磁性纳米载体的制备及其固定化脂肪酶催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性高分子微球是近年发展起来的一种新型功能高分子材料,在生物医学、分子生物学、分离工程、细胞学和生物工程等领域有着广泛的应用前景。用磁性高分子作为酶的固定化载体的研究对于磁性复合载体在固定化酶的应用中提供了理论和试验基础,同时也为降低脂肪酶利用成本,解决我国生物柴油酶法生产产业化问题进而提高其可行性和国际竞争力提供了较好的参考方案。和其他磁性材料相比,Fe304具备良好的氧化稳定性和较低的毒性,并且由于有不同的化学组成结构,从而可得到不同的磁性能,常用作磁性微球中的磁核。用磁性高分子作为酶的固定化载体的优点在于它在外加磁场的作用下被磁化而定向移动,可以从反应体系中被分离出来;当撤离外加磁场后,超顺磁性纳米颗粒又可以重新悬浮到反应体系中,具有良好的分散性能与可操控性。本论文主要研究了磁性复合载体的制备条件及其固定化脂肪酶的条件,并对固定化酶的酶学性质进行了探讨,主要研究结果如下:
     磁性复合Fe3O4-SiO2载体制备。先利用改良的共沉淀法制备Fe3O4磁流体,再用溶胶-凝胶法制备磁性复合Fe304-SiO2载体。在扫描电镜观测的形态说明,该磁性复合载体呈球体状,单分散性良好,平均粒径约为300nm左右。磁性复合Fe3O4-SiO2载体经硅烷偶联剂在其表面氨基化后,在傅里叶变换红外光谱仪下检测氨基已加至载体表面。
     磁性复合Fe304-SiO2载体固定化脂肪酶条件进行优化。由单因素实验确定各单素的最佳条件:酶与载体配比、戊二醛浓度、固定化温度、固定化时间分别为16:5g/g、8%、25℃、4 h。在此基础上,选取为酶与载体配比、戊二醛浓度和固定化温度进行Box-Behnken实验,对固定化脂肪酶的条件进一步优化,借助Design-Expert 7软件对实验数据进行统计分析,拟合出描述酶活与实验条件之间关系的数学模型,确定最适固定化条件为:酶与载体配比为3.32:1g/g、戊二醛浓度为8.20%、固定化温度为23.88℃时,固定化脂肪酶的酶活达到理论最大值3440.74 U/g。在以上确定的条件下进行重复的三组固定化试验,结果所得固定脂肪酶的平均酶活为3430±1.55U/g,与模型预测值相差为0.28%,说明所建立的模型与试验结果相符,此时蛋白固载量为79.21%,酶活回收率为72.46%,与响应面优化之前相比分别提高了7.93%和10.36%。
     固定化酶酶学性质的探讨。通过比较游离酶与固定化酶的最适温度和热稳定性等性质,研究了固定化酶的重复使用率。实验结果表明,游离酶的Km为3.817mmol,Vm为0.041 nmol/min·L,固定化酶的Km为5.714mmol, Vm为0.087μmol/min·L。与游离脂肪酶相比,最适反应温度、热稳定性、最适反应pH值、pH稳定性等均无太大变化,但是热稳定性和pH稳定性均有所增加,说明固定化操作对游离脂肪酶的稳定性有一定的提高。固定化脂肪酶在重复使用8次后,酶活回收率仍为的36.4%(相对酶活,以4℃保存的固定化酶活力为100%)。
Magnetic polymer microspheres were new functional polymer materials developed in recent years, which have broad application prospect in the biomedical, molecular boilogy, separation engineering, cellular and bio-engineering and other fields. Magnetic polymer was used as enzyme immobilization carrier provides the theoretical and experimental basis in the immobilized enzyme application for reducing lipase cost, and the problems of biodiesel production were redused. Compared with other magnetic materials, Fe3O4 have good oxidation stability and low toxicity. And different magnetic properties were obtained because of its different chemical composition and structure. Magnetic microspheres were used for the magnetic core. As enzyme im-mobilization carriers, magnetic polymers can be magnetized in an external magnetic field and then directional movement, so it can be separated from the reaction system; when the external magnetic field was withdrawed, the superparamagnetic nanoparticles can be resuspended to the reaction system, with good dispersion properties and manipulation.
     In this paper, the Fe3O4 magnetic fluid was prepared by modified coprecipitation, and then composite magnetic Fe3O4-SiO2 carriers were got by the sol-gel. The magnetic composite carriers observed by SEM showed that carriers were ballshaped, singlewell dispersed, the average size of about 300nm or so. Silane coupling agent, which was detected by FT-IR spectro-meter, was used for adding amino to magnetic Fe3O4-SiO2 surface.
     Conditions of immobiling lipase by magnetic Fe3O4-SiO2 composite were studied, the optimal conditions got from single factor experiments were:the amount of enzyme was 8mL, concentration of glutaraldehyde was 8%,25℃,4h. The amount of enzyme, con-centration of glutaraldehyde and immobilized temperature were selected to do Box-Behnken experimental to further optimize the conditions, and experimental data was statistical analysis with the Design-Expert 7 software, the mathematical model was describing the relationship between activity and the expeimental conditions. The optimal conditions of immobilized showed by the model are:the amount of enzyme was 8.30mL, 8.20% glutaraldehyde concentration,23.88℃, then got the maximum activity 3440.74 U/g. Three sets of repeated immobilization test was studied under the conditions defined in the above, the results obtained the average fixed lipase activity was 3430±1.55U/g, and the difference between model prediction was 0.28%, indicating the mo-del consistent with the experimental results.
     The enzymatic properties of immobilized enzyme was explored. Optimum temperature, thermal stabilities of immobilized enzyme were compared with the free enzyme. The immobilized enzyme were reused. The results showed that the Km for the free enzyme 3.817mmol, Vm was 0.041μmol/min·L, and which of immobilized enzyme were 5.714mmol and 0.087μmol/min·L, respectively. Compared with the free lipase, the optimum temperature, thermal stability, optimum pH value, pH stability of immobilized enzyme without much change, but the thermal stability and pH stability were increased, indicating operation of the immobilized increased the stability of free lipase. Immobilized lipase were reused 8 times, the activity recovery is still 36.4%.
引文
[1]Robinson P J, Dunnill P, Lilly M D. Properties of Magnetic Supports in Relation to Immobilized Enzyme Reactors [J]. Biotechnology Bioengineering,1973,15: 603-607.
    [2]Ugelstad J, Mfutakamba H R, Mork P C, et al. Preparation and Application of Monodisperse Polymer Particles [J]. Journal of Polymer Science,1985,72: 225-240.
    [3]Safarik I, Safaikova M. Use of Magnetic Techniques for the Isolation of Cells [J]. Journal of Chromatography B,1999,772 (1):33-53.
    [4]丁明,孙虹.Fe3O4/壳聚糖核壳磁性微球的制备及特性[J].磁性材料及器件,2001,32(6):1-3.
    [5]Denkbas E B, Kilicaye B, Ikseven C, et al. Magnetic Chitosan Microspheres: Preparation and Characterization[J]. Reactive & Functional Polymers,2002,50 (3):225-232.
    [6]赵良忠,刘静霆,任光云,等.磁性壳聚糖微球固定化胃蛋白酶的研究[J].食品科学,2008,29(11):316-323.
    [7]Chiriac H, Moga A E, Iacob G, et al. Amorphous Magenetic Micropheres for Biomedical Applications [J]. Journal of Magetism and Magnetic Materials,2005, 293:28-32.
    [8]霍书豪,许敬亮,张宇,等.磁性复合微球固定化酶制备过程及其研究进展[J].现代生物医学进展,2009,9(3):548-551.
    [9]Chang L, Li L. Progress in the Preparation and Application of Core-shell Magnetic Polymer Micropheres [J]. Journal of Jinan University(Natural science),2004,25 (3):375-385.
    [10]纵伟,刘艳芳,赵光远.磁性壳聚糖微球固定化脂肪酶的研究[J].食品与机械,2008,24(1):13-15.
    [11]卢瑛,丁华平,徐宏,等.Protein A磁性纳米颗粒载体的制备及应用[J].中国生物工程杂志,2008,28(1):13-17.
    [12]任广智,李振华,何炳林.磁性高分子微球用于固定化酶的研究进展[J].离子交换与吸附,2000,16(1):83-87.
    [13]周瑜.纳米Fe3O4的制备、表面改性及其对蛋白的分离纯化研究[D].长沙:中南大学,2009.
    [14]李浩,张喜斌,金真.磁性金属纳米粒子的合成及应用研究进展[J].惠州学院学报(自然科学版),2009,29(6):19-24.
    [15]袁定重,张秋禹.磁性高分子微球研究进展及其在生化分离中的应用[J].材料科学与工程学报,2006,24(2):306-310
    [16]文耀锋.磁性高分子材料的研究进展[J].现代塑料加工应用,2005,17(5):53-57.
    [17]陈文颖,赵敏,韩旭,等.磁性微粒对青霉素G酰化酶的固定化研究[J].化学工程.2009,8(37):39-42.
    [18]袁定重,张秋禹.固定化酶载体材料的最新研究进展[J].材料导报,2006,20(1):69-72.
    [19]Noguchi H, Yanase N, Uchida Y, et al. Preparation and Characterization by Thermal Analysis of Magnetic Latex Particles [J]. Journal of Applied Polymer Science,1993,48:1539-1547
    [20]邱广明,章贤明,孙宗华.磁性聚苯乙烯微球的合成和特性[J].高分子材料科学与工程,1993,3(2):38-43.
    [21]谢钢,张和鹏,张秋禹,等.细乳液聚合法制备磁性复合微球及其表征[J].高分子学报,2003,5:626-630.
    [22]程彬,朱玉瑞,陈祖耀,等.超细金属铁颗粒的高分子修饰及其悬浮液的磁流变性能[J].化学物理学报,2000,13(2):215-219
    [23]李伟,孟洪,毋伟,等.离子液体中合成Fe3O4/PANI复合纳米颗粒[J].高校化学工程学报,2009,23(5):835-839.
    [24]方学玲,姚兰芳,关飞飞,等.超顺磁纳米γ-Fe2O3/SiO2复合材料的制备和磁性能研究[J].低温物理学报,2010,32(1):16-21.
    [25]姜德生,龙胜亚,肖海燕,等.磁性壳聚糖微球的制备及其用作漆酶固定化载体[J].应用化学,2005,10(22):1122-1126.
    [26]刘宇,郭晨,王锋,等.磁性Si02纳米粒子的制备及其用于漆酶固定化[J].过程工程学报,2008,8(3):583-588.
    [27]魏衍超,杨连生.磁性生物高分子微球的制备方法和研究进展[J].功能材料,2000,31(5):464-465.
    [28]张和鹏,张秋禹,谢钢,等.磁性复合微球制备方法[J].化学通报,2005(68): 1-7.
    [29]杜仕国.硅烷偶联剂的性能与应用[J].河北化工,1994, (4):35-39.
    [30]施卫贤,杨俊,王亭杰,等.磁性Fe304微粒表面有机改性[J].物理化学学报,2001,17(6):507-510.
    [31]刘海弟,赵璇,陈运法.纳米磁性Fe304-SiO2复合材料的制备和表征[J].化学研究,2007,18(2):21-24.
    [32]Wang L Y, Wang H X, Wang A J, et al. Surface Modification of a Magnetic SiO2 Support and Immobilization of a Nano-TiO2 Photocatalyst on It [J]. Chinese Journal of Catalysis,2009,30 (9):939-944.
    [33]秦昆华,马文石,硅烷改性纳米Fe304磁性粒子的制备与表征[J].有机硅材料,2008,22(2):71-75.
    [34]Liu X Q, Ma Z Y, Xing J M, et al. Preparation and Characterization of Amino-Silane Modified Superparamagnetic Silica Nanospheres [J]. Journal of Magnetism and Magnetic Materials,2004,270 (1):1-6.
    [35]李华.超分散剂[J].塑料,1999,28(2):25-28.
    [36]汪剑炜,王正东,胡黎明.超分散剂的应用[J].涂料工业,1995,(1):29-33.
    [37]Bourlinos A B, Simopoulos A, Petridis D. Synthesis of Capped Ultrafine γ-Fe2O3 Particles from Iron (Ⅲ) Hydroxide Caprylate, a Novel Starting Material for Readily Attainable Organosols [J]. Chemistry of Materials,2002,14 (2):899.
    [38]Ruiz C, Falcocchio S, Pastor F I J, et al. Helicobacter pyloti EstV:Identification, Cloning, and Characterization of the First Lipase Isolated from an Epsilonp Roteobacterium[J]. Applied and Environmental Microbiology,2007,73 (8): 2423-2431.
    [39]王宝娟,苏蕊蕊,汪劫等.阿维链霉菌Streptomyces avermitilis碱性脂肪酶LpsA2的表达和酶学性质分析[J].微生物学报,2010,50(2):236-243.
    [40]陈秀琳.脂肪酶固定化的研究概况[J].海峡药学,2007,19(12):114-116.
    [41]Jascanu V, Stefoane D. Comparative Effects of Influence of Lipase, Lipoxygenase and Provaflor on the Theological Charaterstics of Flour [J]. Acta Universitatis Cibiniensis Series E:Food Technology,2005,6 (2):11-20.
    [42]刘新喜.脂肪酶固定化方法的研究进展[J].河北师范大学学报(自然科学版),2001,25(3):370-373.
    [43]Hasan F, Shah A A, Hameed A. Industrial Applications of Microbial Lipase [J]. Enzyme and Microbial Technology,2006,9:235-251.
    [44]张海燕,丁玉,白云峰,等.脂肪酶在减肥中的应用研究进展[J].中国药房,2007,18(11):868-869.
    [45]马光辉,王平,苏志国.纳米科学与酶[J].中国基础科学·工业生物技术专刊,2009,5:49-54,
    [46]王君,曹稳,房星星.脂肪酶固定化载体材料研究进展[J].粮食与油脂,2007,7:14-16.
    [47]Illanes A. Stability of Biocatalysts[J].Electronic Journal of Biotechnology,1999,2 (1):1-9
    [48]Matsumoto M, Ohashi K. Effect of Immobilization on Thermostability of Lipase from Candida rugosa[J]. Biochemical Engineering Journal,2003,14:75-77.
    [49]Tischer W, Wedekind F. Immobilized Enzyme:Methods and Applications[M]. Topics in Current Chem,1999,200:97.
    [50]Mojovic L,Popadic R. Immobilization of Lipase from Candida rugosa on a Polymer Support [J]. Applied Microbiology and Biotechnology,1998,50 (6): 676-681.
    [51]饶美香,张熊禄,余开辉,等.DM-130大孔树脂固定脂肪酶的研究[J].应用科技,2005,32(11):63-64.
    [52]高贵,韩四平,王智,等.硅藻土固定化脂肪酶[J].吉林大学学报(理学版),2002,7(3):324-326.
    [53]王冰,王云普,曾家豫,等.沙蒿胶磁性微球固定化脂肪酶及部分理化性质的研究[J].食品工业科技,2008,1(29):143-145.
    [54]高阳,谭天伟,聂开立,等.大孔树脂固定化脂肪酶及在微水相中催化合成生物柴油的研究[J].生物工程学报,2006,1(22):114-118.
    [55]刘新喜,彭立凤.蛋壳作载体固定化脂肪酶[J].固原师专学报(自然科学版),2000,11(21):21-24.
    [56]Nawani N, Singh R, Kaur J. Immobilization and Stability Studies of a Lipase from thermophilic Bacillus sp:The Effect of Process Parameters on Immobilization of Enzyme [J]. Electronic Journal of Biotechnology,2006,9 (5):599-565.
    [57]Carneiro-da-Cunha M G, Rocha J M S, Garcia F A P, et al. Lipase Immobilisation on to Polymeric Membranes [J]. Biotechnology Techniques,1999,13:403-409.
    [58]Choi S H, Lee K P, Kang H D, et al. Radiolytic Immobilization of Lipase on Poly(Glycidyl Methacrylate)-grafted Polyethylene Microbead [J]. Macromolecul-ar Research,2004,12(6):1-7.
    [59]绍平,孙培龙,孟祥河,等.无溶剂体系壳聚糖微球固定化脂肪酶制备油酸乙酯响应面优化分析[J].中国粮油学报,2008,23(3):116-119.
    [60]吴茜茜,吴克,刘斌,等.壳聚糖固定化德氏根霉脂肪酶的研究[J].工业微生物,2003,33(4):9-13.
    [61]刘秀伟,司芳,郭林,等.酶固定化研究进展[J].化工技术经济,2003,21(4):12-17.
    [62]鲁玉侠,蔡妙颜,郭祀远,等.海藻酸钠包埋法制备固定化脂肪酶研究[J].现代食品科技,2006,22(4):30-32.
    [63]杨本宏,蔡敬民,吴克,等.海藻酸钠固定化根霉脂肪酶的制备及其性质[J].催化学报,2005,26(11):977-981.
    [64]王爱玲,杨江科,黄瑛,等.海藻酸钠明胶协同固定化黑曲霉脂肪酶[J].应用化工,2007,36(4):317-321.
    [65]曾淑华,杨江科,闫云君.固定化脂肪酶性质及其应用研究[J].生物加工过程,2007,2(5):45-49.
    [66]刘勇,吾满江·艾力,夏木西卡玛尔,等.黑曲霉脂肪酶的耦合固定化及特性[J].分子催化,2006,6(20):260-266.
    [67]Kato K, Gong Y, Saito T, et al. Preparation and Catalytic Performance of Lipase Encapsulated in Sol-Gel Materials[J]. Bioscience Biotechnology and Biochemistry,2002,66 (1):221-223.
    [68]Kuncova G, Sivel M. Lipase Immobilized in Organic-Inorganic Matrices [J]. Journal of Sol-Gel Science and Technology,1997,8:667-671.
    [69]Awang R, Ghazuli M R, Basri M, et al. Immobilization of Lipase from Candida Rugosa on Palm-Based Polyurethane Foam as a Support Material [J]. American Journal of Biochemistry and Biotechnology,2007,3 (3):163-166.
    [70]李丽丽,吴晖,吴苏喜,等.米糠固定化脂肪酶的制备及生化性质的研究[J].现代食品科技,2005,25(7):760-764.
    [71]Deng Y, Deng C H, Qi D W, et al. Synthesis of Core/Shell Colloidal Magnetic Zeolite Microspheres for the Immobilization of Trypsin[J]. Advanced Materials, 2009,21:1337-1382.
    [72]钱斯日古楞,王红英.磁性淀粉微球固定化脂肪酶的研究[J].食品科学,2004, 25(4):47-50.
    [73]黄朋,向育君,周建红,等.磁性高分子微球合成及其固定化脂肪酶的研究[J].湖南科技大学学报(自然科学版),2008,12(23):94-98.
    [74]王燕佳,蒋惠亮,方银军,等.磁性聚丙烯酰胺-丙烯酸共聚纳米粒子固定脂肪酶的研究[J].应用化工,2008,5(37):491-494.
    [75]王燕佳,蒋惠亮,殷伟庆.含锰磁性纳米粒子固定脂肪酶的研究[J].淮海工学院学报(自然科学版),2008,6(17):51-54.
    [76]马震,银建中,商紫阳,等.超临界酯交换法制备生物柴油工艺基础及其过程强化技术研究[J].化学与生物工程,2009,26(8):1-7.
    [77]Shay E G. Diesel Fuel from Vegetable Oils:Status and Opportunities[J]. Biomass and Bioenergy,1993,4:227-242.
    [78]张根旺.生物柴油的生产及发展前景[J].粮油食品科技,2009,17(4):17-19.
    [79]Marchetti J M, Miguel V U, Errazu A F. Possible Methods for Biodiesel Production [J]. Renewable and Sustainable Energy Reviews,2007 (11):1300-1311.
    [80]Fukuda H, Kondo A, Noda H. Biodiesel Fuel Production by Tranesterification of Oils [J]. Journal of Bioscience and Bioengineering,2001,92 (5):405-416.
    [81]Selmi B, Thomas D. Immobilized Lipase Catalyzed Ethanolysis of Sunflower oil in a Solvent-free Medium [J]. Journal of the American Oil Chemists Society, 1998,75 (6):691-695
    [82]Mukesh D, Barji A A, Bevinakatti H S. A note on Transesterifications of Vegetables Oils Catalysed by Lipase in a Packed Tublar Reactor[J]. Indian Chemical Engineer (Sec A),1994,36 (4):193-196
    [83]Krisnangkura K, Simamaharnnop R. Continuous Transmethylation of Palm Oil in an Organic Solvent [J]. Journal of the American Oil Chemists' Society,1992,69 (2):166-169
    [84]谭天伟,陈必强.Candida sp.99-125脂肪酶及其在化学品合成中的应用[J],化工学报,2010,61(7):1685-1691.
    [85]余旭亚,黄遵锡,林海.生物酶法制备生物柴油的研究进展[J].中国油脂,2009,34(6):48-53.
    [86]邓利,谭天伟,王芳.脂肪酶催化合成生物柴油的研究[J].生物工程学报,2003,19(1):97-101.
    [87]韩春阳,岳喜庆.固定化脂肪酶催化餐饮废油合成生物柴油研究[J].沈阳农业大学学报,2009,40(4):494-496.
    [88]高静,王芳,谭天伟,等.固定化脂肪酶催化废油合成生物柴油[J].化工学报,2005,56(9):1727-1730.
    [89]高阳,谭天伟,聂开立,等.大孔树脂固定化脂肪酶及在微水相中催化合成生物柴油的研究[J].生物工程学报,2006,22(1):114-118.
    [90]邓芹英,刘岚,邓惠敏.波谱分析教程(第二版)[M].北京:科学出版社,2007,66.
    [91]陈集,饶小桐,蒋晓慧.波谱分析(第一版)[M].北京:电子科技大学出版社,2003,78.
    [92]Kalil S J. Maugeri F, Rodrigues M I. Response Surface Analysis and Simulation as a tool for Bioprocess Design and Optimization [J]. Process Biochemistry,2000,35 (6):539-550.
    [93]高贵,韩四平,王智等.脂肪酶活力检测方法的比较[J].药物生物技术,2002,9(5):281-284.
    [94]舒正玉,杨江科,闫云君.黑曲霉F044脂肪酶的分离纯化及酶学性质研究[J],生物工程学报,2007,23(1):96-100.
    [95]王敏.残差分析在统计中的应用[J].江苏统计研究,2000,8:24.