杉木苯酚液化物树脂的合成及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为缓解酚醛树脂原料对石油及其衍生物的依赖,降低成本,拓展生物质材料的应用领域,提高其利用价值,本论文以杉木为原料,在苯酚中经酸催化降解得到液态杉木苯酚液化物,较系统地研究了液化物树脂合成工艺对树脂理化和胶合性能的影响;探讨不同热压工艺参数对杉木液化物树脂胶合性能的影响,并通过正交试验及验证试验获得其最佳工艺条件;借助FTIR等手段初步分析了木材液化及树脂化的基团变化和反应历程;参照常规酚醛树脂对树脂的成本进行了评价。主要结论如下:
     1.随着甲醛/苯酚(F/P)摩尔比的提高,两种料液比(1:2和1:3)条件下液化物树脂中游离苯酚均表现出明显下降的趋势,游离甲醛基本呈线性增长的趋势;提高氢氧化钠/苯酚(NaOH/P)摩尔比使得料液比1:2条件下树脂中游离酚含量逐渐增大,而对料液比1:3条件影响不明显,提高碱加入量能有效降低树脂中游离醛含量;提高树脂化温度能显著降低树脂中游离酚和游离醛的含量。
     2.随甲醛加入量的增加树脂胶合强度先减小后增大,摩尔比1.8时胶合强度最低;胶合强度随NaOH/P摩尔比的增大而增大,但反应体系pH过高反而会降低胶合强度;随着树脂化温度的升高,料液比1:2在80℃时胶合强度达到最大,而料液比1:3树脂在树脂化温度85℃处胶合强度最低;研究结果表明杉木液化物树脂(LWR)最佳配方为:料液比1:2,F/P摩尔比1.8,NaOH/P摩尔比0.7,树脂化温度80℃。
     3.杉木液化物树脂较优热压工艺条件为:热压温度125℃,热压压力1.0MPa,热压时间1.0min/mm,固化剂加入量0.1%。
     4.杉木液化物树脂各项理化性能与常规PF相近,均满足国标GB/T 14732-93要求;压制的五层杨木胶合板胶合强度达到Ⅰ类胶合板要求,甲醛释放量(0.2mg·L~(-1))远低于胶合板国标GB 9486-2004中的E_0级要求。液化反应中苯酚与木材组分发生了明显酚化反应,酸性条件下纤维素的晶格结构遭到破坏,半纤维素被降解,木素液化降解成低分子物质;杉木液化物树脂FTIR谱图具有典型酚醛树脂的特征吸收峰。杉木液化物树脂的原料成本比常规PF低15%左右。
In order to release dependency of synthesizing phenol-formaldehyde resins on petrol and its ramification, reduce cost, widen application fields and improve the utilization of biomass materials, we carry out the research on preparation of resins from liquefied wood in phenol in presence of sulfuric acid. In this paper, effects of resinfication factors on chemical and bonding properties of resins were systemically studied; optimum hot-press processing parameters were defined by orthogonal test; changes of groups and mechanism of reaction were analysed by FTIR; cost of liquefied Chinese Fir resins was also calculated.The results are as follows:
    1) With increasing F/P molar ratio, free phenol content of resin remarkablely decreased on both liquefaction condition (wood/phenol=1:2, 1:3), free formaldehyde content linearly increased; with rise of NaOH/P molar ratio, free phenol content of resin from wood/phenol 1:2 liquefied product increased, but that of resin from wood/phenol 1:3 liquefied product showed no obvious changes; adding alkalis was good for reducing free formaldehyde content of resin; both free phenol and formaldehyde of resin obviously decreased with enhancing resinification temperature.
    2) Bond strength decreased with adding formaldehyde then were improved, and showed minimum value at F/P molar ratio 1.8; bond strength increased with rise of NaOH/P molar ratio, but excess alkalis would lead to bond strength dropping; with enhancing resinification temperature, bond strength of the resin from wood/phenol 1:2 liquefied product arrived at the maximum at 80℃ and that from wood/phenol 1:3 liquefied produc reached the minimum at 85℃; results showed optimum formation of liquefied Chinese Fir resin (LWR) were wood/phenol 1:2, F/P molar ratio 1.8, NaOH/P molar ratio 0.7, resinification temperature 80℃.
    3) The optimum hot press parameters for LWR were as follow: hot-press temperature 125℃,
    press 1.0MPa, hot-press time 1.0min/mm, quantity of solidified agent 0.1%.
    4) The Physics and Chemistry Performance of liquefied Chinese Fir resin was similar to that of traditional PF resins and met the requirement of GB/T 14732-93. Bond strength of the poplar three-layer plywood bonded with LWR satified the demands of I level. Free formaldehyde content of plywood was 0.2mg·L~(-1) which is lower than the E_0 level set by GB 9486-2004. Phenolated reaction between phenol and wood conponets during liquefaction in presence of sulfuric acid; crystal lattice of cellulose was destroyed; hemicellulose and lignin were degraded to low molecule substance; FTIR of LWR showed typical absorbing peaks as PF resins. The cost of LWR was 15% lower than that of traditional PF.
引文
[1] 白石信夫等.木质新素材编集委员会.木质新素材.日本:技报堂出版,1996
    [2] 鲍甫成,江泽慧等.中国主要人工林树种木材性质.北京:中国林业出版社,1998
    [3] 程发,戚红卷,李厚萍等.苯甲基化木材溶液制备聚氨酯树脂工艺条件的研究.林产化学与工业,2004,24(2):39-42
    [4] 程发,王东华,魏玉萍等.苯甲基化木材溶液代替聚醚多元醇使用的研究.高分子学报,2002(3):349-353
    [5] 傅深渊,余仁广,杜波等.竹材残料液化及其液化物胶粘剂的制备.林产工业,2004,31(3):35-38
    [6] 顾继友.胶粘剂与涂料.北京中国林业出版社,1996
    [7] 何江,吴书泓.木材的液化及其在高分子材料中的应用.木材工业,2002,16(2):9-12
    [8] 华毓坤.人造板工艺学.北京:中国林业出版社.2002
    [9] 季仁和,王玉秀,木工胶粘剂问答.北京:中国林业出版社,1986
    [10] 李爱阳,唐有根.木质素改性酚醛树脂胶的研究.环保治理,2006,27(3):76-77
    [11] 李彩云.杉木液化产物用于胶粘剂制备的研究.粘接,2005,26(5):24-25
    [12] 李建章,周文瑞,赵俊杰等.木材工业用酚醛树脂胶粘剂的快速固化研究.中国胶粘剂,2003,12(6):61-63
    [13] 李文昭,到正字.農林廢料制造木材膠合剂之研究(Ⅳ)酚-相思樹樹皮抽出物-甲醛共聚合膠合剂之应用.林产工业(台湾),1996,15(2):251-270
    [14] 李文昭,到正字.液化杉木树皮制造酚-甲醛木材胶合剂.林产工业(台湾)2001,20(3):217-226
    [15] 李文昭,张嘉方.聚乙二醇液化之探讨——杉木及相思树.林产工业(台湾),2003,22(3):205-214.
    [16] 李文昭,碾嘉方.多元醇液化杉木在聚氨酯发泡髓制造之应用.中华林学季刊,2004,37(1):111-119
    [17] 李文昭.溶解相思樹樹皮制造木材膠合剂之研究.林产工业(台湾),1998,17(4):681-696
    [18] 林巧佳,程捷,何修缮等.马尾松树皮胶粘剂的研究——树皮成分及制胶配方的探讨初报.福建林学院学报,1991,11(4):381-384
    [19] 林巧佳,施权陆.马尾松树皮制胶合板胶粘剂.福建林学院学报,1985,5(2):21-25
    [20] 刘启明,徐长妍,卢中金.麦草浆造纸废液制木材胶粘剂的研究.南京林业大学学报,1995,19(1):27-32
    [21] 罗蓓.人工林杉木、杨木的苯酚液化及其产物的树脂化研究:[硕士学位论文].北京.中国林业科学研究院.2004
    [22] 马晓军,赵广杰.木材人造丝碳纤维的研究现状.木材工业,2006,20(6):1-4
    [23] 森田光博.酸化处理化学修饰木材热可塑性——溶解性改善.木材工业,1994,49(12):593-598
    [24] 山田竜彦.木材液化技术开发反应机构解明.木材工业,1999,54(1):2-7
    [25] 申宗圻.木材学.北京:中国林业出版社,1993
    [26] 沈德言.红外光谱法在高分子研究中的应用.北京:科学出版社,1982
    [27] 童朝辉,潘学军.木质生物原料的液化.林产工业,2000,27(6):3-5
    [28] 魏玉萍,王东华,程发.木材溶液制备聚氨酯胶粘剂的研究.化学与粘合,2002,(1):8-10
    [29] 吴刚.材料结构表征及应用.北京:化学工业出版社,2002
    [30] 续久如,黄智慧.林业试验设计.北京:中国林业出版社,1992
    [31] 杨淑惠.植物纤维化学(第三版).北京:中国轻工业出版社.2002
    [32] 余权英.化学改性转化木材为热塑性和热固性材料.化学进展,1996,12.
    [33] 张求慧,赵广杰,陈金鹏.酸性催化剂对木材苯酚液化能力的影响.北京林业大学学报,2004,26(5):66-70
    [34] 张求慧.木材的苯酚液化及其生成物的树脂化:[博士学位论文].北京.北京林业大学,2005
    [35] 郑志锋.核桃壳树脂化基础研究:[博士学位论文].哈尔滨.东北林业大学,2006
    [36] Alma M. H., Yoshioka M., Yao Y. et al. Preparation and characterization of the phenolated wood using hydrochloric acid as catalyst. Wood Science and Technology, 1995, 30: 39-47
    [37] Alma M. H., Yoshioka M., Yao Y. G. et al. Preparation of sulfuric acid-catalyzed phenolated wood resin. Wood Science and Technology, 1998, 32(4): 297-308
    [38] Appell H. R., Fu Y. C., Friedman S. et al. Conversion of cellulose waste to oil. US Bureau of mines report of investigation, 1971, 7560
    [39] Chum, H., Diebold, J., Black, S., Kreibich, R. Resol resin products derived for fractionated organic and aqueous condensates made by fast pyrolysis of biomass materials. U. S. Patent No. 5235021.
    [40] Doh G. H., Kang I. A., Lee S. Y. et al. Mechanical properties and creep behavior of liquefied woodpolymer composites(LWPC). Composite Structures, 2005, 68(2): 225-233
    [41] Fierz H. E. Chemistry of wood utilization. Chemistry and Industry Review. 1925, 44: 942
    [42] Hassan E. M., Mun S. P. Liquefaction of pine bark using phenol and lower alcohols with methanesulfonic acid catalyst. J. Ind. Eng. Chem, 2002, 8(4): 359-364
    [43] Kurimoto Y., Doi S., Tamura Y. Species effects on wood-liquefaction in polyhydric alcohols. Holzforsehung 1999, 53(6): 617-622
    [44] Kurimoto Y., Takeda M., Koizumi S. D. et al. Proceedings of 10th International Symposium on Wood and Pulping Chemistry. Yokohama, Japan, June 6-9, 1999, 1: 486-491
    [45] Lee S. H., Ohkita T. Rapid wood liquefaction by supercritical phenol. Wood Science Techno, 2003, 37(1):29-38
    [46] Lee S. H., Teramoto Y., Shiraishi N. Resol-type phenolic resin from liquefied phenolated wood and its application to phenolic foam. J Applied Polymer Science, 2002, 84:468-472
    [47] Lee S. H., Wang S. Q. Effect of water on wood liquefied and the properties of phenolated wood. Holzforschung, 2005, 59:628-634
    [48] Lee S. H., Yoshioka M., Shiraishi N. Resol-type phenolic resin form liquefied phenolated wood and its application to phenolic foam. Journal of Applied Polymer Science 2002, 84:468-472
    [49] Li Gaiyun, Qin Tefu, Tohmura Shinichiro, Ikeda Atsushi. Preparation of phenol formaldehyde resin from phenolated wood. Journal of Forestry Research, 2004, 15(3): 211-214
    [50] Lin L. Z., Yao Y. G, Shiraishi N. Liquefaction mechanism of β-O-4 lignin model compound in the presence of phenol under acid catalysis. Part 2. Reaction behavior and pathways. Holzforschung, 2001, 55(6):625-630
    [51] Lin L. Z., Yao Y. G, Yoshioka M. et al. Liquefaction mechanism of in the presence of phenol at elevated temperature without catalysts-Multi-condensation. Holzforschung, 1997a, 51(4):333-33
    [52] Lin L. Z., Yao Y. G., Yoshioka M. et al. Molecular weights and molecular weight distribution of liquefied wood obtained by acid-catalyzed phenolysis. J Applied Polymer Science, 1997b, 64(2):351-357
    [53] Lin L. Z., Yoshioka M, Yao Y. G. et al. Liquefaction of wood in the presence of phenol using phosphoric acid as a catalyst and the flow properties of the liquefied wood. J Applied Polymer Science. 1994, 52(1): 1629-1636
    [54] Lin L. Z., Yoshioka M., Yao Y. G. et al. Preparation and properties of phenolated wood/phenol/formaldehyde cocondensed resin. J Applied polymer Science, 1995a, 58 (8): 1297-1304
    [55] Lin L. Z., Yoshioka M., Yao Y. G. et al. Physical Properties of moldings from liquefied wood resins. J Applied Polymer Science, 1995b, 55 (11): 1563-1571
    [56] Masahimk K., Toshiyuki A., Mikio K. Analysis on residue formation during wood liquefaction with polyhydric alcohol. Journal of Wood Science, 2004, 50(5):407-414
    [57] Mehmet Hakk Alma, Mehmet Altay Basturk. Liquefaction of grapevine cane (vitis vinisera L.) waste and its application to phenol-formaldehyde type adhesive. Industrial Crops and Products 2006,24:171-176
    [58] Morita M., Yamawaki Y, Shigematsu M. et al. Preparation and properties of acyanoethylated wood latex. Mokuai Gakkaishi, 1990, 36(8):659-664
    [59] Mun S. P., Hassan E. M. Liquefaction of lignocellulosic biomass with mixtures of ethanol and small amount of phenol in the presence of methanesulfonic acid catalyst. J. Ind. Eng. Chem, 2004a, 10(5):722-727
    [60] Mun S. P., Hassan E. M. Liquefaction of lignocellulosic biomass with dioxane/polar solvent mixtures in the presence of an acid catalyst. J. Ind. Eng. Chem, 2004b, 10(3):473-477
    [61] Ono H., Yamada T. Cellulosic materials-potential source for adhesive. Chemistry and Adhesive 2000, 74:44-49
    [62] Pu S, Shiraishi N. Liquefaction of wood without a catalyst II-Weight loss by gasification during wood liquefaction, and effects of temperature and water. Mokuzai Gakkaishi, 1993a, 39(4): 453-458.
    [63] Pu S, Shiraishi N. Liquefaction of wood without a catalyst IV-Effect of an additives, such as acid, salt, and neutral organic solvent. Mokuzai Gakkaishi, 1994, 40(8): 824-829.
    [64] Pu S, Shiraishi N. Liquefaction of wood without a catalyst I-Time course of wood liquefaction with phenols and effects of wood/phenol ratios. Mokuzai Gakkaishi, 1993b, 39(4): 446-452.
    [65] Santana M. A. E., Baumann M. G. D. Phenol-formaldehyde plywood adhesive resins prepared with liquefied bark of black wattle (Acacia Mearnsii). J Wood Chem Tech, 1999,16(1):1-19
    [66] Santana M. A. E., Melissia G. D. B., Anthony H. C. Resol resins prepared with tannin liquefied in phenol. Holzforshung 1995, 49:146-152
    [67] Shiraishi N., Onodera S., Ohtani M. et al. Dissolution of etherified or esterified wood into polyhydric alcohols or bisphenol A and their application in preparing wooden polymeric materials. Mokuai Gakkaishi, 1985, 31 (5):418-420
    [68] Stephanou A., Pizzi A. Rapid curing lignin-based exterior wood adhesive. Holzforshung 1993, 47:439.445
    
    [69] Yamada T., Ono H. Characterization of the products resulting from ethylene glycol liquefaction of cellulose, Journal of Wood Science, 2001,47(6):458-464
    [70] Yamada T, Ono H. Rapid liquefaction of lignocellulosic waste by using ethylene carbonate. Bioresource Technology, 1999, 70( 1 ):61 -67
    [71] Yamada T, Ono H., Ohara S. et al. Characterization of the products resulting from direct liquefaction of cellulose I-Identification of intermediates and the relevant mechanism in direct phenol liquefaction of cellulose in the presence of water. Mokuzai Gakkaishi, 1996, 42(11):1098-1104
    [72] Yao Y. G, Yoshioka M., Shiraishi N. Combined liquefaction of wood and starch in a polyethylene glycerin blended solvent. Mokuzai Gakkaishi, 1993, 39(8):930-938
    [73] Yokoyama S., Ogi T., Koguchi K. et al. Oilification of wood. Liquid Fuels Technology, 1994, 2:115
    
    [74] Zhang Y. C, Ikeba A., Hori N. et al. Characterization of liquefied product from cellulose with phenol in the presence of sulfuric acid. Bioresource Technology, 2006, 97:313-321