27(7): 1009~1020
    [9] A A Ramezanianpour. Effect of Curing on the Compressive Serecgdc. Cement and Concrete Composites, 1995, 12:201~206
    [10] P K Dhir. Predicting Concrete Durability from its Absorption. Concrete Durability. ACI SP, 1994, 45:1177~1194
    [11] 赵铁军.高性能混凝土的抗渗性.混凝土与水泥制品,1997,3(93):12~12
    [12] 阎培瑜.氟石膏粉煤灰混凝土的水化特性及抗压强度.建筑材料学报,1998,1(4):320~324
    [13] 丁庆军.粉煤灰烧制低钙水泥的研究.粉煤灰综合利用,1998,10(2):29~31
    [14] Zheng Liu. Sub-distributions of Poresize: a New Approach to Correlate Pore Structure with Pereability. Cement and Correte Research, 1995, 4:769~778
    [15] Naik T R. High-Strength Concrete Containing Large Autities of Fly Ash. ACI Materials Journal, 1989,86(2): 111~116
    [16] 李连科.粉煤灰隔热耐火砖的研制.粉煤灰综合利用,1998,(2):4~7
    [17] Haque M N. Realistic Strength of Air-entrained Concretes with and without Fly Ash. ACI Materlals Journal, 1988, 85(4): 241~243
    [19] Mashlehuddin M. Effect of Sand Replacement on the Early-Age Strength Gain and Long-Term Corroslon. ACI Materionls Journal, 1989, 86(1): 58~62
    [20] 彭苏宁.粉煤灰隔热耐火砖的研制.粉煤灰综合利用,1998,(1):19~21
    [21] 何志宏.从粉煤灰中分选玻璃微珠.粉煤灰综合利用,1998,(2):24~26
    [22] 陈承波.粉煤灰提铝及其综合利用.硅酸盐通报,1990,(5):52~55
    
    
    [23] 仲兆裕.粉煤灰漂珠及其在隔热耐火材料中的应用.粉煤灰综合利用,1995,(2):20~23
    [24] 李巧玲.用粉煤灰制备分子筛的研究.现代化工,1997,(12):44~47
    [25] Ananal Srinvasan. The Absorption of SO_2 by Zeolites Synthesized from Fly Ash. Environ. Sci. Technol, 1999, 30(9): 1464~1469
    [26] 李强.粉煤灰磁化肥质量改进技术探讨.粉煤灰综合利用,2000,(3):38~40
    [27] 徐应成.施灰农田作物增产机理探讨.粉煤灰综合利用,2000,(3):41~42
    [28] G S Gupta. Removal of Chrome Dye from Aqueous Solutions by Fly Ash. Water Air and Soil Pollution, 1988,37(6):13~24
    [29] 郑礼胜.用粉煤灰处理含铭废水的试验研究.粉煤灰综合利用,1997,(2):38~40
    [30] 李尉卿.粉煤灰漂珠活化处理废水的实验研究.粉煤灰综合利用,2002,(2):11~13
    [31] 黄树军.粉煤灰吸附水中磷的研究.粉煤灰综合利用,1996,(3):60~62
    [32] S Komar. International Journal of Mineral Processing. 2002, 165~175
    [33] Jozewicz W. Fly Ash Recycle in Dry Scrubbing. Environmental Progress, 1986 5(4):219~223
    [34] Pado Davini. Investigation of the SO_2 Absorption Properties of Ca(OH)_2-FIy Ash Systems. Fue,1996,75(6) :713~716
    [35] N Karatepe. Effect of Lcydration Condlitions on the Physical Properties of Fly Ash Ca(OH)_2 Sorbents. Energy, Sources,1998, (20): 505~511
    [36] Kurl K Kind. Effects of Salts on Preparation and Use of Calcium Silicates for the Gas Desulfurization. Environ Sci. Technol, 1994, 28(2): 277~283
    [37] Jeffrey M. Zimpleman, Dioxin. Not Doomsday. Deparment of Chemistry, Dartmouth College, Hanover, NH03755.
    [38] G K Boreskov. Catalysts, the Questions of Theory and Practice (in Russian), 1987, 536~538
    [39] T G Alhazov. The High-selective Catalysts of Hydrocarbon Oxidation (in Russian). Chemistry, 1988, (3):192~192
    [40] A G Anshits.Third Workshop on C_1~C_3 Hydrocarbon Conversion. Book of Abstract. Krasnoyarsk: Russia, July 1997, 14~17
    [41] E V Fomenko. Catalysts Today. Catalysts, 1998, 42, 267~272
    [42] 段予忠.玻璃微珠在酚醛塑料中的作用分析.高分子材料科学与工程,1990,2:85~89
    [43] 林薇薇.漂珠/不饱和聚酯复合材料的耐化学腐蚀性.材料科学与工程,1992,20(2):12~16
    [44] 何明渝.粉煤灰中空心微珠的应用开发.橡胶工业,1989,36:400~408
    [45] A. Tatting. Effect of Coagent in Reactive Surface Treatment for Calcium Carbonate Filler in Polypropylene Plastic. Rubber and Composites, 1999,28(1): 11~19
    [46] 傅强.碳酸钙刚性粒子增韧HPPE的影响因素.高分子材料科学与工程,1992(1):107~109
    [47] 吴绍吟.碳酸钙在HPPE/CaCO_3体系中的分散状况研究,工程塑料应用,1997,25(2):12~14
    
    
    [48] Demjen Zoltan. Interaction of Silane Coupling Agents with CaCO3. Journal of Colloid and Interface Science, 1997,190:427~436
    [49] Gonzalez Jeanette. Effects of Coupling Agents on Mechanical and Morphological Behavior of the PP/HDPE Blend with Two Different CaCO3. European Polymer Journal, 2002,38:2465~2475
    [50] Albano C. Mechanical and Morphological Behevior of Polyolefin Blendsin the Presence of CaCO3. Composite Steuctures, 2000,48:49~58
    [51] 蔡维真.云母填充聚丙烯的界面和力学性质的研究.高分子材料科学与工程,1991,5:55~59
    [52] 胡延家.玻璃纤维增强聚氯乙烯复合材料的研究.复合材料学报,1996,13(2):22~27
    [53] Alonso M. Constrained Crystallization and Activity of Filler in Surface Modified Tale Polypropylene Composites. European Polymer Jouenal, 1997,33:255~262.
    [54] Wu.Jihuai. Preparation of Modified Ultra-fine Mineral Powder and Interaction between Mineral Filler and Silicone Rubber. Journal of Materials Processing Technology, 2003,137:40~44
    [55] Brinke J W. Mechanistic Aspects of the Role of Coupling Agents in Silica-rubber Composites. Composites Science and Technology, 2003,63:1165~1174
    [56] He Pingsheng. Curing Studies on Epoxy System with Fillers. J Mater Sci, 1989, 24:2951~2954
    [57] C Arvind Patel. An Innovative Stuocy to Evaluate Fillers, Part 1: Carbon Black and Silica. J Elastomers and Plastics, 1999, 31:213~231
    [58] Liang Jizhao. Brittle-ductile Transition in Polypropylene Filled with Glass Beads. Polymer, 1999,40:3191~3195
    [59] Werner Radoslaw. Effect of Surface Modification on Physicochemical Properties of Precipitated Sodium-aluminium Silicate, used as a pigment in acrylie dispersion paints. Dyes and Pigment, 2001,50:41~54
    [60] 欧玉春.界面改性剂在聚丙烯/高岭土二相复合体系中的作用.材料科学与工程,1996,1:59~63
    [61] Plueddeman E P. Interfaces in Polymer Matrix Composites. NewYourk Acodemic Press, 1974, 2:34~39
    [62] K Garde. Surface Malification of Fly Ash Characterisation and Evaluation as Reinforcing Filler in Polyisoprene Plastics.Rubber and Composites, 1999, 28( 1 ): 1 ~10
    [63] L G Boretti.Effectof Tetramethylthiuram Disulphide on Bistrlethoxy(silylpropyl)Tetrasulphane as Coupling Agent for Silica in Polyisoprene Plastics. Rubber and Composites, 2000, 29(3): 144~148
    [64] Landry D J. Insitu Pdymerization of Tetracthoxysilane in Polymers: Chemical Nature of the Interactions. Polymer, 1992, 33(7): 1496~1506
    [65] 吴叙勤.硅烷偶联剂与SiO_2表面化学反应的研究.复合材料学报,1985,2(4):1~3
    
    
    [66] 林硕.偶联剂对铜系复合涂料导电稳定性的影响.复合材料学报,1999,16(4):44~48
    [67] Halvorson Rolf H. The Effect of Filler and Silane Content on Conversion of Resin-based Composite. Dental Material, 2003,19:327~333
    [68] Choi Sung Seen. Influence of Storage Time and Temperature and Silane Coupling Agent on Bound Rubber Formation in Fillde Styrene-butadiene Rubber Compounds. Polymer Testing, 2002,21:201~208
    [69] Kaynak.Cevgen. Use of Silane Coupling Agents to Improve Epoxy-rubber Interface. Polymer, 2003,39:1125~1132
    [70] 张云怀.钛酸酯冶化粉煤灰微珠填充PVC板材研究.工程塑料应用,2001,29(3):30~31
    [71] Gonzalez J. Analysis of Thermogravimetric Data of Blends of Polyolefins with Calcium Caronate Treated with Lical 2. Polymer Degradation and Stability,2001,73:211~224
    [72] Zhang Wengong. U S P 4,816, 594, 1989:1~14
    [73] 陈田安.铝酸酯偶联剂DL-41-A在聚氯乙烯体系中的润滑性能研究冲国塑料,1989,3(4):30~35
    [74] 张云怀.铝酸酯活化粉煤灰微珠及其在聚氯乙烯中的应用.粉煤灰综合利用,1995,4:34~36
    [75] 邹思广.一种新型偶联剂的应用研究.现代塑料加工应用,1996(1):126~130
    [76] 李其正.NM铬酸酯偶联剂在塑料制品中应用.第三届全国塑料填充改性技术及应用学术讨论会论文,1989,87~89
    [77] 吴崇周.磷酸酯类偶联剂对CaCO_3/HDPE体积偶联效果的研究.高分子材料科学与工程,1991,3:97~101
    [78] Fuad M Y A. Application of Rice Husk Ash as Fillers in Polypropylene:Effect of Titanate,Zirconate and Silane Coupling Agents. European Polymer Journal Volume, 1995,31:885~893
    [79] 李恒德.材料的表面与界面.北京:清华大学出版社,1990,125~127
    [80] D T Clark. Polymer Surfaces. NewYork: 1978,63~67
    [81] 吴人洁.高聚物的表面与界面.北京:科学出版社,1998,299~301
    [82] 吴鑫森.颗粒增强复合材料中的界面层.复合材料学报,1985,2(3):41~42
    [83] 欧玉春.界面改性剂在聚丙烯/高岭土二相复合体系中的作用.高分子学报,1996,1:59~64
    [84] C Arvind. An Innovative Study to Evaluate Fillers, Portz: Carbon Black, Silica and Carbon Black/Silica Blends-Functional Relationship between Filler Parameters and Compand proporties at Constant Loading. J Elastoners and Plastics, 2000, 32:211~215
    [85] H Ismail. Effect of Palm Oil Fatty Acid Additive on Curing Characteristics and Vulcarcizate Properties of Silica Filled Natural Rubber Compounds. J Elastomers and Plastics, 2000, 32: 32~45
    
    
    [86] S H Mansour. Polymeric Composites Containing Alumina Trihydrate and Silica J Elastomers and Plastics, 2000, 32:248~263
    [87] 贝逸翔.粘土/橡胶的复合效应研究.复合材料学报,1993,10(1):27~33
    [88] H Schonhorn. In Polymer Surface. Chapx : John Wiley, 1978, 87~89
    [89] D H Kaeble. Physical Chemistry of Adhesion, NewYork: John wiley, 1971, 167~169
    [90] 王晓钧.粉煤灰—石灰—水系统反应机理探讨.硅酸盐学报,1996,24(2):137~139
    [91] C Arvinel. An Innovative Study to Evaluate Filler, Part 2: Carbom Blacd, Silica-funetional Relationship between Filler Parameters and Compound Properties at Constant Loading. J Elastomers and Plastle, 2000, 3:211~220
    [92] Terence Allen. Particle Size Measurement.Third Edition. Condon:Champman and Hall Itol, 1981, 93~96
    [93] Ohtsnkcc Y. Application of Fly Ash as a Filler. J Applied Polym Sci, 1981, 26:1637~1647
    [94] Earth H G. Modern Methods of Particle Size Analysis. New York:Wiley, 1984,111~112
    [95] L L Sloss. Pulverized Coal Ash Requirements for Utilization. IEA Coal Research, 1996, 34:123~124
    [96] R K Rchatgi. Morphdogy and Selected Properties of Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete. Proceedings Fifth International Conferene. Wisconsin, 1995.USA: April 21,1995, 459~461
    [97] 钱觉时等.粉煤灰的矿物组成(上).粉煤灰综合利用,2001,(1):26~31
    [98] 钱觉时等.粉煤灰的矿物组成(中).粉煤灰综合利用,2001,(2):37~41
    [99] G J McCarthy. Use of a Database of Chemical,Mineralogical and Physical Fly Ash and Its Utilization as a Mineral Idmixture in Concrete. Materials Research Society Sysnposium Proceedings, 1990, : 178, 3~31
    [100] D L Biggs. Transmitted and Refleeted Visible Light Microscopy of Two Bituminous Fly Ashes. Materials Research Society Symosium Proceedings, 1985,43:21~30
    [101] Barta I. E. A Statistieal Investigatin on Particle to Partied Variation of Fly Ash Using SEM-AIA-EDAX Technique. Mater Res Soc Symp Proc, 1990, 178:67~82
    [102] Ramsden A R. Characterization and Analysis of Individval Fly Ash Particles from Coal-fired Power Stations by a Combination of Optical Microscopy, Electron Microscopy and quantitative electron microprde analysis. Atmos Environ, 1982, 16(9):2191~2206
    [103] Ghosals Ebert J L. Chemical Composition and Size Distribution for Fly Ashes. Fuel Proc Technol, 1995, 44:41~94
    [104] 翟建平.华能南京电厂粉煤灰微珠特征及形成机理探讨.粉煤灰综合利用,1996,3:1~5
    [105] 李文青等.粉煤灰的微珠特征及形成机理探讨.环境工程,1997,8,15(4):51~56
    
    
    [106] 顾小愚.电厂粉煤漂珠形成机理探讨.粉煤灰综合利用.1997,2:33~35
    [107] J Gulyas. Chemical Modification and Adhesion in Carbon Fiber/Epoxy Micro-composites: Compling and Surface Coverage. Pdymer Composites, 2000, 21(3): 387~395
    [108] J Otaigbe. Effect of Coupling Agent and Filler Partide Size on Melt Rheology of Polymer-Bonded Nol-Fe-B Magnets. Pdymer composits, 1999, 20(5): 697~704
    [109] L Mascia. Influence of Siloxane Composition and Morphdogy on Properties of Polyimide-silica Hylrids. Polymer, 1995, 36(19): 3649~3659
    [110] 章文贡等.铝酸脂偶联剂酸性碳酸钙的性能与应用.中国塑料,1998,2(1):22~34
    [111] 吴学礼等.粉煤灰火山灰反应动力学的研究.建筑材料学报,2002,5(2):120~122
    [112] Joint Committee on Power Diffraction Standards. Power Diffraction File. Pennsyvania: 1979, 256~259
    [113] 张立.粉煤灰漂珠的抗压强度及其影响因素研究.粉煤灰综合利用,2002,(4):27~30
    [114] 刘亚飞等.Makipirtti-Meng模型在陶瓷烧结动力学上的应用.材料导报,2002,10:86~88
    [115] 林彬荫等.硅线石基本性能与莫来石化行为.耐火材料,1985,2:20~24
    [116] 李九鸣等.硅线石合成莫来石研究.非金属矿,1994,(4):38~42
    [117] 硅酸盐岩相学.北京:中国建筑工业出版社,1986,87~89
    [118] 叶大年等.X射线粉末法及其在岩石学中的应用.北京:科学出版社,1984,158~165
    [119] 邓本浅.橡胶工艺原理.北京:化学工业出版社,1994,39~43
    [120] 邓本浅.橡胶并用与橡塑共混技术.北京:化学工业出版社,1998,133~140
    [121] M J Rrojan.以煤粉作橡胶填料的新观点.煤炭综合利用,1991,2:89~94
    [122] 张云怀.铝酸酯活化粉煤灰微珠及其在橡胶中的应用.粉煤灰综合利用,1996,2:27~28
    [123] 杨清芝.无机填料填充的HVPB/NR并用胶料的加工性能和力学性能的研究.高分子材料科学与工程,1991,4:64~68
    [124] 邵长生.粉煤作橡胶填料的研究.橡胶工业,1991,38(2):106~109
    [125] 李国荣.合成树脂及玻璃钢.北京:化学工业出版社,1995,398~402
    [126] 沈开猷.不饱和聚酯树脂及其应用.北京:机械工业出版社,1996,69~79
    [127] 李春娥.研究热固树脂固化过程的新方法.工程塑料应用,1983,(3):42~45
    [128] He Pingsheng. Study on Cure Behavior of Exoxy Resin-BF_3 · MEA System by Dynnic Torsional Vibration Method. J Appl Polym Sci, 1991, 43:1101~1105
    [129] Hisch H S Y. Kinetic Model of Cure Reaction and Filler Effect. J Appl Polym Sci, 1982, 27: 3265~3267
    [130] Flory P J. Principles of Polymer Chemistry. Comell University Press. NewYork: 1953, 353~357
    [131] 李春娥.环氧树脂—聚酰胺—玻璃微珠体系的固化.复合材料学报,2000,17(4):11~14
    [132] 何平笙.环氧树脂—SiO_2粉料体系固化行为的理论预测.复合材料学报,1985,2(4):9~12
    
    
    [133] 梁基照.玻璃微珠表面处理对LDPE复合材料拉伸性能的影响.复合材料学报,2000,(2):23~25
    [134] Souheng Wu.潘弦余译.高聚物的界面与粘合.北京:纺织工业出版社,1987,189~192
    [135] Witt R K. Historical Background of the Interface Studies and Theories. J Adhesion, 1970, 2:134~138
    [136] Ishida H. An Imostigation of the Coupling Agent/Matrix Interface of Fiberglass Reinforced Plastic by FT-IR. J Polym Sci Phys, 1979, 17:614~618
    [137] Piueddeman E P. Interfaces in Pdymer Matrix. Compesites NewYork Academic Press. New York: 1974, 34~39
    [138] 陈平.偶联剂对玻璃纤维/环氧单向复合层板性能的影响.复合材料学报,1993,10(4):65~68.
    [139] Ishidz H. Fourier Transform Infrared Spectroscopic Study of the Silane Coupling Agent/Porous Silica Interface. J Colloid & Interface Sci, 1978, 64:555~560
    [140] 笪有仙.XPS在复合材料中的应用.复合材料学报,1994.11(4):15~17
    [141] 张云怀、铝酸酯偶联剂在微珠表面的偶联机理研究.重庆大学学报,1997,20(2):84~87
    [142] 华仲强.硅烷偶联剂/二氧化硅界面层层的表征研究.材料研究学报,1988,5(3):47~49
    [143] 吴叙勤.硅烷偶联剂与SiO_2表面化学反应的研究.复合材料学报,1985,2(4):1~7
    [144] Chiang C.H. Study on Cure Behavior of Exox System. J Colliad and Interface Science, 1980, 74(2):386~392
    [145] 欧玉春.聚丙烯混杂复合体系的界面和力学性能.高分子学报,1997,(1):31~36
    [146] 余刚.用接触角法估算复合材料的表(界)面特性.分析与测试,2000,5:28~32
    [147] 陶婉蓉.用粉末接触角测定仪评定树脂——粉末填料体系的浸润性.非金属材料,1998,3:231~234
    [148] Vanoss C J. Determination of Contact Angles and Pore Sizes of Porous Media by Column and Thin Layer Wicking. Adhesion Science Technology, 1992,6(4):413~428
    [149] 赵振国.接触角及其在表面化学研究中的应用.化学研究与应用,2000,12(4):36~40