Necroptosis克服肿瘤多药耐药
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     肿瘤耐药性是化疗的主要障碍。抗癌药的药效取决于选择性杀死肿瘤细胞同时诱导后者产生耐药性的综合指数。临床化疗药,尽管有不同的靶位和机理,但均引起肿瘤细胞的凋亡。肿瘤细胞通常开始对凋亡诱导较敏感,但最终产生凋亡耐受,表现为抗凋亡蛋白的过表达和凋亡信号传导缺陷。大多数临床化疗药还是药物转运泵的底物,包括P-糖蛋白(P-glycoprotein,P-gp),多药耐药相关蛋白1(multidrug-resistance associated protein,MRP1),乳腺癌抗药蛋白(breast cancer resistance protein,BCRP)等。由于药物转运蛋白(如P-gp,MRP1)可以识别多种结构和功能不相关的化疗药,并有效地将后者排出细胞外,使得肿瘤细胞获得广谱的抗药性,称为多药耐药性(MultidrugResistance,MDR)。有些药物转运蛋白如P-gp,除了药泵功能外,还可以抑制caspase依赖的细胞凋亡。
     目前有几种药理学方法来逆转耐药。从理论上讲,逆转药泵介导的多药耐药是可能的,因为靶点明确且机理清楚。然而,这些特异性的药泵抑制剂在临床试验中药效不佳。克服肿瘤细胞凋亡耐受引起的耐药比逆转药泵要复杂的多。凋亡通路至少由几十个促凋亡和抑制凋亡的成员组成。促凋亡和抑制凋亡的平衡决定细胞生长和死亡的平衡。很多证据说明在肿瘤细胞中往往表现有抑凋亡因子活性升高,促凋亡因子活性下降。如抑制凋亡因子的表达增高(Bcl-2,Bcl-x_L,Mcl-1,c-FLIP,IAPs,heat shock proteins),促凋亡因子的突变失活(P53,Apaf-1,Bax,FAS,FADD,caspase),caspases的丢失(caspase 3,caspase 8)。此外,肿瘤细胞中的凋亡通路还被许多癌基因调控。因为存在如此多的潜在靶点,使得治疗凋亡耐受的肿瘤细胞变得非常困难。
     研究表明,肿瘤细胞内存在多种方式的死亡通路,凋亡不是唯一的程序性死亡方式。肿瘤细胞能通过各种不同的非凋亡性途径死亡,如坏死、衰老、自噬、及丝裂灾变等等。不同的死亡通路在分子机制上各不相同,肿瘤细胞为了躲避凋亡而设置的障碍对另外的死亡途径一般没有影响。因此,不管凋亡途径上有多少问题存在,也不管凋亡耐药是一个多么复杂,动态且难以捉摸的问题,如果一种药物可以引起肿瘤细胞非凋亡的死亡方式,并且这种药物不是P-gp等‘药泵'的诱导剂或底物,就有可能克服由凋亡耐受或P-gp等药泵引起的肿瘤耐药性,从而可以考虑为专门治疗耐药肿瘤的药物。
     研究目的
     1.研究紫草素及其衍生物是否具有良好的抗多药耐药肿瘤特性;2.明确紫草素及其衍生物克服肿瘤多药耐药的机理及细节,揭示其可以克服肿瘤多药耐药性的潜在规律;3.提出和证实靶向非凋亡死亡通路避开肿瘤耐药性的理论,并获得一类靶向该死亡通路的新型抗多药耐药肿瘤小分子药物。
     研究内容
     1.紫草素克服肿瘤细胞多药耐药
     建立各种不同机制的多药耐药肿瘤细胞模型,用不同浓度紫草素处理后,计算其杀伤这些肿瘤细胞的IC_(50),结果发现紫草素对耐药细胞的IC_(50)值和对亲本敏感细胞的IC_(50)值基本一致。
     2.紫草素专一性诱导细胞necroptosis克服肿瘤多药耐药
     2.1紫草素专一性诱导肿瘤细胞necroptosis
     紫草素处理MCF—7细胞后,我们用不同实验发现以下结果:PI染色提示MCF-7细胞在死亡早期出现细胞膜破损,但未有细胞核固缩、断裂;透射电镜结果显示细胞内出现大量扩张的线粒体和自噬体;Caspase和凋亡诱导因子(AIF)不参与此死亡过程;JC-1染色后,流式细胞仪检测到细胞内线粒体膜电位迅速下降;小分子抑制剂necrostatin-1可以特异性地抑制细胞膜破损和线粒体膜电位下降;shRNA干扰Atg7基因不能抑制细胞死亡;荧光染料H_2DCFDA显示细胞内ROS水平升高,但活性氧清除剂不能抑制细胞死亡。
     同时我们发现:紫草素诱导的MCF-7耐药株(高表达P-gp的MCF-7/Adr、高表达BCRP的MCF-7/mx、高表达Bcl-2和Bcl-x_L的MCF-7/Bcl-2及MCF-7/Bcl-x_L)和HEK293及其耐药株细胞(高表达Bcl-2和Bcl-x_L的HEK293/Bcl-2及HEK293/Bcl-x_L)死亡可以被Nec-l所抑制。
     2.2 Necroptosis体内外克服肿瘤多药耐药
     不同浓度紫草素处理MCF-7细胞及其耐药株MCF-7/Adr、MCF-7/mx、MCF-7/Bcl-2、MCF-7/Bcl-x_L细胞后,用PI拒染流式统计细胞死亡率,结果发现耐药株和亲本株的死亡率基本一致。
     我们进一步用MCF-7和MCF-7/Adr接种荷瘤鼠,2.5 mg/天腹腔连续给药5天,结果显示紫草素可以明显抑制体内肿瘤生长,对MCF-7的瘤重抑制率为43±10%,对MCF-7/Adr的瘤重抑制率为57±14%。透射电镜显示,紫草素引起了体内肿瘤necroptosis样细胞死亡。
     3.紫草素选择性诱导细胞necroptosis克服肿瘤多药耐药
     3.1紫草素选择性诱导细胞凋亡与necroptosis
     1.25-5μM紫草素处理HL60等细胞后,引起细胞核固缩断裂,细胞内caspase激活,透射电镜显示凋亡样细胞死亡。10—20μM紫草素处理HL60等细胞后,引起的细胞死亡可以被Nec-1抑制,透射电镜示necroptosis样细胞死亡。
     3.2 Necroptosis避开耐药肿瘤细胞的凋亡耐受性
     不同浓度紫草素处理HL60及其耐药株(MRP1高表达细胞株HL60/Adr、Bcl-2高表达细胞株HL60/Bcl-2)和K562及其耐药株(P-gp高表达细胞株K562/Adr),用Hoechst/台盼蓝染色统计细胞凋亡/坏死比率,结果发现:在诱导凋亡的浓度下,耐药细胞凋亡比率明显低于亲本敏感株;在诱导necroptosis的浓度下,耐药细胞死亡率等同于亲本敏感株。
     3.3紫草素选择性诱导原代白血病细胞necroptosis
     紫草素处理15例慢性粒细胞性白血病(CML)及急性白血病(AL)病人的原代肿瘤细胞,结果显示紫草素具有良好的抗肿瘤活性,其抗瘤机理为选择性地诱导肿瘤细胞凋亡或者necroptosis。
     4.Necroptosis分子机理初步探讨
     4.1 Necrostatin-1可以促进凋亡
     Nec-1预处理后,不同浓度紫草素处理HL60、HL60/Adr、K562、K562/Adr细胞,用Hoechst/台盼蓝染色统计细胞凋亡/坏死比率,结果发现Nec-1可以使紫草素诱导细胞凋亡的比率增加,坏死比率下降。进一步检测细胞内caspase活性,也显示Nec-1可以增加紫草素处理后细胞内caspase 3,8,9的活性。
     4.2线粒体在necroptosis过程中扮演的角色
     不同浓度紫草素处理HL60及HL60/Adr等细胞,JC-1染色后流式细胞仪统计发现高浓度紫草素可以引起线粒体膜电位迅速下降,Calcein-AM荧光淬灭实验和透射电镜结果都提示necroptosis过程中伴有线粒体内膜通透性增大。
     5.紫草素衍生物诱导肿瘤细胞necroptosis克服肿瘤细胞多药耐药
     以紫草素作为先导化合物,设计合成14种衍生物。用该类小分子处理MCF-7细胞,结果发现其诱导的细胞死亡均可以被Nec-1抑制。我们用MTT的方法测定了此类小分子对K562、K562/Adr、MCF-7、MCF-7/Adr、HL60、HL60/Adr细胞的IC_(50)值,结果显示在敏感株和对应耐药株细胞上,其IC_(50)值基本一致。
     研究结论
     1.紫草素作为先导化合物可以避开多种机理引起的肿瘤细胞多药耐药
     2.紫草素可以专一性地诱导一些肿瘤细胞necroptosis,如MCF-7和HEK293。
     3.紫草素可以选择性地诱导一些肿瘤细胞凋亡或necroptosis,如HL60和K562,其具体死亡方式选择呈现药物浓度依赖性。
     4.紫草素诱导的necroptosis可以避开P-gp、MRP1、BCRP等药泵高表达引起的肿瘤多药耐药性。
     5.紫草素诱导的necroptosis可以避开Bcl-2及Bcl-x_L高表达引起的肿瘤凋亡耐受。
     6.在紫草素选择性诱导肿瘤细胞necroptosis或凋亡的细胞模型上,Necrostatin-1可以抑制细胞necroptosis,促进细胞凋亡。
     7.紫草素诱导肿瘤细胞necroptosis过程中伴有线粒体内膜损伤。
     8.多种紫草素衍生物诱导的necroptosis可以避开肿瘤细胞多药耐药性。
     9.诱导necroptosis可能是一种克服由凋亡耐受及过表达药泵蛋白导致肿瘤多药耐药性的可选择方法。
Background:
     Cancer drug resistance is a major problem in chemotherapy.The potency of anticancer drugs is largely determined by their efficacies in selectively killing cancer cells and simultaneously inducing drug resistance in cancer cells.Conventional anticancer agents,regardless of their targets and mechanisms,mostly induce apoptosis.Cancer cells are usually sensitive to apoptotic induction initially,but become resistant eventually through dysregulation of apoptotic machinery, manifested by overexpression of anti-apoptotic proteins and defect in apoptotic signaling.Numerous apoptotic inducers are also inducers and substrates of drug transporters,including P-glycoprotein(P-gp),multidrug-resistance associated protein (MRP1),and breast cancer resistance protein(BCRP).Since these drug transporters recognize many structurally and functionally unrelated anticancer agents and efficiently expel intracellular drugs out of cells,the overexpression of these proteins confers cancer cells with a multidrug resistance.Some drug transporters such as P-gp also protect cancer ceils from caspase-dependent cell death.
     There are several potential pharmacological approaches to overcome cancer drug resistance.To overcome drug transporter(i.g.,P-gp)mediated drug resistance is theoretically achievable,because the targets are few and mechanisms are clear. However,clinically,the efficacies of the specific inhibitors to these drug transporters are yet not conclusive.To overcome the drug resistance relevant to apoptotic defect is much more complicated than to drug transporters.Apoptotic machinery is composed of at least dozens of anti-apoptotic and pro-apoptotic proteins.The balance of anti-and pro-apoptotic proteins contributes to the balance of cell growth and cell death.Many lines of evidence have demonstrated an imbalance with elevated anti-apoptotic and reduced pro-apoptotic activities in cancer cells one way or another,including overexpression of anti-apoptotic proteins(Bcl-2,Bcl-x_L,Mcl-1, c-FLIP,lAPs,heat shock proteins),mutations of pro-apoptotic proteins(P53,Apaf-1, Bax,FAS,FADD,caspase),and loss ofcaspases(caspase 3,caspase 8).In addition, the apoptotic pathways in cancer cells are affected by many oncogenic signals. Therefore,it is highly difficult to treat cancers with apoptotic resistance because of so many potential targets.
     Many research showed that,besides apoptosis,there are several other programmed cell death pathway distinct form the former.Tumor cells can die by various non-apoptotic programmed cell death pathway,such as necrosis,senescence, autophagy and mitotic catastrophe etc.Since the molecular mechanisms of each death pathway are distinct from each other,no matter how dynamic the resistance occurred along apoptosis,it would be restricted within apoptotic pathway only,and would not affect other death pathways with mechanisms separate from apoptosis. So,it is likely to circumvent apoptotic resistance of cancer cells,if the action of chemotherapeutic agents is to induce non-apoptotic cell death.In addition,this kind of chemotherapeutic agents should not be the substrates of drug transporters(P-gp or MRP1 etc).To develop such class of agents would be beneficial for treating MDR cancers,considering that there are no clinically available drugs against the latter.
     Objects:
     The objects of this study is to investigate(1)if shikonin,a naturally occurring naphthoquinone compound,or its analogues,could circumvent multiple drug resistance;(2)the mechanisms whereby shikonin and its analogues circumvent cancer drug resistance;(3)and the potential of this class of compounds in treating drug resistant cancers.
     Contents:
     1.Shikonin Overcomes Cancer Drug Resistance
     We established a variety of drug resistant cancer cell lines with overexpression of P-gp,MRP 1,BCRP,Bcl-2,or Bcl-x_L.After treated with shikonin for 72 hours, we calculated the IC_50 values of these cancer cells.The results demonstrated that the IC_50 values of drug resistant cancer cells and their parental sensitive cells were not significantly different from each other,indicating that these drug resistant factors did not hamper the efficacy of shikonin.
     2.Shikonin Circumvents Cancer Drug Resistance by Exclusive Induction of a Neeroptotic Death
     2.1 Shikonin Exclusive Induction of Necroptosis
     After treating MCF-7 cells with shikonin(2.5-20μM),cells permeable to PI increased proportionally to the increment of both concentration and incubation time, indicating the loss of plasma membrane integrity.Hoechst staining showed dying cells did not exhibit apoptotic nuclear fragmentation.Ultrastructure of shikonin-treated cells demonstrated an extensive dilation of mitochondrion and formation of autophagosomes.The death was neither prevented by the pan-caspase inhibitor z-VAD-fmk nor involved a translocation of apoptosis inducing factor(AIF). Shikonin caused a loss of mitochondrial membrane potential,which was probed by JC-1 and measured by FACScan.When cells were treated with shikonin in the presence of Nec-1,a small molecule specifically inhibiting necroptosis,cells with low mitochondrial membrane potential and positive PI were significantly reduced. The death rate of MCF-7 cells was not significantly inhibited by RNA interference of Atg7--a critical gene in autophagic death.Antioxidants could suppress DCFH oxidation in shikonin-treated cells,but did not prevent cellular PI permeability.
     Similarly,shikonin could induce a cell death of drug-resistant cells(MCF-7 and HEK293 overexpressing P-gp,BCRP,Bcl-2,or Bcl-X_L)which could be effectively prevented by Nec-1.
     2.2 Necroptosis Circumvents Cancer Drug Resistance in vitro and in vivo
     The potency of shikonin against MCF-7/Adr,MCF-7/mx,MCF-7/Bcl-2, MCF-7/Bcl-x_L was not significant different from MCF-7 in a vitro study.Similar results were obtained with HEK293/Bcl-2 and HEK293/Bcl-X_L.
     In a pilot animal study,MCF-7 or MCF-7/Adr were injected(s.c.)into one flank of 5-week-old nude female mice.On day 7 after inoculation,mice received vehicle control or shikonin(2.5 mg/kg/d,5 days,i.p.).The tumor weight inhibition rate of MCF-7 and MCF-7/Adr was 43±10%and 57±14%,respectively,clearly indicating that the potency of shikonin was not significantly affected by P-glycoprotein, consistent with the in vitro data.The dead cancer cells in the xenograft were morphologically similar to necroptosis.
     3.Shikonin Circumvents Cancer Drug Resistance by Alternative Induction of a Necroptotic Cell Death
     3.1 Shikonin alternatively induces Apoptosis or Necroptosis
     When treated with 1.25-5μM shikonin,HL60 cells exhibited apoptotic characteristics including nuclear fragmentation,caspase activation,and apoptotic morphology.While treated with 10-20μM shikonin,HL60 cells had necroptotic characteristics such as mitochondrion dilation and formation of autophagosomes,and cell death inhibitable by Nec-1.These results indicated that shikonin induced a dominant apoptotic death at low concentration and induce a dominant necroptotic death at high concentration in certain types of cells.Similar results were obtained with HL60/Adr,HL60/Bcl-2,K562 and K562/Adr.
     3.2 Necroptosis Circumvents Apoptotic Resistance in Tumor Cells
     After treated with various concentration of shikonin,we used Hoechst/tryphan blue staining method to calculate the apoptotic/necroptotic rates of HL60,HL60/Adr, HL60/Bcl-2,K562 or K562/Adr cells.The results demonstrated that drug resistant tumor cells were more resistant to shikonin-induced apoptosis but had the same susceptibility to shikonin-induced necroptosis versus its parental sensitive cells.
     3.3 Shikonin Alternatively Induces Necroptosis in Primary Leukemia Cells.
     Shikonin demonstrated a strong potency against primary leukemia cells which were isolated from bone marrow of 15 CML or AL patients.Like in HL60 or K562, shikonin can induce apoptosis or necroptosis in primary leukemia cells depending on the concentration.
     4.Preliminary Study on Molecular Mechanism of Necroptosis
     4.1 Neerostatin-1 Enhances Shikonin-induced Apoptosis
     After treated with shikonin in absence or presence of Nec-1,we calculated the apoptotic/necrotic rates of HL60,HL60/Adr,K562 or K562/Adr cells by Hoechst/tryphan blue stain.The results showed that there was less necroptotic but more apoptotic cell rate in Nec-1 pre-treated cells,which indicated that Nec-1 can convert shikonin induced necroptosis to apoptosis.Furthermore,we found the activity of caspase 3,8,9 in shikonin-treated cells was increased by Nec-1.
     4.2 Role of Mitochondrion in Necroptosis
     After HL60 or HL60/adr was treated with various concentrations of shikonin, we checked the mitochondria membrane potential(MMP)of cells probed with JC-1 by flow cytometry analyses.The results demonstrated that shikonin-induced neeroptosis was accompanied by a rapid MMP dissipation but not shikonin-induced apoptosis.This MMP dissipation was possibly resulted from inner mitochondrial membrane(IM)permeabilization,as supported by the calcein quenching assay and electron microscope.
     5.Shikonin Analogues Circumvents Cancer Drug Resistance by Induction of Neeroptosis
     Fourteen shikonin analogues were chemically synthesized on the basis of shikonin as a leader.These chemicals,like shikonin,could overcome cancer drug resistance by induction of neeroptosis.We determined the IC_(50)values of K562, K562/Adr,MCF-7,MCF-7/Adr,HL60 and HL60/Adr against these agents by MTT assay.The results demonstrated that anti-cancer activity of these agents had no significant difference between drug resistant cell lines and parental drug-sensitive lines.
     Conclusions:
     1.Shikonin is a leader that has the capacity to circumvents cancer drug resistance.
     2.Shikonin can exclusively induce neeroptosis in some types of cancer cells,such as MCF-7 and HEK293.
     3.Shikonin can alternatively induce apoptosis or neeroptosis on cancer cells,such as HL60 and K562.The selection of cell death pathway is dependent on concentration of shikonin.
     4.Shikonin-induced necroptosis circumvents cancer drug resistance mediated by overexpression of drug transporters,such as P-gp,MRP 1 and BCRP.
     5.Shikonin-induced necroptosis circumvents cancer drug resistance mediated by apoptotic resistance.
     6.In the presence of necrostatin-1,a small molecule specifically inhibiting necroptosis,shikonin induced cell death could be converted to apoptosis.
     7.The mechanism whereby shikonin induces necroptosis is associated with the inner mitochondrial membrane permeabilization.
     8.Shikonin analogues circumvents cancer drug resistance by induction of necroptosis.
     9.We propose here necroptosis induction is an alternative choice to circumvents cancer drug resistance mediated by overexpression of drug transporter or apoptotic resistance.
引文
1.Assuncao Guimaraes C,Linden R.Programmed cell deaths.Apoptosis and alternative deathstyles.Eur J Biochem 2004;271(9):1638-50.
    2.Gozuacik D,Kimchi A.Autophagy as a cell death and tumor suppressor mechanism.Oncogene 2004;23(16):2891-906.
    3.Jin S,White E.Role of autophagy in cancer:management of metabolic stress. Autophagy 2007;3(1):28-31.
    4. Gozuacik D, Kimchi A. Autophagy and cell death. Curr Top Dev Biol 2007:78:217-45.
    5. Amaravadi RK, Thompson CB. The roles of therapy-induced autophagy and necrosis in cancer treatment. Clin Cancer Res 2007;13(24):7271-9.
    6. Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer. Nat Rev Cancer 2007;7(12):961-7.
    7. Sperandio S, de Belle I, Bredesen DE. An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci U S A 2000:97(26):14376-81.
    8. Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R, Kroemer G. Cell death by mitotic catastrophe: a molecular definition. Oncogene 2004:23(16):2825-37.
    9. Gilmore AP. Anoikis. Cell Death Differ 2005:12 Suppl 2:1473-7.
    10. Zong WX, Thompson CB. Necrotic death as a cell fate. Genes Dev 2006:20(1): 1-15.
    
    11. Degterev A, Huang Z, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 2005;1(2):112-9.
    12. Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 2006:25(34):4798-811.
    13. Pommier Y, Sordet O, Antony S, Hayward RL, Kohn KW. Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene 2004:23(16):2934-49.
    14. Bremer E, van Dam G, Kroesen BJ, de Leij L, Helfrich W. Targeted induction of apoptosis for cancer therapy: current progress and prospects. Trends Mol Med 2006;12(8):382-93.
    15. Mor G, Montagna MK, Alvero AB. Modulation of apoptosis to reverse chemoresistance. Methods Mol Biol 2008:414:1-12.
    16. Calderwood SK, Ciocca DR. Heat shock proteins: stress proteins with Janus-like properties in cancer. Int J Hyperthermia 2008;24(1):31-9.
    17. Danson S, Dean E, Dive C, Ranson M. IAPs as a target for anticancer therapy. Curr Cancer Drug Targets 2007;7(8):785-94.
    18. Prabhudesai SG, Rekhraj S, Roberts G, Darzi AW, Ziprin P. Apoptosis and chemo-resistance in colorectal cancer. J Surg Oncol 2007; 96(1): 77-88.
    19. Park SJ, Wu CH, Safa AR. A P-glycoprotein- and MRP1-independent doxorubicin-resistant variant of the MCF-7 breast cancer cell line with defects in caspase-6, -7, -8, -9 and -10 activation pathways. Anticancer Res 2004;24(1):123-31.
    20. Certo M, Del Gaizo Moore V, Nishino M, et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic Bcl-2 family members. Cancer Cell 2006;9(5):351-65.
    21. Mashima T, Tsuruo T. Defects of the apoptotic pathway as therapeutic target against cancer. Drug Resist Updat 2005;8(6):339-43.
    22. Kim R, Emi M, Tanabe K, Murakami S, Uchida Y, Arihiro K. Regulation and interplay of apoptotic and non-apoptotic cell death. J Pathol 2006:208(3):319-26.
    23. Ruefli AA, Tainton KM, Darcy PK, Smyth MJ, Johnstone RW. P-glycoprotein inhibits caspase-8 activation but not formation of the death inducing signal complex (disc) following Fas ligation. Cell Death Differ 2002;9(11):1266-72.
    24. Johnstone RW, Cretney E, Smyth MJ. P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death. Blood 1999:93(3):1075-85.
    25. Mantovani I, Cappellini A, Tazzari PL, Papa V, Cocco L, Martelli AM. Caspase-dependent cleavage of 170-kDa P-glycoprotein during apoptosis of human T-lymphoblastoid CEM cells. J Cell Physiol 2006;207(3) :836-44.
    26. Tainton KM, Smyth MJ, Jackson JT, et al. Mutational analysis of P-glycoprotein: suppression of caspase activation in the absence of ATP-dependent drug efflux. Cell Death Differ 2004;11(9):1028-37.
    27. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002;2(1):48-58.
    28. Deeley RG, Westlake C, Cole SP. Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol Rev 2006;86(3):849-99.
    29. O'Connor R. The pharmacology of cancer resistance. Anticancer Res 2007;27(3A):1267-72.
    30. Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2002;2(4):277-88.
    31. Meiler J, Schuler M. Therapeutic targeting of apoptotic pathways in cancer. Curr Drug Targets 2006;7(10):1361-9.
    32. Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med 2002:53:615-27.
    33. Lefranc F, Facchini V, Kiss R. Proautophagic drugs: a novel means to combat apoptosis-resistant cancers, with a special emphasis on glioblastomas. Oncologist 2007:12(12):1395-403.
    34. Dinnen RD, Drew L, Petrylak DP, et al. Activation of targeted necrosis by a p53 peptide: a novel death pathway that circumvents apoptotic resistance. J Biol Chem 2007:282(37):26675-86.
    35. Ruefli AA, Smyth MJ, Johnstone RW. HMBA induces activation of a caspase-independent cell death pathway to overcome P-glycoprotein-mediated multidrug resistance. Blood 2000;95(7):2378-85.
    36. Ruefli AA, Bernhard D, Tainton KM, Kofler R, Smyth MJ, Johnstone RW. Suberoylanilide hydroxamic acid (SAHA) overcomes multidrug resistance and induces cell death in P-glycoprotein-expressing cells. Int J Cancer 2002;99(2):292-8.
    37. Ogbourne SM, Suhrbier A, Jones B, et al. Antitumor activity of 3-ingenyl angelate: plasma membrane and mitochondrial disruption and necrotic cell death. Cancer Res 2004;64(8):2833-9.
    38. Zhang XD, Wu JJ, Gillespie S, Borrow J, Hersey P. Human melanoma cells selected for resistance to apoptosis by prolonged exposure to tumor necrosis factor-related apoptosis-inducing ligand are more vulnerable to necrotic cell death induced by cisplatin. Clin Cancer Res 2006;12(4): 1355-64.
    39. NaitoM, Hashimoto C, Masui S, Tsuruo T. Caspase-independent necrotic cell death induced by a radiosensitizer, 8-nitrocaffeine. Cancer Sci 2004:95(4): 361-6.
    40. Ricci MS, Zong WX. Chemotherapeutic approaches for targeting cell death pathways. Oncologist 2006:11(4):342-57.
    41. Mani H, Sidhu GS, Singh AK, et al. Enhancement of wound healing by shikonin analogue 93/637 in normal and impaired healing. Skin Pharmacol Physiol 2004:17(1):49-56.
    42. Singh B, Sharma MK, Meghwal PR, Sahu PM, Singh S. Anti-inflammatory activity of shikonin derivatives from Arnebia hispidissima. Phytomedicine 2003:10(5):375-80.
    43. Kourounakis AP, Assimopoulou AN, Papageorgiou VP, Gavalas A, Kourounakis PN. Alkannin and shikonin: effect on free radical processes and on inflammation - a preliminary pharmacochemical investigation. Arch Pharm (Weinheim) 2002;335(6):262-6.
    44. Tanaka S, Tajima M, Tsukada M, Tabata M. A comparative study on anti-inflammatory activities of the enantiomers, shikonin and alkannin. J Nat Prod 1986:49(3):466-9.
    45. Hayashi M. [Pharmacological studies of Shikon and Tooki. (2) Pharmacological effects of the pigment components, Shikonin and acetylshikonin]. Nippon Yakurigaku Zasshi 1977;73(2):193-203.
    46.Sankawa U,Ebizuka Y,Miyazaki T,Isomura Y,Otsuka H.Antitumor activity of shikonin and its derivatives.Chem Pharm Bull(Tokyo)1977;25(9):2392-5.
    47.Guo XP,Zhang XY,Zhang SD.[Clinical trial on the effects of shikonin mixture on later stage lung cancer].Zhong Xi Yi Jie He Za Zhi 1991;11(10):598-9,80.
    48.Yoon Y,Kim YO,Lim NY,Jeon WK,Sung HJ.Shikonin,an ingredient of Lithospermum erythrorhizon induced apoptosis in HL60 human premyelocytic leukemia cell line.Planta Med 1999;65(6):532-5.
    49.蒋英丽,宋今丹.新疆紫草素诱导大肠癌细胞的凋亡.癌症2001;20(12):1355-8.
    1.Chen X,Yang L,Oppenheim JJ,Howard MZ.Cellular pharmacology studies of shikonin derivatives.Phytother Res 2002;16(3):199-209.
    2.Sankawa U,Ebizuka Y,Miyazaki T,Isomura Y,Otsuka H.Antitumor activity of shikonin and its derivatives.Chemical & pharmaceutical bulletin 1977;25(9):2392-5.
    3.Guo XP,Zhang XY,Zhang SD.[Clinical trial on the effects of shikonin mixture on later stage lung cancer].Zhong xi yi jie he za zhi = Chinese journal of modern developments in traditional medicine / Zhongguo Zhong xi yi jie he yah jiu hui(chou),Zhong yi yah jiu yuan,zhu ban 1991;11(10):598-9,80.
    4.Yoon Y,Kim YO,Lim NY,Jeon WK,Sung HJ.Shikonin,an ingredient of Lithospermum erythrorhizon induced apoptosis in HL60 human premyelocytic leukemia cell line.Planta medica 1999;65(6):532-5.
    5.Efferth T,Miyachi H,Bartsch H.Pharmacogenomics of a traditional Japanese herbal medicine(Kampo)for cancer therapy.Cancer Genomics Proteomics 2007;4(2):81-91.
    6.Johnstone RW,Ruefli AA,Tainton KM,Smyth MJ.h role for P-glycoprotein in regulating cell death.Leuk Lymphoma 2000;38(1-2):1-11.
    7.O'Connor R.The pharmacology of cancer resistance.Anticancer Res 2007;27(3A):1267-72.
    8.刘玲,何玲,刘国卿.P糖蛋白与细胞凋亡及肿瘤多药耐药的关系.药学进展 2005;29(3):101-5.
    9.孙萌,胡汛,郑树.多药耐药相关蛋白1与肿瘤.国外医学(肿瘤学分册)2005;32:839-41.
    10.Litman T,Druley TE,Stein WD,Bates SE.From MDR to MXR:new understanding of multidrug resistance systems,their properties and clinical significance.Cell Mol Life Sci 2001;58(7):931-59.
    11.Gjertsen BT,Bredholt T,Anensen N,Vintermyr OK.Bcl-2 antisense in the treatment of human malignancies:a delusion in targeted therapy.Curr Pharm Biotechnol 2007;8(6):373-81.
    12.Murphy KM,Ranganathan V,Farnsworth ML,Kavallaris M,Lock RB.Bcl-2inhibits Bax translocation from cytosol to mitochondria during drug-induced apoptosis of human tumor cells.Cell Death Differ 2000;7(1):102-11.
    13.Kostanova-Poliakova D,Sabova L.Anti-apoptotic proteins-targets for chemosensitization of tumor cells and cancer treatment. Neoplasma 2005;52(6): 441-9.
    14. Qiangrong P, Wang T, Lu Q, Hu X. Schisandrin B—a novel inhibitor of P-glycoprotein. Biochem Biophys Res Commun 2005;335(2):406-11.
    15. Pan Q, Lu Q, Zhang K, Hu X. Dibenzocyclooctadiene lingnans: a class of novel inhibitors of P-glycoprotein. Cancer Chemother Pharmacol 2006:58(1): 99-106.
    16. Sun M, Xu X, Lu Q, Pan Q, Hu X. Schisandrin B: A dual inhibitor of P-glycoprotein and multidrug resistance-associated protein 1. Cancer Lett 2006.
    17. Ross DD, Yang W, Abruzzo LV, et al. Atypical multidrug resistance: breast cancer resistance protein messenger RNA expression in mitoxantrone-selected cell lines. J Natl Cancer Inst 1999;91(5) :429-33.
    1.Edinger AL,Thompson CB.Death by design:apoptosis,necrosis and autophagy.Curr Opin Cell Biol 2004;16(6):663-9.
    2.Assuncao Guimaraes C,Linden R.Programmed cell deaths.Apoptosis and alternative deathstyles.Eur J Biochem 2004;271(9):1638-50.
    3.Igney FH,Krammer PH.Death and anti-death:tumour resistance to apoptosis.Nat Rev Cancer 2002;2(4):277-88.
    4.Gozuacik D,Kimchi A.Autophagy and cell death.Curr Top Dev Biol 2007;78:217-45.
    5.Mizushima N.Autophagy:process and function.Genes Dev 2007;21(22):2861-73.
    6.Klionsky DJ,Abeliovich H,Agostinis P,et al.Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes.Autophagy 2008;4(2):151-75.
    7.Yu L,Alva A,Su H,et al.Regulation of an Atg7-beclin 1 program of autophagic cell death by caspase-8.Science 2004;304(5676):1500-2.
    8. Meijer AJ, Codogno P. Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol 2004;36(12):2445-62.
    9. Zong WX, Thompson CB. Necrotic death as a cell fate. Genes Dev 2006;20(1): 1-15.
    10. Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 1995;146(1):3-15.
    11. Fink SL, CooksonBT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 2005:73(4):1907-16.
    12. Lemasters JJ. V. Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am J Physiol 1999:276(1 Pt 1):Gl-6.
    13. Degterev A, Huang Z, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 2005;1(2):112-9.
    14. Kostanova-Poliakova D, Sabova L. Anti-apoptotic proteins-targets for chemosensitization of tumor cells and cancer treatment. Neoplasma 2005:52(6): 441-9.
    15. Hersey P, Zhang XD. Overcoming resistance of cancer cells to apoptosis. J Cell Physiol 2003;196(1):9-18.
    16. Danson S, Dean E, Dive C, Ranson M. IAPs as a target for anticancer therapy. Curr Cancer Drug Targets 2007;7(8):785-94.
    17. Abedin MJ, Wang D, McDonnell MA, Lehmann U, Kelekar A. Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ 2007;14(3):500-10.
    18. Scholz C, Wieder T, Starck L, et al. Arsenic trioxide triggers a regulated form of caspase-independent necrotic cell death via the mitochondrial death pathway. Oncogene 2005:24(11):1904-13.
    19. Broker LE, Kruyt FA, Giaccone G. Cell death independent of caspases: a review. Clin Cancer Res 2005;11(9):3155-62.
    20. Kim R. Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer 2005;103(8):1551-60.
    21. Cregan SP, Dawson VL, Slack RS. Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 2004;23(16):2785-96.
    22. Arnoult D, Parone P, Martinou JC, Antonsson B, Estaquier J, Ameisen JC. Mitochondrial release of apoptosis-inducing factor occurs downstream of cytochrome c release in response to several proapoptotic stimuli. J Cell Biol 2002;159(6):923-9.
    23. Kagawa S, Gu J, Honda T, et al. Deficiency of caspase-3 in MCF7 cells blocks Bax-mediated nuclear fragmentation but not cell death. Clin Cancer Res 2001:7(5):1474-80.
    24. Simstein R, Burow M, Parker A, Weldon C, Beckman B. Apoptosis, chemoresistance, and breast cancer: insights from the MCF-7 cell model system. Exp Biol Med (Maywood) 2003:228(9):995-1003.
    25. Benjamin CW, Hiebsch RR, Jones DA. Caspase activation in MCF7 cells responding to etoposide treatment. Mol Pharmacol 1998;53(3):446-50.
    26. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev 2007;87(1):99-163.
    27. Murphy KM, Ranganathan V, Farnsworth ML, Kavallaris M, Lock RB. Bcl-2 inhibits Bax translocation from cytosol to mitochondria during drug-induced apoptosis of human tumor cells. Cell Death Differ 2000:7(1):102-11.
    28. Pan Q, Lu Q, Zhang K, Hu X. Dibenzocyclooctadiene lingnans: a class of novel inhibitors of P-glycoprotein. Cancer Chemother Pharmacol 2006:58(1):99-106.
    29. Qiangrong P, Wang T, Lu Q, Hu X. Schisandrin B—a novel inhibitor of P-glycoprotein. Biochem Biophys Res Commun 2005:335(2):406-11.
    30. Ruefli AA, Smyth MJ, Johnstone RW. HMBA induces activation of a caspase-independent cell death pathway to overcome P-glycoprotein-mediated multidrug resistance. Blood 2000;95(7):2378-85.
    31. Lefranc F, Facchini V, Kiss R. Proautophagic drugs: a novel means to combat apoptosis-resistant cancers, with a special emphasis on glioblastomas. Oncologist 2007;12(12):1395-403.
    32. Dinnen RD, Drew L, Petrylak DP, et al. Activation of targeted necrosis by a p53 peptide: a novel death pathway that circumvents apoptotic resistance. J Biol Chem 2007;282(37):26675-86.
    33. Ruefli AA, Bernhard D, Tainton KM, Kofler R, Smyth MJ, Johnstone RW. Suberoylanilide hydroxamic acid (SAHA) overcomes multidrug resistance and induces cell death in P-glycoprotein-expressing cells. Int J Cancer 2002:99(2):292-8.
    34. Ogbourne SM, Suhrbier A, Jones B, et al. Antitumor activity of 3-ingenyl angelate: plasma membrane and mitochondrial disruption and necrotic cell death. Cancer Res 2004:64(8):2833-9.
    35. Amaravadi RK, Thompson CB. The roles of therapy-induced autophagy and necrosis in cancer treatment. Clin Cancer Res 2007:13(24):7271-9.
    36. Chen JS, Konopleva M, Andreeff M, Multani AS, Pathak S, Mehta K. Drug-resistant breast carcinoma (MCF-7) cells are paradoxically sensitive to apoptosis. J Cell Physiol 2004:200(2):223-34.
    37. Yang F, Chen Y, Duan W, Zhang C, Zhu H, Ding J. SH-7, a new synthesized shikonin derivative, exerting its potent antitumor activities as a topoisomerase inhibitor. International journal of cancer 2006:119(5):1184-93.
    38. Efferth T, Miyachi H, Bartsch H. Pharmacogenomics of a traditional Japanese herbal medicine (Kampo) for cancer therapy. Cancer Genomics Proteomics 2007;4(2):81~91.
    39. Chen X, Yang L, Oppenheim JJ, Howard MZ. Cellular pharmacology studies of shikonin derivatives. Phytother Res 2002;16(3):199-209.
    40. Guo XP, Zhang XY, Zhang SD. [Clinical trial on the effects of shikonin mixture on later stage lung cancer]. Zhong Xi Yi Jie He Za Zhi 1991:11(10): 598-9, 80.
    41. Yeh CC, Kuo HM, Li TM, et al. Shikonin-induced apoptosis involves caspase-3 activity in a human bladder cancer cell line (T24). In Vivo 2007:21(6): 1011-9.
    42. Hsu PC, Huang YT, Tsai ML, Wang YJ, Lin JK, Pan MH. Induction of apoptosis by shikonin through coordinative modulation of the Bcl-2 family, p27, and p53, release of cytochrome c, and sequential activation of caspases in human colorectal carcinoma cells. J Agric Food Chem 2004:52(20): 6330-7.
    43. Wu Z, Wu LJ, Li LH, Tashiro S, OnoderaS, IkejimaT. Shikonin regulates HeLa cell death via caspase-3 activation and blockage of DNA synthesis. J Asian Nat Prod Res 2004:6(3):155-66.
    44. Wu Z, Wu L, Li L, Tashiro S, Onodera S, Ikejima T. p53-mediated cell cycle arrest and apoptosis induced by shikonin via a caspase-9-dependent mechanism in human malignant melanoma A375-S2 cells. J Pharmacol Sci 2004:94(2):166-76.
    45. Yoon Y, Kim YO, Lim NY, Jeon WK, Sung HJ. Shikonin, an ingredient of Lithospermum erythrorhizon induced apoptosis in HL60 human premyelocytic leukemia cell line. Planta Med 1999;65(6):532-5.
    1.Edinger AL,ThomPson CB.Death by design:apoptosis,necrosis and autophagy.Curr Opin Cell Biol 2004;16(6):663-9.
    2.Assuncao Guimaraes C,Linden R.Programmed cell deaths.Apoptosis and alternative deathstyles.Eur J Biochem 2004;271(9):1638-50.
    3.Broker LE,Kruyt FA,Giaccone G.Cell death independent of caspases:a review.Clin Cancer Res 2005;11(9):3155-62.
    4. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007:35(4):495-516.
    5. Moretti L, Cha YI, Niermann KJ, Lu B. Switch between apoptosis and autophagy: radiation-induced endoplasmic reticulum stress? Cell Cycle 2007:6(7): 793-8.
    6. Ricci MS, Zong WX. Chemotherapeutic approaches for targeting cell death pathways. Oncologist 2006:11(4):342-57.
    7. Golstein P, Kroemer G. Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 2007:32(1):37-43.
    8. Zong WX, Thompson CB. Necrotic death as a cell fate. Genes Dev 2006:20(1) :1-15.
    9. Kim R. Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer 2005:103(8):1551-60.
    10. Yeh CC, Kuo HM, Li TM, et al. Shikonin-induced apoptosis involves caspase-3 activity in a human bladder cancer cell line (T24). In Vivo 2007:21(6): 1011-9.
    11. Wu Z, Wu LJ, Li LH, Tashiro S, OnoderaS, IkejimaT. Shikonin regulates HeLa cell death via caspase-3 activation and blockage of DNA synthesis. J Asian Nat Prod Res 2004;6(3):155-66.
    12. Hsu PC, Huang YT, Tsai ML, Wang YJ, Lin JK, Pan MH. Induction of apoptosis by shikonin through coordinative modulation of the Bcl-2 family, p27, and p53, release of cytochrome c, and sequential activation of caspases in human colorectal carcinoma cells. J Agric Food Chem 2004:52(20): 6330-7.
    13. Yoon Y, Kim YO, Lim NY, Jeon WK, Sung HJ. Shikonin, an ingredient of Lithospermum erythrorhizon induced apoptosis in HL60 human premyelocytic leukemia cell line. Planta Med 1999:65(6):532-5.
    14. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD.Nature 1998;391(6662):43-50.
    15.Mukae N,Enari M,Sakahira H,et al.Molecular cloning and characterization of human caspase-activated DNase.Proc Natl Acad Sci U S A 1998;95(16):9123-8.
    16.Liu X,Zou H,Slaughter C,Wang X.DFF,a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis.Cell 1997;89(2):175-84.
    17.Heeres JT,Hergenrother PJ.Poly(ADP-ribose)makes a date with death.Curr Opin Chem Biol 2007;11(6):644-53.
    18.Yu L,Alva A,Su H,et al.Regulation of an Atg7-beclin 1 program of autophagic cell death by caspase-8.Science 2004;304(5676):1500-2.
    19.Sun M,Xu X,Lu Q,Pan Q,Hu X.Schisandrin B:A dual inhibitor of P-glycoprotein and multidrug resistance-associated protein 1.Cancer Lett 2006.
    20.Murphy KM,Ranganathan V,Farnsworth ML,Kavallaris M,Lock RB.Bcl-2inhibits Bax translocation from cytosol to mitochondria during drug-induced apoptosis of human tumor cells.Cell Death Differ 2000;7(1):102-11.
    21.Igney FH,Krammer PH.Death and anti-death:tumour resistance to apoptosis.Nat Rev Cancer 2002;2(4):277-88.
    22.Johnstone RW,Cretney E,Smyth MJ.P-glycoprotein protects leukemia cells against caspase-dependent,but not caspase-independent,cell death.Blood 1999;93(3):1075-85.
    23.Tainton KM,Smyth MJ,Jackson JT,et al.Mutational analysis of P-glycoprotein:suppression of caspase activation in the absence of ATP-dependent drug efflux.Cell Death Differ 2004;11(9):1028-37.
    24.孙萌,胡汛,郑树.多药耐药相关蛋白1与肿瘤.国外医学(肿瘤学分册)2005;32:839-41.
    1.Degterev A,Boyce M,Yuan J.A decade of caspases.Oncogene 2003;22(53):8543-67.
    2.Wallach D,Varfolomeev EE,Malinin NL,Goltsev YV,Kovalenko AV,Boldin MP.Tumor necrosis factor receptor and Fas signaling mechanisms.Annu Rev Immunol 1999;17:331-67.
    3.Vercammen D,Brouckaert G,Denecker G,et al.Dual signaling of the Fas receptor:initiation of both apoptotic and necrotic cell death pathways.J Exp Med 1998;188(5):919-30.
    4.Matsumura H,Shimizu Y,Ohsawa Y,Kawahara A,Uchiyama Y,Nagata S. Necrotic death pathway in Fas receptor signaling. J Cell Biol 2000:151(6):1247-56.
    5. Schulze-Osthoff K, Krammer PH, Droge W. Divergent signalling via APO-1/Fas and the TNF receptor, two homologous molecules involved in physiological cell death. EMBO J 1994;13(19):4587-96.
    6. Holler N, Zaru R, Micheau O, et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 2000;1(6):489-95.
    7. Chan FK, Shisler J, Bixby JG, et al. A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J Biol Chem 2003;278(51):51613-21.
    8. Kawahara A, Ohsawa Y, Matsumura H, Uchiyama Y, Nagata S. Caspase-independent cell killing by Fas-associated protein with death domain. J Cell Biol 1998;143(5):1353-60.
    9. Khwaja A, Tatton L. Resistance to the cytotoxic effects of tumor necrosis factor alpha can be overcome by inhibition of a FADD/caspase-dependent signaling pathway. J Biol Chem 1999:274(51):36817-23.
    10. Lin Y, Choksi S, Shen HM, et al. Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J Biol Chem 2004:279(11):10822-8.
    11. Wilson CA, Browning JL. Death of HT29 adenocarcinoma cells induced by TNF family receptor activation is caspase-independent and displays features of both apoptosis and necrosis. Cell Death Differ 2002:9(12):1321-33.
    12. Ruemmele FM, Dionne S, Levy E, Seidman EG. TNFalpha-induced IEC-6 cell apoptosis requires activation of ICE caspases whereas complete inhibition of the caspase cascade leads to necrotic cell death. Biochem Biophys Res Commun 1999;260(1):159-66.
    13. Degterev A, Huang Z, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 2005;1(2):112-9.
    14. Lemasters JJ. Dying a thousand deaths: redundant pathways from different organelles to apoptosis and necrosis. Gastroenterology 2005:129(1):351-60.
    15. Bras M, Queenan B, Susin SA. Programmed cell death via mitochondria: different modes of dying. Biochemistry (Mosc) 2005;70(2):231-9.
    16. Horbinski C, Chu CT. Kinase signaling cascades in the mitochondrion: a matter of life or death. Free Radic Biol Med 2005;38(1):2-11.
    17. Skommer J, Wlodkowic D, Deptala A. Larger than life: Mitochondria and the Bcl-2 family. Leuk Res 2007;31(3):277-86.
    18. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev 2007;87(1):99-163.
    19. Krantic S, Mechawar N, Reix S, Quirion R. Apoptosis-inducing factor: a matter of neuron life and death. Prog Neurobiol 2007;81(3):179-96.
    20. Orrenius S. Reactive oxygen species in mitochondria-mediated cell death. Drug Metab Rev 2007:39(2-3):443-55.
    21. Malhi H, Gores GJ, Lemasters JJ. Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology 2006;43(2 Suppl 1):S31~44.
    22. Ueda H, Fujita R. Cell death mode switch from necrosis to apoptosis in brain. Biol Pharm Bull 2004;27(7):950-5.
    23. Galluzzi L, Zamzami N, de La Motte Rouge T, Lemaire C, Brenner C, Kroemer G. Methods for the assessment of mitochondrial membrane permeabilization in apoptosis. Apoptosis 2007;12(5):803-13.
    24. Murphy KM, Ranganathan V, Farnsworth ML, Kavallaris M, Lock RB. Bcl-2 inhibits Bax translocation from cytosol to mitochondria during drug-induced apoptosis of human tumor cells. Cell Death Differ 2000:7(1):102-11.
    25. Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 2006:25(34):4798-811.
    26. Fantin VR, Leder P. Mitochondriotoxic compounds for cancer therapy. Oncogene 2006:25(34):4787-97.
    27. Kroemer G. Introduction: mitochondrial control of apoptosis. Biochimie 2002:84(2-3):103-4.
    28. Zamzami N, Larochette N, Kroemer G. Mitochondrial permeability transition in apoptosis and necrosis. Cell Death Differ 2005;12 Suppl 2:1478-80.
    29. Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science 2004;305(5684):626-9.
    1. Uzzo RG, Haas NB, Crispen PL, Kolenko VM. Mechanisms of apoptosis resistance and treatment strategies to overcome them in hormone-refractory prostate cancer. Cancer 2008.
    2. Ziegler DS, Kung AL. Therapeutic targeting of apoptosis pathways in cancer. Curr Opin Oncol 2008;20(1):97-103.
    3. Vucic D, Fairbrother WJ. The inhibitor of apoptosis proteins as therapeutic targets in cancer. Clin Cancer Res 2007;13(20):5995-6000.
    4. Vermeulen K, Van Bockstaele DR, Berneman ZN. Apoptosis: mechanisms and relevance in cancer. Ann Hematol 2005;84(10):627-39.
    5. Gerl R, Vaux DL. Apoptosis in the development and treatment of cancer. Carcinogenesis 2005;26(2):263-70.
    6. Danson S, Dean E, Dive C, Ranson M. IAPs as a target for anticancer therapy. Curr Cancer Drug Targets 2007;7(8):785-94.
    7. Kostanova-Poliakova D, SabovaL. Anti-apoptotic proteins-targets for chemosensitization of tumor cells and cancer treatment. Neoplasma 2005;52(6): 441-9.
    8. Hersey P, Zhang XD. Overcoming resistance of cancer cells to apoptosis. J Cell Physiol 2003;196(1):9-18.
    9. Fesik SW. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 2005;5(11):876-85.
    10. Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 2005;55(3):178-94.
    11. Jin S, DiPaola RS, Mat hew R, White E. Metabolic catastrophe as a means to cancer cell death. J Cell Sci 2007;120(Pt 3):379-83.
    12. Boujrad H, Gubkina O, Robert N, Krantic S, Susin SA. AIF-mediated programmed necrosis: a highly regulated way to die. Cell Cycle 2007;6(21):2612-9.
    13. Tesniere A, Panaretakis T, Kepp O, et al. Molecular characteristics of immunogenic cancer cell death. Cell Death Differ 2008;15(1):3-12.
    14. Zong WX, Thompson CB. Necrotic death as a cell fate. Genes Dev 2006:20(1):1-15.
    15. Mizushima N. Autophagy: process and function. Genes Dev 2007:21(22):2861-73.
    16. Buytaert E, Callewaert G, Vandenheede JR, Agostinis P. Deficiency in apoptotic effectors Bax and Bak reveals an autophagic cell death pathway initiated by photodamage to the endoplasmic reticulum. Autophagy 2006:2(3): 238-40.
    17. Broker LE, Kruyt FA, Giaccone G. Cell death independent of caspases: a review. Clin Cancer Res 2005;11(9):3155-62.
    18. Fantin VR, Leder P. F16, a mitochondriotoxic compound, triggers apoptosis or necrosis depending on the genetic background of the target carcinoma cell. Cancer Res 2004:64(1):329-36.
    19. Amaravadi RK, Thompson CB. The roles of therapy-induced autophagy and necrosis in cancer treatment. Clin Cancer Res 2007;13(24):7271-9.
    20. Ondrouskova E, Soucek K, Horvath V, Smarda J. Alternative pathways of programmed cell death are activated in cells with defective caspase-dependent apoptosis. Leuk Res 2008;32(4):599-609.
    21. Hu X, Xuan Y. Bypassing cancer drug resistance by activating multiple death pathways—a proposal from the study of circumventing cancer drug resistance by induction of necroptosis. Cancer Lett 2008;259(2): 127-37.
    22. Assuncao Guimaraes C, Linden R. Programmed cell deaths. Apoptosis and alternative deathstyles. Eur J Biochem 2004;271(9):1638-50.
    1. Majno, G. and I. Joris, Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol, 1995. 146(1): p. 3-15.
    2. Lemasters, J. J., V. Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am J Physiol, 1999. 276(1 Pt 1): p. G1-6.
    3. Cookson, B.T. and M.A. Brennan, Pro-inflammatory programmed cell death. Trends Microbiol, 2001. 9(3): p. 113-4.
    4. Degterev, A., et al., Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol, 2005. 1(2): p. 112-9.
    5. Nishiraura, Y. and J. J. Lemasters, Glycine blocks opening of a death channel in cultured hepatic sinusoidal endothelial cells during chemical hypoxia. Cell Death Differ, 2001. 8(8): p. 850-8.
    6. Lindsten, T., et al., The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell, 2000. 6(6): p. 1389-99.
    7. Rathmell, J. C., et al., In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol Cell, 2000. 6(3): p. 683-92.
    8. Rathmell, J. C., et al., Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol Cell Biol, 2003. 23(20): p. 7315-28.
    9. Wei, M. C., et al., Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science, 2001. 292(5517): p. 727-30.
    10. Lum, J. J., et al., Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell, 2005. 120(2): p. 237-48.
    11. Holt, J. A., Cancer, a disease of defective glucose metabolism. Med Hypotheses, 1983. 10(2): p. 133-50.
    12. Baggetto, L. G., Deviant energetic metabolism of glycolytic cancer cells. Biochimie, 1992. 74(11): p. 959-74.
    13. Shchepina, L. A., et al., Respiration and mitochondrial membrane potential are not required for apoptosis and anti-apoptotic action of Bcl-2 in HeLa cells. Biochemistry (Mosc), 2002. 67(2): p. 222-6.
    14.Kim, M. Y., T. Zhang, and W. L. Kraus, Poly(ADP-ribosyl)ation by PARP-1: 'PAR-laying' NAD+ into a nuclear signal. Genes Dev, 2005. 19(17): p. 1951-67.
    15. Berger, N.A., et al., Poly(ADP-ribose) polymerase mediates the suicide response to massive DNA damage: studies in normal and DNA-repair defective cells. Princess Takamatsu Symp, 1983. 13: p. 219-26.
    16. Du, L., et al., Intra-mitochondrial poly(ADP-ribosylation) contributes to NAD+ depletion and cell death induced by oxidative stress. J Biol Chem, 2003. 278(20): p. 18426-33.
    17. Ying, W., P. Gamier, and R. A. Swanson, NAD+ repletion prevents PARP-1-induced glycolytic blockade and cell death in cultured mouse astrocytes. Biochem Biophys Res Commun, 2003. 308(4): p. 809-13.
    18. Zong, W. X., et al., Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev, 2004. 18(11): p. 1272-82.
    19. Ying, W., et al., NAD+ as a metabolic link between DNA damage and cell death. J Neurosci Res, 2005. 79(1-2): p. 216-23.
    20. Cipriani, G., et al., Nuclear poly(ADP-ribose) polymerase-1 rapidly triggers mitochondrial dysfunction. J Biol Chem, 2005. 280(17): p. 17227-34.
    21. Fatt, P. and B. L. Ginsborg, The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol, 1958. 142(3): p. 516-43.
    22. Putney, J. W., Jr., A model for receptor-regulated calcium entry. Cell Calcium, 1986. 7(1): p. 1-12.
    23. Bianchi, L., et al., The neurotoxic MEC-4(d) DEG/ENaC sodium channel conducts calcium: implications for necrosis initiation. Nat Neurosci, 2004. 7(12): p. 1337-44.
    24. Strehler, E. E. and M. Treiman, Calcium pumps of plasma membrane and cell interior. Curr Mol Med, 2004. 4(3): p. 323-35.
    25. Saris, N. E. and E. Carafoli, A historical review of cellular calcium handling, with emphasis on mitochondria. Biochemistry (Mosc), 2005. 70(2): p. 187-94.
    26. Driscoll, M. and M. Chalfie, The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature, 1991. 349(6310): p. 588-93.
    27. Huang, M. and M. Chalfie, Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature, 1994. 367(6462): p. 467-70.
    28. Chung, S., et al., A common set of engulfment genes mediates removal of both apoptotic and necrotic cell corpses in C. elegans. Nat Cell Biol, 2000. 2(12): p. 931-7.
    29. Xu, K., N. Tavernarakis, and M. Driscoll, Necrotic cell death in C. elegans requires the function of calreticulin and regulators of Ca(2+) release from the endoplasmic reticulum. Neuron, 2001. 31(6): p. 957-71.
    30. Fryer, H. J., et al., Excitotoxic death of a subset of embryonic rat motor neurons in vitro. J Neurochem, 1999. 72(2): p. 500-13.
    31. Aarts, M., et al., A key role for TRPM7 channels in anoxic neuronal death. Cell, 2003. 115(7): p. 863-77.
    32. Xiong, Z. G., et al., Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell, 2004. 118(6): p. 687-98.
    33. Bano, D., et al., Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell, 2005. 120(2): p. 275-85.
    34. McConkey, D. J. and S. Orrenius, The role of calcium in the regulation of apoptosis. J Leukoc Biol, 1996. 59(6): p. 775-83.
    35. Ankarcrona, M., et al., Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron, 1995. 15(4): p. 961-73.
    36. Andreyev, A.Y., Y.E. Kushnareva, and A.A. Starkov, Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc), 2005. 70(2): p. 200-14.
    37. Nordberg, J. and E. S. Arner, Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med, 2001. 31(11): p. 1287-312.
    38. Marnett, L. J., Oxyradicals and DNA damage. Carcinogenesis, 2000. 21(3): p. 361-70.
    39. Watson, A. J., J. N. Askew, and R. S. Benson, Poly(adenosine diphosphate ribose) polymerase inhibition prevents necrosis induced by H2O2 but not apoptosis. Gastroenterology, 1995. 109(2): p. 472-82.
    40. Yu, S. W., et al., Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science, 2002. 297(5579): p. 259-63.
    41. Endres, M., et al., Ischemic brain injury is mediated by the activation of poly (ADP-ribose) polymerase. J Cereb Blood Flow Metab, 1997. 17(11): p. 1143-51.
    42. Waring, P., Redox active calcium ion channels and cell death. Arch Biochem Biophys, 2005. 434(1): p. 33-42.
    43. Kawahara, A., et al., Caspase-independent cell killing by Fas-associated protein with death domain. J Cell Biol, 1998. 143(5) : p. 1353-60.
    44. Holler, N., et al., Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol, 2000. 1(6): p. 489-95.
    45. Goossens, V., et al., Redox regulation of TNF signaling. Biofactors, 1999. 10(2-3): p. 145-56.
    46. Vercammen, D., et al., Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med, 1998. 187(9): p. 1477-85.
    47. Treinin, M. and M. Chalfie, A mutated acetylcholine receptor subunit causes neuronal degeneration in C. elegans. Neuron, 1995. 14(4): p. 871-7.
    48. Korswagen, H.C., et al., An activating mutation in a Caenorhabditis elegans Gs protein induces neural degeneration. Genes Dev, 1997. 11(12): p. 1493-503.
    49. Berger, A. J., A. C. Hart, and J. M. Kaplan, G alphas-induced neurodegeneration in Caenorhabditis elegans. J Neurosci, 1998. 18(8): p. 2871-80.
    50. Syntichaki, P., et al., Specific aspartyl and calpain proteases are required for neurodegeneration in C. elegans. Nature, 2002. 419(6910): p. 939-44.
    51. Suzuki, K. and H. Sorimachi, A novel aspect of calpain activation. FEBS Lett, 1998. 433(1-2): p. 1-4.
    52. Goll, D. E., et al., The calpain system. Physiol Rev, 2003. 83(3): p. 731-801.
    53. Suzuki, K., et al., Structure, activation, and biology of calpain. Diabetes, 2004. 53 Suppl 1: p. S12-8.
    54. Rami, A., Ischemic neuronal death in the rat hippocampus: the calpain-calpastatin-caspase hypothesis. Neurobiol Dis, 2003. 13(2): p. 75-88.
    55. Wang, K. K., Calpain and caspase: can you tell the difference?, by kevin K.W. WangVol. 23, pp. 20-26. Trends Neurosci, 2000. 23(2): p. 59.
    56. Liu, X., T. Van Vleet, and R. G. Schnellmann, The role of calpain in oncotic cell death. Annu Rev Pharmacol Toxicol, 2004. 44: p. 349-70.
    57. Yamashima, T., Ca2+-dependent proteases in ischemic neuronal death: a conserved' calpain-cathepsin cascade' from nematodes to primates. Cell Calcium, 2004. 36(3-4): p. 285-93.
    58. Rawlings, N. D. and A. J. Barrett, MEROPS: the peptidase database. Nucleic Acids Res, 2000. 28(1): p. 323-5.
    59. Colombaioni, L. and M. Garcia-Gil, Sphingolipid metabolites in neural signal ling and function. Brain Res Brain Res Rev, 2004. 46(3): p. 328-55.
    60. Cuvillier, O., Sphingosine in apoptosis signaling. Biochim Biophys Acta, 2002. 1585(2-3): p. 153-62.
    61. Pyne, S., Cellular signaling by sphingosine and sphingosine 1-phosphate. Their opposing roles in apoptosis. Subcell Biochem, 2002. 36: p. 245-68.
    62. Kagedal, K., et al., Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochem J, 2001. 359(Pt 2): p. 335-43.
    63. Perez-Morga, D., et al., Apolipoprotein L-I promotes trypanosome lysis by forming pores in lysosomal membranes. Science, 2005. 309(5733): p. 469-72.
    64. Nylandsted, J., et al., Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med, 2004. 200(4): p. 425-35.
    65. de Duve, C., Lysosomes revisited. Eur J Biochem, 1983. 137(3): p. 391-7.
    66. Fuentes-Prior, P. and G. S. Salvesen, The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J, 2004. 384 (Pt 2): p. 201-32.
    67. Thornberry, N. A., et al., A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature, 1992. 356(6372): p. 768-74.
    68. Kuida, K., et al., Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science, 1995. 267(5206): p. 2000-3.
    69. Boise, L. H. and C.M. Collins, Salmonella-induced cell death: apoptosis, necrosis or programmed cell death? Trends Microbiol, 2001. 9(2): p. 64-7.
    70. Jarvelainen, H. A., A. Galmiche, and A. Zychlinsky, Caspase-1 activation by Salmonella. Trends Cell Biol, 2003. 13(4): p. 204-9.
    71. Hueffer, K. and J. E. Galan, Salmonella-induced macrophage death: multiple mechanisms, different outcomes. Cell Microbiol, 2004. 6(11): p. 1019-25.
    [1] B. Vogelstein, K. W.Kinzler, Cancer genes and the pathways they control, Nat Med. 10 (2004) 789-799
    
    [2] M. M. Gottesman, T. Fojo, S. E. Bates, Multidrug resistance in cancer: role of ATP-dependent transporters, Nat Rev Cancer. 2 (2002) 48-58
    
    [3] C. H. Choi, ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal, Cancer Cell International. 5 (2005) 30-42
    
    [4] S. V. Ambudkar, S. Dey, C. A. Hrycyna, M. Ramachandra, I. Pastan, M. M. Gottesman, Biochemical, cellular, and pharmacological aspects of the multidrug transporter, Annu. Rev. Pharmacol. Toxicol. 39 (1999) 361 - 398
    
    [5] G. Szakacs, J. K. Paterson, J. A. Ludwig, C. Booth-Genthe, M. M. Gottesman, Targeting multidrug resistance in cancer, Nat Rev Drug Discov. 5 (2006) 219-234
    
    [6] B. Sarkadi, L. Homolya, G. Szakacs, A. Varadi, Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system, Physiol Rev. 86 (2006) 1179-1236
    [7] R. G. Deeley, C. Westlake, S. P. Cole, Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins, Physiol Rev. 86 (2006) 849-899
    [8] K. Viktorsson, R. Lewensohn, B. Zhivotovsky, Apoptotic pathways and therapy resistance in human malignancies, Adv Cancer Res. 94 (2005) 143-196
    [9] J. M. Brown, L. D. Attardi, The role of apoptosis in cancer development and treatment response, Nat Rev Cancer. 5 (2005) 231-237
    [10] L. A. Doyle, W. Yang, L. V. Abruzzo, T. Krogmann, Y. Gao, A. K. Rishi, D. D. Ross, A multidrug resistance transporter from human MCF-7 breast cancer cells, Proc Natl Acad Sci USA. 95 (1998) 15665-15670
    [11] S. W. Lowe, A. W. Lin, Apoptosis in cancer, Carcinogenesis. 21 (2000) 485 - 495
    [12] D. A. Gewirtz, A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin, Biochem Pharmacol. 57 (1999) 727 - 741
    [13] M. A. Jordan, L. Wilson, Microtubules as a target for anticancer drugs, Nat Rev Cancer. 4 (2004) 253-265
    [14] P. R. Walker, C. Smith, T. Youdale, J. Leblanc, J. F. Whitfield, M. Sikorska, Topoisomerase II-reactive Chemotherapeutic Drugs Induce Apoptosis in Thymocytes, Cancer Res. 51 (1991) 1078-1085
    [15] F. Mahon, F. Belloc, V. Lagarde, C. Chollet, F. Moreau-Gaudry, J. Reiffers, J. M. Goldman, J. V. Melo, MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models, Blood, 101 (2003) 2368-2373
    [16] H. Burger, H. van Tol, A. W. M. Boersma, M. Brok, E. A. C. Wiemer, G. Stoter, K. Nooter, Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump, Blood. 104 (2004) 2940-2942
    [17] K. Viktorsson, J. Ekedahl, M. C. Lindebro, R. Lewensohn, B. Zhivotovsky, S. Linder, M. C. Shoshan, Defective stress kinase and Bak activation in response to ionizing radiation but not cisplatin in a non-small cell lung carcinoma cell line, Exp. Cell Res. 289 (2003) 256 - 264
    [18] B. Joseph, J. Ekedahl, R. Lewensohn, P. Marchetti, P. Formstecher, B. Zhivotovsky, Defective caspase-3 relocalization in non-small cell lung carcinoma, Oncogene. 20 (2001) 2877-2888
    
    [19] A. Nakashio, N. Fujita, S. Rokudai, S. Sato, T. Tsuruo, Prevention of phosphatidylinositol O-kinase-Akt survival signaling pathway during topotecan-induced apoptosis, Cancer Res. 60 (2000) 5303 - 5309
    [20]S. P. Cole, G. Bhardwaj, J.H. Gerlach, J. E. Mackie, C. E. Grant, K. C. Almquist, A. J. Stewart, E. U. Kurz, A.M. Duncan, R. G. Deeley, Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line, Science. 258 (1992) 1650-1654
    [21] M. Izawa, T. Mori, T. Satoh, K. Teramachi, T. Sairenji, Identification of an alternative form of caspase-9 in human gastric cancer cell lines: a role of a caspase-9 variant in apoptosis resistance, Apoptosis. 4 (1999) 321-325
    [22] N. Rampino, H. Yamamoto, Y. Ionov, Y. Li, H. Sawai, J. C. Reed, M. Perucho, Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype, Science. 275 (1997) 967-969
    [23] A. Trauzold, S. Schmiedel, C. Roder, C. Tams, M. Christgen, S. Oestern, A. Arlt, S. Westphal, M. Kapischke, H. Ungefroren, H. Kalthoff, Multiple and synergistic deregulations of apoptosis-controlling genes in pancreatic carcinoma cells, Br J Cancer. 89 (2003) 1714-1721
    [24] J. R. Liu, A. W. Opipari, L. Tan, Y. Jiang, Y. Zhang, H. Tang, G. Nunez, Dysfunctional apoptosome activation in ovarian cancer: implications for chemoresistance, Cancer Res. 62 (2002) 924-931
    [25] P. Kamarajan, N. K. Sun, C. C. Chao, Up-regulation of FLIP in cisplatin-selected HeLa cells causes cross-resistance to CD95/Fas death signalling, Biochem J. 376 (2003) 253-260
    [26] B. Liu, D. Peng, Y. Lu, W. Jin, Z. Fan, A novel single amino acid deletion caspase-8 mutant in cancer cells that lost proapoptotic activity, J. Biol. Chem. 277 (2002a) 30159-30164
    [27] T. A. Buchholz, D. W. Davis, D. J. McConkey, W. F. Symmans, V. Valero, A. Jhingran, S. L. Tucker, L. Pusztai, M. Cristofanilli, F. J. Esteva, G. N. Hortobagyi, A. A. Sahin, Chemotherapy-induced apoptosis and Bcl-2 levels correlate with breast cancer response to chemotherapy, Cancer J. 9 (2003) 33-41
    
    [28] R. C. Bargou, C. Wagener, K. Bommert, M. Y. Mapara, P. T. Daniel, W. Arnold, M. Dietel, H. Guski, A. Feller, H. D. Royer, B. Dorken, Overexpression of the deathpromoting gene bax-alpha which is downregulated in breast cancer restores sensitivity to different apoptotic stimuli and reduces tumor growth in SCID mice, J. Clin. Invest. 97 (1996) 2651-2659
    [29] A. Mandic, K. Viktorsson, M. Molin, G. Akusjarvi, H. Eguchi, S. I. Hayashi, M. Toi, J. Hansson, S. Linder, M. C. Shoshan, Cisplatin induces the proapoptotic conformation of Bak in a delta MEKK1-dependent manner, Mol. Cell Biol. 21 (2001b) 3684-3691
    [30] A. Baldi, D. Santini, P. Russol, C. Catricala, A. Amantea, M. Picardo, F. Tatangelo, G. Botti, E. Dragonetti, R. Murace, G. Tonini, P. G. Natali, F. Baldi, M. G. Paggi, Analysis of APAF-1 expression in human cutaneous melanoma progression, Experimental Dermatology, 13 (2004) 93 - 97
    [31] H. Tsao, X. Zhang, E. Benoit, F. G. Haluska, Identifcation of PTEN/MMAC1 alterations in uncultured melanomas and melanoma cell lines, Oncogene. 16 (1998) 3397 - 3402
    [32] P. Guldberg, P. Straten, A. Birck, V. Ahrenkiel, A. F. Kirkin, J. Zeuthen, Disruption of the MMAC1/PTEN Gene by Deletion or Mutation Is a Frequent Event in Malignant Melanoma, Cancer Research. 57 (1997) 3660-3663
    [33] S. Fulda, M. U. Kufer, E. Meyer, F. van Valen, B. Dockhorn-Dworniczak, K. M. Debatin, Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer, Oncogene. 20 (2001) 5865-5877
    [34] T. Panaretakis, K. Pokrovskaja, M. C. Shoshan, D. Grander, Activation of Bak, Bax, and BH3-only proteins in the apoptotic response to doxorubicin, J Biol Chem. 277 (2002) 44317-44326
    [35] N. Mitsiades, C. S. Mitsiades, V. Poulaki, K. C. Anderson, S. P. Treon, Intracellular regulation of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human multiple myeloma cells, Blood. 99 (2002) 2162-2171
    [36] A. Olsson, T. Diaz, M. Aguilar-Santelises, A. Osterborg, F. Celsing, M. Jondal, L. M. Osorio, Sensitization to TRAIL-induced apoptosis and modulation of FLICE-inhibitory protein in B chronic lymphocytic leukemia by actinomycin D, Leukemia. 15 (2001) 1868-1877
    [37] J. Chandra, A. Samali, S. Orrenius, Triggering and modulation of apoptosis by oxidative stress, Free Radic Biol Med. 29 (2000) 323-333
    [38] M. Notarbartolo, M. Cervello, P. Poma, L. Dusonchet, M. Meli, N. D' Alessandro, Expression of the IAPs in multidrug resistant tumor cells, Oncol Rep. 11 (2004) 133-136
    [39] V. Nuessler, O. Stotzer, E. Gullis, R. Pelka-Fleischer, A. Pogrebniak, F. Gieseler, W. Wilmanns, Bcl-2, bax and Bcl-x_L expression in human sensitive and resistant leukemia cell lines, Leukemia. 13 (1999) 1864 - 1872 .
    [40] B. Joseph, J. Ekedahl, F. Sirzen, R. Lewensohn, B. Zhivotovsky, Differences in expression of pro-caspases in small cell and non-small cell lung carcinoma, Biochem Biophys Res Commun. 262 (1999) 381-387
    [41] G. V. Scagliotti, S. Novello, G. Selvaggi, Multidrug resistance in non-small-cell lung cancer, Ann Oncol 10 Suppl. 5 (1999) S83-86
    [42] T. A. Smith, Mammalian hexokinases and their abnormal expression in cancer, Br. J. Biomed. Sci. 57 (2000) 170 - 178
    [43] M. Jaattela, Heat shock proteins as cellular lifeguards, Ann. Med. 31 (1999) 26-271
    [44] I. Sturm, H. Petrowsky, R. Volz, M. Lorenz, S. Radetzki, T. Hillebrand, G. Wolff, S. Hauptmann, B. Dorken, P. T. Daniel, Analysis of p53/BAX/p16ink4a/CDKN2 in Esophageal Squamous Cell Carcinoma: High BAX and p16ink4a/CDKN2 Identifies Patients With Good Prognosis, Journal of Clinical Oncology. 19 (2001) 2272-2281
    
    [45] Y. Katz, A. Eitan, M. Gavish, Increase in peripheral benzodiazepine binding sites in colonic adenocarcinoma, Oncology. 47 (1990) 139-142
    [46] I. Venturini, H. Alho, I. Podkletnova, L. Corsi, E. Rybnikova, R. Pellicci, M. Baraldi, M. Pelto-Huikko, P. Helen, M. L. Zeneroli, Increased expression of peripheral benzodiazepine receptors and diazepam binding inhibitor in human tumors sited in the liver, Life Sci. 65 (1999) 2223-2231
    
    [47] W. Beerheide, Y. J. Tan, E. Teng, A. E. Ting, A. Jedpiyawongse, P. Srivatanakul, Downregulation of proapoptotic proteins Bax and Bcl-X(S) in p53 overexpressing hepatocellular carcinomas, Biochem Biophys Res Commun. 273 (2000) 54-61
    
    [48] H. Wu, V. Goel, F. G. Haluska, PTEN signaling pathways in melanoma, Oncogene. 22 (2003) 3113-3122
    
    [49] N. Miyazawa, E. Hamel, M. Diksic, Assessment of the peripheral benzodiazepine receptors in human gliomas by two methods, J Neurooncol. 38 (1998) 19-26
    
    [50] M.S. Soengas, S. W. Lowe, Apoptosis and melanoma chemoresistance, Oncogene. 22 (2003) 3138-3151
    
    [51] H. Helmbach, E. Rossmann, M. A. Kern, D. Schadendorf, Drug-resistance in human melanoma, Int J Cancer. 93 (2001) 617-622
    [52] S. Mandruzzato, F. Brasseur, G. Andry, T. Boon, P. van der Bruggen, A CASP-8 mutation recognized by cytolytic T lymphocytes on a human head and neck carcinoma, J Exp Med. 186 (1997) 785-793
    [53] M. Irisarri, J. Plumas, T. Bonnefoix, M. C. Jacob, C. Roucard, M. A. Pasquier, J. J. Sotto, A. Lajmanovich, Resistance to CD95-mediated apoptosis through constitutive c- FLIP expression in a non-Hodgkin's lymphoma B cell line, Leukemia. 14 (2000) 2149-2158
    
    [54] H. Okada, T. W. Mak, Pathways of apoptotic and non-apoptotic death in tumour cells, Nat Rev Cancer. 4 (2004) 592-603
    [55] M.S. Ricci, W.X. Zong, Chemotherapeutic approaches for targeting cell death pathways, Oncologist. 11 (2006) 342-357
    [56] X. Hu, W. Han, L. Li, Targeting the weak point of cancer by induction of necroptosis, Autophagy. 3 (2007) 490-492
    [57] A. Degterev, Z. Huang, M. Boyce, Y. Li, P. Jagtap, N. Mizushima, G. D. Cuny, T. J. Mitchison, M. A. Moskowitz, J. Yuan, Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury, Nat Chem Biol. 1 (2005) 112-119
    [58] W. Han, L. Li, S. Qiu, Q. Lu, Q. Pan, Y. Gu, J. Luo, X. Hu, Shikonin circumvents cancer drug resistance by induction of a necroptotic death, Mol Cancer Ther. 6 (2007)1641-1649
    [59] Q. Pan, Q. Lu, K. Zhang, X. Hu, Dibenzocyclooctadiene lignans - a class of novel inhibitors of P-glycoprotein, Cancer Chemother Pharmacol. 58 (2006) 99-106
    [60] L. Li, Q. Pan, M. Sun, Q. Lu, X. Hu, Dibenzocyclooctadiene lignans: a class of novel inhibitors of multidrug resistance-associated protein 1, Life Sci. 80 (2007) 741-748
    [61] M. Nakagawa, E. Schneider, K. H. Dixon, J. Horton, K. Kelley, C. Morrow, K. H. Cowan, Reduced intracellular drug accumulation in the absence of P-glycoprotein (mdrl) overexpression in mitoxantrone-resistant human MCF-7 breast cancer cells, Cancer Res. 52 (1992) 6175-6181
    [62] P. G. Jagtap, A. Degterev, S. Choi, H. Keys, J. Yuan, G. D. Cuny, Structure-activity relationship study of tricyclic necroptosis inhibitors, J Med Chem. 50 (2007) 1886-1895
    
    [63] K. Wang, J. Li, A. Degterev, E. Hsu, J. Yuan, C. Yuana, Structure-activity relationship analysis of a novel necroptosis inhibitor, Necrostatin-5, Bioorganic & Medicinal Chemistry Letters. 17 (2007) 1455-1465