丙酸杆菌VB_(12)合成及耦合发酵工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钴胺素是人体组织代谢过程中必需的维生素,具有广泛的生理作用。广泛应用于医药和食品行业。目前钴胺素主要由微生物发酵生产。本论文从应用角度出发,初步研究了DMB、丙酸等因素对腺苷咕啉醇酰胺(关键中间产物)、菌体生长及脱氧腺苷钴胺素(adenosylcobalamin,简称ADO)生物合成的影响,探索了解除有机酸(丙酸)抑制的发酵工艺过程,期望为钴胺素发酵生产工艺的改进提供参考借鉴。本论文主要进行了以下两方面的研究。
     1.丙酸杆菌厌氧合成维生素B12研究
     在费氏丙酸杆菌(propionibacterium freudenreichii)发酵生产维生素B12的研究中,分离到脱氧腺苷钴胺素生物合成途径中一种关键而稳定的中间产物。该物质在维生素B12发酵过程中大量积累,在研究中发现该中间产物腺苷钴啉醇酰胺(CBI)与5,6-二甲基苯并咪唑(DMB)来源的前体α-吡咯核糖(α-ribozale)结合后可转化为脱氧腺苷钴胺素(ADO)。光谱和质谱分析该物质应是脱氧腺苷钻胺素生物合成途径中的一种重要中间产物—腺苷钴啉醇酰胺(adenosylcobinamide,简称CBI)。对此中间产物的分析可深入了解厌氧合成脱氧腺苷钴胺素的代谢途径。进一步以CBI为核心,考察不同时间添加DMB对菌体生长及ADO合成的影响,从而运用代谢调控手段优化DMB的添加时间。从而优化发酵工艺,指导发酵生产维生素B12的生产实践。批次发酵条件下,考察了菌体的CBI合成量,ADO产量和菌体的生长曲线,可确定DMB对菌体生长的抑制作用并不明显,但可抑制CBI在细胞内的生物合成,因此可影响单位菌体产量。
     2.反应与分离耦合的发酵工艺研究
     初步探索了用离子交换树脂吸附和更换新鲜培养基两种方法解除有机酸抑制对费氏丙酸杆菌发酵生产VB12的影响。初步探索了发酵过程中定时对丙酸进行分离的发酵工艺,可有效解除有机酸对细胞生长的抑制,实现了细胞的连续生长,为连续发酵的生产工艺提供了借鉴。
     进一步考查了弱碱性阴离子交换树脂ZGA330对费氏丙酸杆菌发酵液中丙酸的静态和动态吸附性能。树脂ZGA330对含有12.6g/L丙酸的发酵液中丙酸的静态吸附量最大,吸附量为44.9g/L;动态吸附过程中对发酵液中主要营养成分糖、氨基酸吸附很少,而对丙酸吸附量高达205.5g/L。成功地通过树脂吸附将发酵系统中的丙酸分离出去,实现了维生素B12的高密度发酵。研究结果为丙酸的发酵与吸附分离耦合过程研究提供了基础,丙酸吸附分离后的发酵液继续进行维生素B12发酵生产可以解除丙酸的抑制作用,提高了维生素B12的产量。
National forms of cobalamin compounds are the necessary vitamins in the process of organization metabolize in human body and they have a broad of physiological functions. Cobalamin is widely used in medicine and food industry and it has been produced in the process of microbial fermentation. In this paper, the effects of DMB、propionic acid on intermediate biosynthesis、biomass and adenosylcobalamin biosynthesis were studied. The fermentation process of removal propionic acid was also explored. The study in this paper was based on industry applications, which have special valuable reference to improvement of cobalamin fermentation.
     1.Research on Deoxyadenosylcobalamin Biosynthesis of Propionibacterium freudenreichii
     An important intermediate of deoxyadenosylcobalamin biosynthesis by anaerobic pathway of Propionibacterium freudenreichii was separated from the broth. It has been qualitatively analyzed by spectrum and ESI MS-GC analysis and further determined as a key intermediate of deoxyadenosylcobalamin:adenosylcobinamide which can be transformed to deoxyadenosylcobalamin when infused 5,6-dimethylbenzimidazole (DMB) to the fermentation medium. It is hope that the intermediate could be a key factor which guides the infusion of DMB and further optimize the fermentation process.
     The effects of 5,6-dimethylbenzimidazole(DMB) on the growth and deoxyadenosylcobalamin biosynthesis of propionibacterium freudenreichii are explored in this part. In the anaerobic pathway,An important intermediate adenosylcobinamide(CBI), which can be transformed to deoxyadenosylcobalamin when infused DMB to the fermentation medium. When the CBI as a key factor, the effection of DMB addition at different phases of fermentation, the CBI biosynthesis curve, the deoxyadenosylcobalamin yield and cell growth curve were measured in the batch fermentation process. The infusion of DMB at the phase of 90-100h of incubation has been found optimum for maximizing metabolic efficiency of the culture, and there was no obvious restrain effection on cell growth.
     2.The research on coupling fermentation technics
     The two methods that changing for fresh broth and adsorbing by resin ZGA330 to take propionic acid off in vitamin B12 (VB12) fermentation broth were evaluated. The fermentation process of removal of propionic acid was also explored. It can efficiently relieve the inhibition of cell growth and realize the continuous grow of biomass. And the research results can be the foundation for the technology of continuous fermentation.
     The adsorption effects of ZGA330 of weakly basic anion exchange resins for propionic acid (PA) in vitamin B12 (VB12) fermentation broth were evaluated. The result was that the static adsorption capacity on resin ZGA330 was 44.9 g/L dry beads at 12.6 g/L of PA. Dynamic state exchange trials, including the adsorption for glucose, amino acids and PA in the fermentation broth, were also determined which indicated that the adsorption was minimal for glucose and amino acids that were main nutrient compositions of the fermentation broth. The dynamic adsorption capacity was 205.5 g/L dry beads. By the removal of propionate acid with ZGA330, high concentration of VB12 was obtained comparing to the batch fermentation. The VB12 concentration increased from 9.1 mg/L to 13.1 mg/L. VB12 concentration was 0.44 fold of those in the batch fermentation respectively. To be concluded, it can provide theory of fermentation process coupling with separation and the cell concentration and productivity of VB12 will be greatly improved by the removal of propionate.
引文
[1]Raux E, Schubert H L, Warren M J Cell Mol Life Sci 2000,57:1880-1893.
    [2]Hodgkin D C,Kamper J,MacKay M,et al. Structure of vitamin B12[J]. Nature,1956, (17):64-66.
    [3]Eschenmoser A Organische Natrusoffsynthese heute VitaminB12 als Beisipel Naturwis-senschaften 1974 61:513-515
    [4]Duda J, Pedziwilk Z, Zodrow K. Studies on the vitamin B12 content of the leguminous plants. Acta Microbiol Pol,1967,6:233-238
    [5]Scott, J M, Weir D G. Folate/vitaminB12 interrelationships[J]. Essays in Biochemistry,1994,63-72.
    [6]Sumedha Gulati, Lawrence C B, Ruma B. Posttranscriptional Regulation of Mammalian Methionine Synthesis by B12[J]. Biochemical and Biophysical Research Communications,1999,259:436-442.
    [7]Mark L, Ioannis D, Zoe Y. Nutrition Research,2001,21:1357-1362.
    [8]Banerjeel R, Vlasie M. Biochemical Society Transactions,2002,30:621-624.
    [9]Weir D G, Scott J M. Cobalamins Physiology, Dietary Sources and Requirements[J]. Encyclopedia of Human Nutrition,1999,1:394-401.
    [10]Raux E, Heidi L S, Jennifer M R. et al. Vitamin B12:Insights into Biosynthesis's Mount Improbable[J]. Bioorganic Chemistry,1999,27:100-118.
    [11]罗袆,郝常明.维生素B12的研究及其进展[J].中国食品添加剂.2002,3:15-18.
    [12](苏)奥金佐娃著,刘同昌译.维生素的微生物学测定法.北京:科学出版社.
    [13]国家药典委员会.中华人民共和国药典(2000年版)第二部.北京:化学工业出版社
    [14]Qiu-Ecao, Yunkun Zhao, Shu Qing Wu, et al. Study on the mechanism and applications of the.fluorescence.reactions.among.cobalt,.H2O2.and.two.new.derivatives.of 8-sulfo-namidoquinoline [J]. Talanta,2000,51:615-623.
    [15]李俊,张兆威,张华山.分析科学学报.2001,17(5):387—390.
    [16]Watanabe F, Takenaka S, Abe K, et al. Comparison of a Microbiological Assay and a Fully Automated Chemiluminescent System for the Determination of vitamin B12 in Food[J]. J Agric Food chem.,1998,46:1433-1436.
    [17]Kondo H, Binter M J, The Assay of Cyanocobalamin in Pharmaceutical Preparations by Spectrophotometry [J]. J. Aclin. Invest,1982,70:889.
    [18]钱维清,邱在峰.1%维生素B12干粉的HPLC测定[J].中国医药工业杂志.1997,28(8):367-369.
    [19]Roth J R, Lawrence J G, Rubenfield M. et al. J. Bacteriol.1993 175:3303-3316.
    [20]Blanche F, Cameron B, Crouzet J, et al. Angew. Chem. Int. Ed. Engl.1995,34:383-411.
    [21]Pornpimon Kiatpapan, Yoshikatsu Murooka. Genetic Manipulation System in Propionibacteria[J]. Journal of Bioscience and Bioengineering.2002,93:1-8.
    [22]刘秀艳,叶敏,徐向阳.产生5-氨基乙酰丙酸光合细菌生物学研究进展[J].生物工程进展,2000,20(3):67-70.
    [23]Patricio J S, Charles A Rr, Neal J S, et al. Chemistry & Biology.1997,4:659-666.
    [24]Debussche L, Couder M, Thibaut D. et al. J. Bacteriol.1992,174:7445-7451.
    [25]Warren M J, Bolt E L, Roessner C A. et al. Biochem. J.1994,302:837-844.
    [26]Wang J, Stolowich N J, Santander P J. et al. Proc. Natl. Acad. Sci.1996,93:14320-14322.
    [27]Bettina S, Bernhard V, Paul R. Biosynthesis of vitamin B12 in anaerobic bacteria. Eur. J. Biochem. 1998,254:620-625.
    [28]Joachim H, Paul R. Biosynthesis of Vitamin B12[J]. FEBS LETTERS.1977,80(2):337-339
    [29]Evelyne R, Anne L, Martin J W, et al. Cobalamin biosynthesis:identification and characterization of a Bacillus megaterium cobI operon[J]. Biochem. J.1998,335:159-166.
    [30]Peter J A, Barrie E, David B M. Gene.2001,281:63-70.
    [31]McGoldrickl H, Deery E, Warren M. et al. Cobalamin (vitamin B12) biosynthesis in Rhodobacter capsulatus [J]. Biochemical Society Transactions.2002,30:646-648.
    [32]顾方贵主编.发酵微生物学.北京:北京农业大学出版社.
    [33]Martens J H, Barg H, Warren M J, et al. Microbial production of vitamin B12[J]. Appl. Microbiol. Biotechnol.2002,58:275-285.
    [34]曾碧榕,何旭敏,夏海平等.维生素B12工业生产技术的进展[J].中国医药工业杂志.2003,34(8):421-424.
    [35]Salminen S, Wright A, Morelli L, et al. Demonstration of safety of probiotics[J]. Int. J. Food Microbiol.1998,44:93-106.
    [36]Janicki J, Pedziwilk F, The biosynthesis of vitamins of the B12 group in mixed cultures of bacteria[J]. Acta Microbiol Pol.1966,15(4):343-7.
    [37]Miyano K, Ye K, Shimizu K. Improvement of vitamin B12 fermentation by reducing the inhibitory metabolites by cell recycle system and a mixed culture[J]. Biochemical Engineering Journal. 2000,6:207-214.
    [38]Bradbeer B.1991.Cobmin transport in Escherichia coil.Biofactor.1991,3:11-19
    [39]Iwona J, Maria M, Franciszek P. Utilization of Lactose and Production of Corrinoids in Selected Strains of Propionic Acid Bacteria in Cheese-whey and Casein Media[J]. Acta Microbiologica Polonica.1976,25:205-210.
    [40]Joachim A, HORIG, Paul R. Biosynthesis of Vitamin B12[J]. Eur. J. Biochem.1980,150:587-592.
    [41]Bettina S, Bernhard V, Paul R. Biosynthesis of vitamin B12 in anaerobic bacteria[J]. Eur. J. Biochem. 1998,254:620-625.
    [42]Alexey A Y, Alexander V P, Nataliua I Z, et al. Glutamine as the source of amide groups in vitamin B12 biosynthesis[J]. Biochimica et Biophysica Acta.1986,880:131-138.
    [43]仪宏,王丽丽,冯惠勇等.丙酸积累对薛氏丙酸杆菌生长及产酸的影响[J].微生物学通报.2003, 30(3):29-32.
    [44]Ye K M, Miyako S, Sha J, et al. Efficient Production of Vitamin B12 from Propionic Acid Bacteria under Periodic Variation of Dissolved Oxygen Concentration[J]. Journal of Fermentations and Bioengineering.1996,82:484-491.
    [45]Quesada-Chanto A, Silveira M M, Schmid-Meyer A C. Effect of the oxygen supply on pattern of growth and corrinoid and organic acid production of Propionibacteria shermanii[J]. Appl. Microbiol. Biotechnol.1998,49:732-736.
    [46]赵萍.利用中空纤维膜发酵罐生产维生素B12[J].四川食品工业科技.1997,2:30-34.
    [47]Hatanaka H, Wang E, Taniguchi M, et al. Production of vitamin B12 by a fermentor with a hollow-fiber module[J]. Appl. Microbiol. Biotechnol.,1998,27:470-473.
    [48]Nakano K, Kataoka H, Matsumura M. High density culture of Propionibacterium freudenreichii coupled with propionic acid removal system with activated charcoal[J]. J. Ferment. Bioeng.,1996, 81:37-41.
    [59]王丽丽,仪宏,王建伟等.维生素B12发酵液过滤工艺的革新[J].河北工业科技.1999,16(2):61-70.
    [50]曾坚贤,邢卫红,徐南平.膜分离技术在发酵领域中的应用[J].水处理技术.2003,29(6):311-314.
    [51]张月萍,赵平,于奕峰.超滤膜分离对VB12吸附过程的影响[J].膜科学与技术[J].2003,23(6):30-32.
    [52]M.J. Playne, Propionic and butyric acids,in:M. Moo-Young (Ed.) [J]. Comprehensive Biotechnology, vol.3, Pergamon Press, New York,1985, pp.731-759.
    [53]Roessner C A, Huang K X,Warren M J,et al.Isolation and characterization of 14 additional genes specifying the anaerobic biosynthesis of cobalamin (vitamin B12) in Propionibacterium freudenreichii (P. shermanii).Microbiology,2002,148:1845-1853
    [54]E. H. Himmi, A. Bories, A. Boussaid, Propionie acid fermentationof glycerol and glucOse by Propionibaeterium aeidipropioniei and Propionebacterium freudenreichii ssp. shermanii L. Hassani, Appl Microbiol,2000(53):435—440
    [55]F. Barbirato, D. Chedaille A. Bofies, Pmpionie acid fermentation from glycerol:comparison with conventional substrates, Appl Miembiol Biotechnol, (1997)47:441—446
    [56]乐华爱等,丙酸发酵的研究,微生物学报,1990,30(1):22—28
    [57]QUESADA—CHANTO, A., DA COSTA, J. P. C. L., SILVEI·RA, et al. Influence of Different Vitamin—Nitrogen Sources on Cell Growth and Propionic Acid Production from Sucrose by Propionibacterium shermanii, Acta Bioteehnol.1998(3):267—274
    [58]K. Czaezyk, K. Trojanowska, W. Grajek, The influence of a specifie microelmental enviroment in alginate gel beads on the course of propionic acid fermentation, Appl Microbiol Biotechnol, 1997(48):630—635
    [59]K. Balamurrgan, V. Venkata Dasu, T. Panda, Propionic acid production by whole cels of Propionibacterium freudenreiehii, Bioprocess Engineering 1999(20):109—116
    [60]A. Quemda—Chanto'M. M. Silveira. A. C. Schmid—Meyer A. G. Sehroder. J. P. C. L. da Costa·J. L6pez& M. F. Car. valho—Jonas'M. J. Arolozaga·R. Jonas, Effect of the oxygen supply on pattern of growth and corrinoidand organic acid producfion of Propionibacterirm shermanii Applied Microbiology and Biotechnology,1998(49):732~736
    [61]Scott A I,Roessner C A, Santander P J. Genetic and Mechanistic Exploration of the Two Path-ways of Vitamin B12 Biosynthesis.The Porphyrin HandbooK,2003,12:211-228
    [62]张玉明,王雷,王云山,等。一种简便、快速测定发酵液中维生素B12含量的方法[J].食品与发酵工业,2005,31(1):124-127
    [63]王鹏,王云山,张利平,等。脱氧腺苷钴胺素生物合成途径中一种中间产物的研究[J].中国生物工程杂志,2007,27(11):37-40
    [64]郝廷,李强,王鹏,等.离子交换法吸附分离发酵液中的丙酸[J]北京化工大学学报,2008,35(3):70-74
    [65]杨贵明,蒋爱华,薛秋生,等.用DNS光度法测定还原糖的条件研究[J].安徽农业科学,2006,34(14):3258-3264.
    [66]Gu Z, Glataz B A, Glatz C E. Propionic acid production by extractive fermentation. I. Solvent considerations[J]. Biotechnology and Bioengineering,1998,57(4):454-461.
    [67]Ozadali F, Glataz B A, Glatz C E. Fed-batch fermentation with and without online extraction for propionic and acetic acid production by Propionibacterium acidipropionici[J]. Applied Microbiology Biotechnology,1996,44 (6):710-716.
    [68]Himmi E H, Bories A, Boussaid A, et al. Propionic acid fermentation of glycerol and glucose by Propionibacterium acidipropionici and Propionibacterium frudenreichii ssp. Shermanii[J]. Applied Microbiology and Biotechnology,2000,53:435-440.
    [69]Gluszcz P, Jamroz T, Sencio B, et al. Equilibrium and dynamic investigations of organic acids adsorption onto ion-exchange resins[J]. Bioprocess Biosystems Engineering,2004,26(3):185-190.
    [70]刘晨明,曹宏斌,曹俊雅等.梯度洗脱高效液相色谱法快速检测厌氧菌代谢物中的有机酸[J].分析化学,2006,34(9):1231-1234.
    [71]Panasiuk R, Amarowicz R, Kostrya H, et al. Determination of a-amino nitrogen in pea protein hydrolyzates:a comparison of three analytical methods[J]. Food Chemistry,1998,62 (3):363-367.
    [72]陈志慧.酿造酱油两种不同检验标准测定氨基氮的准确性分析[J].食品科学,2005,26(3):198-200.