畜禽废水生物除碳脱氮耦合新工艺及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着经济的发展和人民生活水平的提高,畜禽产品的需求量逐渐增加,畜禽养殖业得到迅速发展,畜禽养殖业产生的废液越来越多。目前畜禽养殖污染已成为三峡水库的主要污染源之一,严重威胁三峡库区水环境安全。因此,开发高效经济的畜禽养殖废水处理技术具有迫切性,同时对保护和改善次级支流及库区水环境具有重要的意义。
     畜禽粪水的除碳脱氮是本研究的核心。为了实现畜禽粪水有机物和氮的有效去除,本文提出利用两种不同耦合工艺(产甲烷—短程硝化反硝化—厌氧氨氧化、同时产甲烷反硝化—短程硝化反硝化)处理畜禽粪水。试验期间首先对三种反应器(厌氧氨氧化反应器、同时产甲烷反硝化反应器、短程硝化反硝化反应器)的启动特性及脱氮性能进行研究;然后分别进行组合,研究两组耦合工艺对畜禽粪水的去除效果,研究结果表明同时产甲烷反硝化—短程硝化反硝化耦合工艺对畜禽粪水有机质和氮均具有较好的去除效果且运行稳定。后期利用同时产甲烷反硝化—短程硝化反硝化耦合工艺进行工程规模的示范研究。
     主要研究内容及结果如下:
     ①厌氧氨氧化污泥驯化及反应器的启动研究
     为了实现畜禽粪水厌氧氨氧化途径脱氮,首先应用模拟废水对厌氧氨氧化反应器进行启动。通过两组不同接种污泥浓度大小厌氧氨氧化反应器启动试验得出:污泥浓度为53.23g/L反应器进水NH_4~+-N、NO_2~--N达340.74mg/L、340.97mg/L,其NH_4~+-N、NO_2~--N去除率分别达99%和98%,TN去除率在75%以上;而污泥浓度为31.94g/L反应器进水NH_4~+-N、NO_2~--N提高至216.98mg/L和218.94mg/L时,其氨氮去除率在90%,亚硝氮去除率只有50%,且有大量的硝态氮产生,TN去除率只有30~40%,因此高接种污泥浓度更有利于厌氧氨氧化反应器的高效启动。通过扫描电镜观察两个反应器内存在球状、杆状的厌氧氨氧化菌,成功实现厌氧氨氧化反应器的启动。
     ②同时产甲烷反硝化影响机理及反应器启动研究
     亚硝氮是影响同时产甲烷反硝化有机物去除效果的主要原因,为此,研究了亚硝氮对产甲烷反硝化反应的生化抑制机理。应用批式试验研究了有机物负荷为3.0kgCOD·m-3·d~(-1)、COD/NO_2~--N值分别为10:1、20:1、30:1、40:1时同时产甲烷反硝化对畜禽粪水的去除效果,通过COD、辅酶F_(420)、β-葡萄糖苷酶、MLVSS/MLSS等变化规律得出COD/NO_2~--N值为30:1、40:1时,COD去除率、辅酶F_(420)、β-葡萄糖苷酶和MLVSS/MLSS含量与空白无亚硝氮的变化规律一致,亚硝氮几乎未对产甲烷菌活性产生抑制作用;而COD/NO_2~--N值为10:1、20:1时,其COD去除率、辅酶F_(420)、β-葡萄糖苷酶和MLVSS/MLSS含量降低,产甲烷菌活性受到明显抑制。在pH为6.8~7.6、温度35±1℃、COD/NO_2~--N=30:1条件下进行混合式反应器处理畜禽粪水的研究,经过45d运行,反应器稳定有机负荷和亚硝氮负荷分别达3.0kgCOD·m-3·d~(-1)和0.1kg NO_2~--N·m-3·d~(-1),其COD和NO_2~--N去除率分别为70%和99%,实现同时产甲烷反硝化反应器的启动。
     ③短程硝化反硝化反应的稳定实现
     实现畜禽粪水亚硝化途径脱氮是本课题研究的重要内容,基于此,主要进行了两点研究:1)应用畜禽粪水于短程硝化反硝化反应器稳定实现亚硝氮的积累,其进水氨氮浓度达813.84mg/L,氨氮去除率达94%,亚硝酸盐积累率为90%。2)应用短程硝化反硝化反应器进行pH、FA和供氧方式等影响因素的研究,试验得出:畜禽粪水处理过程中,当pH为8、FA为18mg/L时更利于短程硝化反硝化反应的稳定实现;恒定曝气量和恒定DO条件下氨氮去除率相差不大。
     ④产甲烷—短程硝化反硝化—厌氧氨氧化耦合工艺处理畜禽粪水
     1)应用畜禽粪水进行厌氧产甲烷反应器的启动,经过30d的运行反应器负荷达3.5COD kg·m-3·d~(-1),有机物去除率为80%。2)应用产甲烷—短程硝化反硝化—厌氧氨氧化耦合工艺处理畜禽粪水,耦合工艺对有机物的去除率大于95%,有机物去除效果较好。3)短程硝化反硝化反应器出水NO_2~--N/NH_4~+-N值在0.6~2.5之间,耦合工艺对TN去除率在55~80%之间。
     ⑤同时产甲烷反硝化—短程硝化反硝化耦合工艺处理畜禽粪水
     应用同时产甲烷反硝化—短程硝化反硝化耦合工艺处理畜禽粪水,并分别研究了模拟循环、1:1和2:1回流比下有机物和氮的去除效果。模拟循环阶段系统对有机物和氨氮的去除率分别为95%和94%;1:1回流比下系统对有机物去除率为96%,对氨氮去除率为95%,系统对总氮平均去除率为86%;2:1回流比下系统对有机物去除率在94%以上,系统对总氮平均去除率为89%。综合粪水有机物和氮的去除效果及节能等因素考虑适合选择系统回流比为1:1,此时同时产甲烷反硝化反应器对总有机物和平均总氮去除率分别为70~80%和13%;短程硝化反硝化反应器对总有机物和平均总氮的去除率分别为16~26%和73%。
     ⑥同时产甲烷反硝化—短程硝化反硝化处理畜禽加工废水工程示范
     通过驯化试验完成了产甲烷反硝化—短程硝化反硝化示范工程各反应器的启动。厌氧产甲烷反应器有机物去除率达70%以上;短程硝化反硝化反应器氨氮去除率达80%以上。根据前期研究成果,稳定运行期选择系统回流比为1:1,此时同时产甲烷反硝化反应器对有机物去除率可达80%以上,系统对有机物去除率在95%以上,系统对氨氮的去除率在90%以上,系统对总氮去除率为71%,耦合工艺示范工程对畜禽加工废水有机物和氮的去除效果较好。
In recent years, with the development of economy and the improvement of people'sliving standard, the demand for livestock and poultry products gradually increased,more and more manure wastewater was produced, manure wastewater pollution hasbecome one of the major pollution sources in the Three Gorges Reservoir and seriouslyharmed the water environment safety. Therefore, the technology of economic efficiencymanure wastewater treatment is urgent. At the same time, the technology would be goodfor protecting and improving the sub-tributaries and reservoir water environment.
     The removal of carbon and nitrogen are the keys in this research. Methanogenesis—Shortcut nitrification denitrification—Anaerobic ammonia oxidation (Anammox)and Simultaneous denitrification and methanogenesis (SDM)—Shortcut nitrificationdenitrification were introduced to treat manure wastewater for the removal of organicand nitrogen. Firstly, an investigation was to evaluate the performance of start-upreactor and the removal efficiency of organic and nitrogen by Anammox, SDM,shortcut nitrification denitrification respectively; Then both Methanogenesis—Shortcut nitrification-denitrification—Anammox and SDM—Shortcut nitrification-denitrification coupling technologies were used to treat high organic and nitrogenmanure wastewater. Research showed that the latter technology had good removalefficiency on organic and nitrogen, and it was applied to the demonstration project andgood results were obtained.
     Draw the following conclusions:
     ①The start-up of Anammox reactor and the acclimation of activated sludge
     In order to realize nitrogen removal by Anammox pathway from the manurewasterwater, firstly, the start-up of Anammox reactor was achieved by application ofsimulated wastewater. Comparative anammox reactor start-up in different sludgeinoculation concentration, experimental results showed that the influent concentrationof NH_4~+-N and NO_2~--N were340.74mg/L and340.97mg/L respectively in the sludgeinoculation concentration at53.23g/L, the average NH_4~+-N, NO_2~--N and TN removalefficiency reached99%,98%and75%respectively. However, the influentconcentration of NH_4~+-N and NO_2~--N were216.98mg/L mg/L and218.94mg/L mg/Lrespectively in the sludge inoculation concentration at31.94g/L, The average NH_4~+-N,NO_2~--N and TN removal efficiency reached90%,50%and30~40%respectively and produced a lot of nitrate. Therefore, it is more easily to realize the start-up ofAnammoxreactor in high sludge inoculation concentration. By scanning electron microscopic andobserved that the two reactors contained spherical, rod-shaped, Anammox bacteria,indicated the successful realized start-up of Anammox reactor.
     ②The start-up of SDM reactor and the influence mechanism on the removalefficiency of carbon and nitrogen
     NO_2~-N is the key influence in the removal of carbon and nitrogen throughsimultaneous methanogenesis and denitrification, then, the mechanism of NO_2~-Nrestrain the simultaneous methanogenesis and denitrification reaction was studied. Theorganic and nitrogen removal effect of wastewater treatment was studied in organicloaded3.0kgCOD·m-3·d~(-1), and COD/NO_2~--N ratio of10:1,20:1,30:1,40:1, respectively.Studied the change pattern of COD, Coenzyme F_(420), β-glucosidase, MLVSS/MLSS etcin the reactor by continuously monitoring, the conclusions can be obtained as followed:when COD/NO_2~-N as30:1and40:1, there had no obvious difference between thecontrast experiment and blank experiment, the activity of methanobacter would not berestrained; when COD/NO_2~-N as10:1and20:1, there had significant difference, theactivity of methanobacter would be restrained. SDM was studied under the condition ofpH=6.8~7.6, T=35±1oC, and the COD/NO_2~--N=30:1of manure wastewater incontinuous stirred tank reactor. The loading rate of COD is3.0kg·m-3·d~(-1), the removalefficiencies of COD and NO_2~--N were over70%and99%respectively after45d.
     ③The removal efficiency of nitrogen by shortcut nitrification-denitrificationpathway from the manure wasterwater
     Through the nitrosation way to removal nitrogen is the important content in thisissue, so, two key points were studied.1) The influence parameters included pH, FAand aeration mode on the steady of shortcut nitrification-denitrification process wasstudied.2) It is found the proper pH and FA for shortcut nitrification–denitrificationwas8.0and18during the treatment process of anamial manure wastewaterrespectively, also it is found the NH_4~+-N removal efficiency is with little difficiencebetween constant aeration rate and constant DO.
     ④Organic and nitrogen removal by Methanogenesis—Shortcut nitrificationdenitrification—Anammox coupling technology from high organic and nitrogenmanure wastewater
     1) It is studied the start-up of methanogenesis reactor with manure wastewater. Theorganic loading rate and its removal efficiency reached3.5kg COD·m-3·d~(-1)and80% respectively.2) The Methanogenesis—Shortcut nitrification denitrification—Anammox coupling technology was used to treat anamial manure wastewater. Theorganic removal efficiency of this technology was more than92%and it had goodremoval efficiency on organic.3) The NO_2~--N/NH_4~+-N ratio of Shortcut nitrification-denitrification effluent is between0.6and2.5, and the TN removal efficiency wasunstable, and it was55~80%.
     ⑤Organic and nitrogen removal by SDM—shortcut nitrification–denitrification coupling technology from manure wastewater
     The coupling technology of SDM—shortcut nitrification-denitrification wasused to remove organic and nitrogen in manure wastewater. The organic and nitrogenremoval efficiency was evaluated under simulation circulation,1:1and2:1reflux ratio.The average organics, NH_4~+-N removal efficiency reached95%and94%respectively insimulation circulation; the average organics, NH_4~+-N, TN removal efficiency reached96%,95%, and86%respectively in1:1reflux ratio; the average organics, TN removalefficiency reached94%and89%respectively in1:1reflux ratio. To sum up,1:1refluxratio was the best choice, organics and TN removal efficiency reached70-80%and13%in SDM reactor; organics and TN removal efficiency reached16-26%and73%in theshortcut nitrification-denitrification
     ⑥Demonstration project of SDM—shortcut nitrification-denitrification to treatanamial processing wastewater
     The start-up of demonstration project of SDM reactor was done throughdomestication experiment, organic removal efficiency was over70%through anaerobicmethanogenesis reactor, NH_4~+-N removal efficiency was over80%through shortcutnitrification-denitrification reactor. According to the research conclusions obtainedformerly, the reflux ration was set as1:1, the organic removal efficiency was more than80%in the methanogenesis and denitrification reactor; the organic removal efficiencywas more than95%and the ammonia nitrogen clearance was more than90%in thedemonstration project system which indicated better removal efficiency toslaughterhouse wastewater of the combined process.
引文
[1]黄鸿翔,李书田,李向林,等.我国有机肥的现状与发展前景分析[J].中国土壤与肥料,2006(1):3-8.
    [2]朱凤连,马友华,周静.我国畜禽粪便污染和利用现状分析[J].安徽农学通报2008,14(13):48-50.
    [3]刘作华,张世华,童一兵.重庆市养殖业的污染与对策建议[J].农村养殖技术:新兽医,2006(11):8-9.
    [4]苏杨.我国集约化畜禽养殖场污染问题研究[[J].2006,14(2):15-18.
    [5]李远.我国规模化畜禽养
    [6]殖业存在的环境问题与防治对策[J].上海环境科学,2002,21(10):597-599.
    [7]卞有生.生态农业中废弃物的处理与再生利用[M].北京:化学工业出版社,2000:100-110.
    [8]吴淑杭,姜震方.禽畜粪便污染现状与发展趋势[J].上海科技,2002(1):9-10.
    [9]路冶.规模化畜禽养殖业粪污处理技术措施[J].畜牧生产,2004(4):15-16.
    [10]丁疆华.广州畜禽粪便养殖污染与防治对策[J].环境科学研究,2000,13(3):57-59.
    [11]王晓明,高其双.现代畜禽养殖业的公害及对策[J].饲料工业,2000,21(4):40-41.
    [12] George J, Schroepfer G L, Fullen A S. The anaerobic contact process as applied to packinghouse wastes, Sewage and Industrial Wastes,1955,27(4):460-486.
    [13] Young J, McCarty PL, Treatment of domestic strength wastewater with anaerobic hybridreactors, Water Pollute Control Fed.,1969,41,160-173.
    [14] Lettinga G. The application of anaerobic treatment to industrial pollution treatment inprocess[C]. First International Symptom Anaerobic Digestion,1979,167-186.
    [15] Pohland F G, Ghosh S. Development in anaerobic stabilization of organic wastes-thetwo-phase concept [J]. Environmental Letters1971,1(4):255-266.
    [16]王健.废水庆氧反应器工艺的未来发展方向[J].污染防治技术,2002,15,13-15.
    [17]李刚,欧阳峰,杨立中,两相厌氧消化工艺的研究与进展[J].中国沼气,2001,19,25-28.
    [18]刘海庆.两相厌氧发酵中不同酸化温度处理牛粪的试验研究[J].赤峰学院学报,2008,24(6):87-89.
    [19]邓良伟,陈铬铭. IC工艺处理猪场废水试验研究[J].中国沼气.2001,19(2):12-15.
    [20]吴衍莉.常温ASBR-SBR工艺处理养牛场粪便废水试验研究[D].黑龙江:东北农业大学,2007.
    [21]罗勇. ASBR-SBBR组合工艺处理高氮高浓度有机粪便污水效能研究[D].重庆:重庆大学,2005.
    [22]刘德江.家畜粪便厌氧消化特性与应用研究[D].陕西:西北农业科技大学,2004.
    [23]赵岩. SBR技术处理高浓度养猪污水[J].辽宁城乡环境科技,2002,22(1):28-29.
    [24]王磊,付永胜,宋炜. SBR处理养猪场废水研究[J].西华大学学报.自然科学版,2005,24(6):43-45.
    [25]邓良伟.水解-SBR工艺处理规模化猪场粪污研究[J].中国给水排水,2001,17(3):8-11.
    [26]杨朝晖,高锋,曾光明.厌氧水解-SBR工艺处理高浓度有机废水运行工序的优化[J].环境科学,2004,25(5):84-88.
    [27]杨朝晖,高锋,曾光明.短程硝化反硝化去除高氨氮猪场废水中的氮[J].中国环境科学,2005,25(S1):43-46.
    [28] Maekawa Takaaki, Chung Min-Liao, Xing Dong-Feng. Nitrogenand phosphorus removal forswine wastewater using intermittent aeration batch reactor followed by ammoniumcrystallization process [J]. Water Research,1995,29(12):2643-2650.
    [29]高越晗.西子生态农场的综合开发利用研究[J].环境污染与防治,1998,20(4):26-29.
    [30]邓喜红.规模化养猪场粪污治理概述[J].农业环境与发展,1999(2):42-46.
    [31]李秀金. A SBR-SBR组合反应器用于高浓度有机污水处理[J].中国农业大学学报,2002,7(2):110-116.
    [32]邓良伟.厌氧消化出水好氧后处理新工艺: CN,03117922[P].2004-11-24.
    [33]张学洪,王敦球,喻泽斌.两相厌氧/好氧工艺处理屠宰废水的工程应用[J].重庆大学学报,2003,26(8):123-126.
    [34]周富强,谭建纯.厌氧消化时间对养猪场废水处理效果的影响[J].农业环境科学学报2006,25:179-181.
    [35]康爱彬,杨雅雯,王守伟.三级串联人工快渗系统处理养殖废水[J].环境工程学报,2009,3(3):475-478.
    [36]成文.养猪场废水处理工艺研究[J].环境污染与防治,2000,22(1):24-27.
    [37]于金莲,阎宁.畜禽养殖废水处理方法探讨[J].中国给排水,2000,26(9):44-47.
    [38]范建伟,张杰.活性污泥膜分离技术在畜禽废水处理中的应用[J].工业用水与废水,2002,33(3):39-40.
    [39] Yang P Y, Can C, An on-farm swine waste management system in Hawaii [J]. BioresourceTechnology,1998,65:21-27.
    [40] Graaf V A A, De Bruijn P, Robertson L A, et al. Metabolic pathway of anaerobic ammoniumoxidation on the basis of N-15studies in a fluidized bed reactor[J]. Microbiology,1997,143(7):2415-2421.
    [41] Broda E. Two kinds of lithotrophs missing in nature [J]. Zeitschrift für allgemeineMikrobiologie,1977,17(6):491-493.
    [42] Mulder A, Graaf V D, Kuenen J G. Anaerobic ammonium oxidation discovered in adenitrifying fluidized bed reactor. FEMS Microbiology Ecology[J].1995,16(3):177-184.
    [43] Strous M, Van G E, Zheng P, et al. Ammonium Removal from Concentrated Waste Streamswith the Anaerobic Ammonium Oxidation (Anammox) Process in Different Configurations [J].Water Research,1997,31(8):1955-1962.
    [44] Jetten M S M, Horn S J, van Loosdrecht M C M. Towards a more sustainable municipalwastewater treatment system [J]. Water Science Technology1997,35(9):171-80.
    [45]郑平,胡宝兰,徐向阳.厌氧氨氧化菌好氧代谢特性的研究[J].浙江大学学报,2000,26(5):521-526.
    [46]郑平,冯孝善, Jetten M S M.厌氧氨氧化菌基质转化特性的研究[J].浙江大学学报,1997,18(4):334-338.
    [47]郑平,徐向阳,冯孝善.固定化硝化细菌耐低温机理的研究[J].生物工程学报,1997,23(4):409-413.
    [48]郑平,冯孝善, Jetten M S M. ANAMMOX流化床反应器性能的研究[J].环境科学学报,1998,18(4):367-372.
    [49]胡宝兰,郑平,管丽莉. Anammox反应器中氨氧化菌的分离鉴定及特性研究[J].浙江大学学报,2001,27(3):314-316.
    [50]郑平,胡宝兰.厌氧氨氧化菌混培物生长及代谢动力学研究[J].生物工程学报,2001,17(2):193-198.
    [51] Jetten M S M. The anaerobic oxidation of ammonium[J]. FEMS Microbiology Reviews, l999,22(6):421-437.
    [52] Siegrist H, Reithaar S, Koch G, et a1. Nitrifiction loss in nitrifying rotating contactor treatingammonium-rich wastewater without organic carbon [J]. Water Science and Technology,1998,38(8-9):241-248.
    [53] Sliekersa A O, Derwort N, Campos G J L. Completely autotrophic nitrogen removal overnitrite in one single reactor [J]. Water Research,2002,36(10):2475-2482.
    [54] Schmidt I, Sliekers O, Schmid M, et al. Aerobic and anaerobic ammonia oxidizing bacteriacompetitors or natural partners[J]. FEMS Microbiology Ecology,2002,39(3):175-181.
    [55]胡纪萃,废水厌氧生物处理理论与技术[M],北京:中国建筑工业出版社,2003
    [56] Kuai L P, Verstrate W. Ammonium removal by the oxygen-limited autotrophicnitrification-denitrification system[J]. Applied and Environmental Microbiology,1998,64(11):4500-4506.
    [57] Siegrist H, Reithaar S, Koch G, et al. Nitrogen removal loss in a nitrifying rotating contactortreating ammonium-rich wastewater without organic carbon [J]. Water Science andTechnology,1998,38(8-9):241-248.
    [58] Third K A, Sliekers A O. The CANON System (Completely Autotrophic Nitrogen-removalOver Nitrite) under Ammonium Limitation: Interaction and Competition between ThreeGroups of Bacteria [J]. FEMS Microbiology Lettters,2001,24(4):588-596.
    [59] Hao X D, Heijnen J J, Loosdrecht M C N. Model-based evaluation of temperature and inflowvariations on a partial nitrification-Anammox biofilm process. Water Research,2002,36(19):4839-4849.
    [60] Sliekers A O, Third K A, Abma W, et al. CANON and Anammox in a gas-lift reactor [J].FEMS Microbiology Letters,2005,218(2):339-344.
    [61]杨国红. SBBR单级自养脱氮工艺性能与氮转化途径研究[D].重庆:重庆大学,2009.
    [62]秦宇. SBBR单级自养脱氮工艺及其微生态特性研究[D].重庆:重庆大学,2009.
    [63]陈旭良,郑平,金仁村.味精废水厌氧氨氧化生物脱氮研究[J].环境科学学报,2007,27(5):747-752.
    [64]陈旭良,郑平.短程硝化一厌氧氨氧化工艺处理味精废水的研究[D].杭州:浙江大学,2006.
    [65]胡宝兰.新兴生物脱氮技术工艺的研究[J].应用与环境生物学报,1999,5(4):68-73.
    [66]张鸿郭,周少奇.垃圾渗滤液启动ANAMMOX反应器研究[J].工业安全与环保,2006,32(5):7-10.
    [67]孟凡能,张树军,彭永臻.混合污泥接种的厌氧氨氧化处理污泥脱水液的启动[J].中国环境科学,2009,29(2):219-224.
    [68]王欢,裴伟征,李旭东等.低碳氮比猪场废水短程硝化反硝化—厌氧氨氧化脱氮[J].环境科学,2009,30(3):816-821.
    [69] Yamamoto T, Takaki K, Koyama T, et al. Long-term stability ofpartial nitritation of swinewastewater digester liquor and its subsequenttreatment by Anammox [J]. BioresourceTechnology,2008,99(14):6419-6425.
    [70] Dapena-mora A, Campos J L, Mosquera-corral A, et a1. Anammoxprocess for nitrogenremoval from anaerobically digested fish canningeffluents [J]. Water Science Technology,2006,53(12):265-274.
    [71] Fux C, Boehler M, Huber P, Brunner I. Biological treatment of ammonium-rich wastewaterby partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilotplant [J]. Journal of Biotechnology,2002,99(3):295-306.
    [72] Wett B. Solved upscaling problems for implementing deammonification of rejection water[J].Water Science Technology,2006,53(12):121-128.
    [73]39Uludag-Demirer S, Demirer G N, Frear C, et al. Anaerobic digestion of dairy manure withenhanced ammonia removal[J]. Journal of Environmental Management,2008,86(1):193-200.
    [74] Noike T, Goo I S, Matsumoto H. Development of a new type of anaerobic digestion processequipped with the function of nitrogen removal [J]. Water Science and Technology,2004,49(5-6):173-179.
    [75] Fricke K, Santen H, Wallmann R. Operating problems in anaerobic digestion plants resultingfrom nitrogen in MSW [J]. Waste Management,2007,27(1):30-43.
    [76] Hanaki K, Polprasert C. Contribution of methanogenesis to denitrification with an upflowfilter [J]. Research Journal of the Water Pollution Control Federation,1989,61(1):1604-1611.
    [77]迟文涛,赵雪娜,江瀚.厌氧同时反硝化产甲烷工艺研究进展[J].中国沼气,2006,24(4):6-8
    [78]韩晓宇,彭永臻,张树军.厌氧同时反硝化产甲烷工艺的应用及进展[J].中国给水排水,2008,24(6):15-19.
    [79] Lin Y F, Chen K C. Denitrification and methanogenesis in a co-immobilized mixed culturesystem[J]. Water Research,1995,29(1):35-43.
    [80][46] Klüber H D, R C. Effects of nitrate, nitrite, NO and N2O on methanogenesis and otherredox processes in anoxic rice field soil [J]. FEMS Microbiology Ecology,1998,25(3):301-318.
    [81] Evren T A, Pavlostathis S G. Inhibitory effects of nitrogen oxides on a mixed methanogenicculture [J]. Biotechnology and Bioengineering,2007,96(3):444-455.
    [82] Akunna J C, Bizeau C, Moletta R. Nitrate reduction by anaerobic sludge using glucose atvarious nitrate concentrations-ammonification-denitrification and methanogenic activities [J].Environmental Technology,1994,15(1):41-49.
    [83]祖波,张代钧,张萍,白玉华.影响厌氧氨氧化与甲烷化反硝化祸合的因素[J].应用与环境生物学报,2007,13(3):438-442.
    [84] Roy R, Conrad R. Effect of methanogenic precursors (acetate, hydrogen, propionate) on thesuppression of methane production by nitrate in anoxic rice field soil[J]. FEMS MicrobiologyEcology,1999,28(1):49-61.
    [85] Klüber H D, Conrad R. Inhibitory effects of nitrate, nitrite, NO and N2O on methanogenesisby Methanosarcina barkeri and Methanobacterium bryantii [J]. FEMS Microbiology Ecology,1998,25(4):331-339.
    [86] Im J H, Woo H J, Choi M W, et al. Simultaneous organic and nitrogen removal frommunicipal landfill leachate using an anaerobic-aerobic system[J]. Water Research,2001,35(10):2403-2410.
    [87]张树军,彭永臻,郑淑文.城市生活垃圾填埋场渗滤液生化处理试验研究[J].哈尔滨工业大学学报,2006,38(5):937-940.
    [88] Corral A M, Nchez M S. Simultaneous methanogenesis and denitrification of pretreatedeffluents from a fish caning industry [J]. Water Research,2001,35(2):411-418.
    [89] Pozo R D, Diez V. Organic matter removal in combined anaerobic-aerobic fixed-filmbioreactors[J]. Water Research,2003,37(15):3561-3568.
    [90] Eiroa M, Kennes C, Veiga M C. Formaldehyde and urea removal in a denitrifying granularsludge blanket reactor [J].Water Research,2004,38(16):3495-3502.
    [91] Hendriksen V H, Ahring B K. Integrated removal of nitrate and carbon in an upflow anaerobicsludge blanket (UASB) reactor: operating performance [J]. Water Research,1996,30(6):1451-1458.
    [92] An Y Y, Yang F L, Chua H C. The integration of methanogenesis with shortcut nitrificationand denitrification in a combined UASB with MBR[J]. Bioresource Technology,2008,99(6):3714-3720.
    [93]袁志丹,左剑恶,甘海南.同时产甲烷反硝化与硝化串联工艺处理淀粉废水[J].环境科学学报,2008,28(7):1272-1278.
    [94] Voets J P, Vanstanen H, Verstraete W. Removal of nitrogen from highly nitrogenouswastewater [J]. Journal of Water Pollution Control Federation,1975,47(2):394-398.
    [95] Laanbroek H J, Woldendorp J W. Activity of chemolithotrophic nitrifying bacteria under stressin natural soils [J]. Advances in Microbial Ecology,1995,14:275-304.
    [96]郑兴灿,李亚新.脱氮除磷技术[M].北京:中国建筑工业出版社,1998.
    [97] Davidson E A, Swank W. Environmental parameters regulating gaseous nitrogen losses fromtwo forested ecosystems via nitrification and denitrification[J]. Applied and EnvironmentMicrobiology,1986,52(6):1287-1292.
    [98] Gejlsbjerg B, Frette L, Westermann P. Dynamics of N2O production from activated sludge [J].Water Research,1998,32(7):2113-2121.
    [99] Otte S, Grobben N G, Robertson L A. Nitrous oxide production by Alcaligenes faecalis undertransient and dynamic aerobic and anaerobic conditions [J]. Applied and EnvironmentMicrobiology,1996,62(7):2421-2426.
    [100]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社,2004.
    [101]袁林江,彭党聪,王志盈.短程硝化-反硝化生物脱氮[J].中国给水排水,2000,16(2):29-31.
    [102]高大文,彭永臻,王淑莹.短程硝化生物脱氮工艺的稳定性[J].环境科学,2005,26(1):63-67.
    [103] Mulder J W, Kempen R V. N2removal by SHARON[C]. IAWQ Conference,1997,1:30-31.
    [104]于德爽,彭永臻.中温短程硝化反硝化的影响因素研究[J].中国给水排水,2003,9(1):40-42.
    [105]支霞辉,王红武.常温条件下短程硝化反硝化生物脱氮研究田.环境科学研究.2006,19(1):26-40.
    [106]高大文,彭永臻.控制pH实现短程硝化反硝化生物脱氮技术田[J].哈尔滨工业大学学报,2005,37(12):1664-1666.
    [107] Ant honisen A C, Loehr R C, Prakasam T B S. Inhibition of nitrification by ammonia andnitrous acid [J]. Water Pollution Control Fed,1976,48(5):835-852.
    [108] Prakasam T B, Loehr R C. Microbial nitrification and denitrification in concentrated wastes[J]. Water Research,1972,6:859-869.
    [109] Vadivelu V M, Yuan Z G, Fux C.The inhibitory effect s of free nitric acid on the energygeneration and growth process of an enriched nitrobactor culture [J]. Environmental Scienceand Technology,2006,40(14):4442-4448.
    [110] Weon S Y, Lee C W, Lee S I. Nitrite inhibition of aerobic growth of Acinetobacter sp.[J].Water Research,2002,36(18):4471-4476.
    [111] Philips S, Laanbroek H J, Verst R W. Origin, causes and effects of increased nitriteconcentrations in aquatic environments [J]. Reviews in Environmental Science andBiotechnology,2002,1(2):115-141.
    [112] Prakasam T B, Loehr R C. Microbial nitrification and denitrification in concentrated wastes[J]. Water Research,1972,6(7):859-869.
    [113]吴莉娜,彭永臻;王淑莹.游离氨对城市生活垃圾渗滤液短程硝化的影响[J].环境科学,2008,29(12):3428-3432.
    [114]张树军,彭永臻,曾薇.高氮城市生活垃圾渗滤液短程生物脱氮[J].环境科学学报,2006,26(5):751-756.
    [115] Chung J, Bae W, Lee Y W, Rittmann B E. Shortcut biological nitrogen removal inhybridbiofilm/suspended growth reactors [J]. Process Biochemistry,2007,42(3):320-328.
    [116]刘牡,彭永臻,吴莉娜,王燕. FA与FNA对两级UASB-A/O处理垃圾渗滤液短程硝化的影响[J].化工学报,2010,61(1):172-179.
    [117] Bernet N, Peng D C, Delgenes J P. Nitrification at low oxygen concentration in biofilm reactor[J]. Journal of Environment Engineering,2001,127(3):266-271.
    [118]张可方,方茜,曹勇锋.温度和溶解氧对短程同步硝化反硝化脱氮效果的影响[J].广州大学学报(自然科学版),2011,10(1):81-84.
    [119]张朝升,章文菁,方茜. DO对好氧颗粒污泥短程同步硝化反硝化脱氮的影响[J].环境工程学报,2009,3(3):413-416.
    [120]张强,徐国勋,吴文雯. SBR短程硝化的实现、维持及稳定性[J].城市环境与城市生态,2008,21(6):25-28.
    [121] Pollice A, Tandoi V, Lestingi C. Influence of aeration and sludge retention time on ammoniumoxidation to nitrite and nitrate [J]. Water Research,2002,36(10):2541-2546.
    [122] Kempen R V, Minder J W, Uijterlinde C A. Overview: full scale experience of the SHARONprocess for treatment of rejection water of digested sludge dewatering [J]. Water Science andTechnology,2001,44(1):145-152.
    [123]李春杰,顾国维. SMSBR处理焦化废水中的短程硝化反硝化[J].中国给水排水,2001,17(11):8-12.
    [124]李勇智,彭永臻,王淑莹,等.采用序批式反应器短程生物脱氮工艺处理高氨氮制药废水[J].现代化工,2003, S1:163-166.
    [125] Sutherson S, Ganczarczyk J J. Inhibition of nitrite oxidation during nitrification: someobservations [J]. Water Pollution Research Journal of Canada,1986,21:257-266.
    [126] Turk O, Mavinic D S. Preliminary assessment of a shortcut in nitrogen removal fromwastewater[J]. Canadian Journal of Civil Engineering,1986,13(6):600-605.
    [127]耿艳楼,钱易,顾夏声.简捷硝化-反硝化过程处理焦化废水的研究[J].环境科学,1993,14(3):2-6.
    [128]周少奇.电子流守衡原理在生物反硝化计量学研究中的应用.首届广东青年科学家论坛论文集,北京:中国科学技术出版社,2000:452-455.
    [129]周少奇.生物脱氮的生化反应计量学关系式[J].华南理工大学学报,1998,26(3):124-126.
    [129]张杰,李海华,韦道领,等. IC反应器厌氧氮氧化启动与运行特性研究[J].污染防治技术,2007,20(2):21-24.
    [130]朱静平,胡勇有,谢磊.接种不同污泥启动厌氧氨氧化ASBR反应器研究[J].安全与环境学报,2007,7(1):79-82.
    [131]周凌,操家顺,蔡娟,等.低浓度氮氮条件下厌氧氮氧化反应器的启动研究[J].给水排水,2006,32(11):34-36.
    [132]赵宗升,赵云霞,陈智均,等.厌氧氨氧化菌接种污泥的选择培养过程研究[J].环境工程学报,2007,1(2):39-42.
    [133]唐崇俭,郑平,陈建玮,等.不同接种物启动Anammox反应器的性能研究[J].中国环境科学,2008,28(8):683-688.
    [134]胡宝兰,郑平,胡安辉,等. ANAMMOX反应器的启动及其菌群演变的研究[J].农业工程学报,2005,21(7):107-110.
    [135]李亚静,孙力平,李计元. ANAMMOX反应器快速启动及对反硝化聚磷的影响研究[J].工业用水与废水,2006,37(4):16-19.
    [136]朱静平,胡勇有,梁辉强.基于SBR反应器的ANAMMOX工艺的启动运行[J].环境污染治理技术与设备2006,7(2):30-33.
    [137]任宏洋,祖波.厌氧氨氧化反应器启动及污泥产率系数的测定[J].重庆大学学报,2008,131(1):88-92.
    [138]沈平,左剑恶,杨洋.接种不同污泥的厌氧氨氧化反应器的启动与运行[J].中国沼气,2004,22(3):3-7.
    [139]钟红春,周少奇,姚俊芹.两种UASB厌氧氨氧化反应器启动和运行特征对比[J].化工学报,2007,58(11):2798-2803.
    [140]左剑恶,杨洋,蒙爱红.厌氧氨氧化工艺在UASB反应器中的启动运行研究[J].上海环境科学,2003,22(11):665-669.
    [141]张龙,肖文德.厌氧氨氧化菌混培物的培养及上流式厌氧污泥床反应器运行[J].华东理工大学学报(自然科学版),31(1):99-102.
    [142]魏复盛.水和废水监测分析方法[M].北京:中国环境科学出版社,1988.
    [143]吴唯民,蒋青.辅酶F420及其在厌氧处理中的作用[J].中国沼气,1984,2:1-12.
    [144]唐一,胡纪萃.辅酶F420作为厌氧污泥活性指标的研究[J].中国沼气,1990,8(1):11-15.
    [145]尹小波,连莉文,徐洁泉.产甲烷过程的独特酶类及生化监测方法[J].1998,16(3):8-13.
    [146]罗翠.厌氧一兼氧一好氧废水处理系统中水解酶的活性研究[D].上海:东华大学,2007.
    [147]江昌俊,李叶云.茶叶中β-D-葡萄糖苷酶活性测定条件的研究[J].安徽农业大学学报,1999,26(2):212-215.
    [148] Graaf V D, Bruijn D P, Robertson L A, et al. Autotrophic growth of anaerobicammonium-oxidizing microorganisms in a fluidized bed reactor[J].1996, Microbiology,142(8):2187-2196.
    [149]马富国,张树军,曹相生.硝化生物膜启动厌氧氨氧化反应器的研究[J].中国给水排水,2008,24(23):24-28.
    [150]150雒怀庆.厌氧氨氧化生物脱氮技术基础及其细菌群落的研究[D].广州:华南理工大学,2003.
    [151] Zhang D J. The integration of methanogenesis with denitrification and anaerobic ammoniumoxidation in an expanded granular sludge bed reactor [J]. Journal of Environment Sciences,2003,15(3):423-432.
    [152] Peng Y Z, Zhang S J, Wei Z. Organic removal by denitritation and methanogenesis andnitrogen removal by nitritation from landfill leachate [J]. Water Research,2008,48:883-892.
    [153]陈莉莉,左剑恶,楼俞,等.2006.同时产甲烷反硝化在UASB反应器中的实现[J].中国沼气,2006,24(2):3-7.
    [154]孙洪伟,王淑莹,时晓宁等.单一缺氧/厌氧UASB同步反硝化产甲烷与A/O组合工艺处理实际晚期渗滤液[J].化工学报,2009,60(11):2891-2896.
    [155]孙寓姣,左剑恶,陈莉莉.同时产甲烷反硝化颗粒污泥中微生物群落结构[J].中国环境科学,2007,27(1):44-48.
    [156]迟文涛,赵雪娜,江瀚.厌氧同时反硝化产甲烷工艺研究进展[J],中国沼气,2006,4(4):6-8.
    [157]祖波,张代钧,白玉华. EGSB反应器中耦合厌氧氨氧化与甲烷化反硝化的研究[J]环境科学研究,2007,20(2):51-57.
    [158]王丽丽,赵林,谭欣.不同碳源及其碳氮比对反硝化过程的影响[J].环境保护科学,2004,30(121):15-18.
    [159]李顺义,贾晓珊,王岩.外加碳源对厌氧微生物产甲烷活性的影响[J].安徽农业科学,2009,37(18):8331-8333.
    [160] Isaacs S H, Henze M, Soeberg H. External carbon source addition as a means to control anactivated sludge nutrient removal process [J]. Water Research,1994,28(3):511-520.
    [161] Christensson M, Lie E, Welander T. A comparison between ethanol and methanol as carbonsources for denitrification [J]. Water Science Technology,1994,30(6):83-90.
    [162]马勇,彭永臻,王淑莹.不同外碳源对污泥反硝化特性的影响[J].北京工业大学学报,2009,35(6):820-824.
    [163] Hendriksen H V, Ahring B K. Combined removal of nitrate and carbon in granular sludge:substrate competetion and activities [J]. Antonie van Leeuwenhoek,1996,69(1):33-39.
    [164]李远华. β-葡萄糖苷酶的研究进展[J].安徽农业大学学报.2002,29(4):421-425.
    [165]严媛媛,孙力平,冯雷雨. SBR法处理还原段DSD酸废水脱氢酶活性的研究[J].环境科学与技术,2007,30(3):87-89.
    [166] Nybroe O, Jorgensen P E, Henze M. Enzyme activities in wastewater and activated sludge [J].Water Research,1992,26(5):579-584.
    [167] Frolund B, Griebe T, Nielsen P H. Enzymatic activity in the activated-sludge floc matrix [J].Applied Microbiology Biotechnology,1995,43(6):752-761.
    [168] Cheseman, P. Isolation and properties of a fluorescent compound F420from methanobacteriumstrain[J]. Journal of Bacteriology,1972,112(1):527-531.
    [169] Delafontaine M J, Naveau H P, Nyns E J. Fluorimetric monitoring of methanogenesis inanaerobic digesters [J]. Biotechnology,1979,1:71-73.
    [170]张晓鹤,周敬红,刘博等.上流式多级厌氧反应器中厌氧颗粒污泥特性研究[J].环境污染与防治,2008,30(9):31-35
    [171]李秀芬,赵阳,堵国成等.微量金属元素及其配合物对厨余垃圾甲烷发酵的影响[J].环境工程学报,2009,3(3):521-524.
    [172]田从辉,梁键,舒纯等. EGSB反应器内厌氧颗粒污泥的特性研究[J].环境科学与技术,2010,33(6):37-39.
    [173]郝雯娣,李红宇,刘青岩等. UASB厌氧处理系统处理柠檬酸废水[J].中国给水排水,1994,14(10):41-45.
    [174]李卫华,盛国平,陆锐等.厌氧产甲烷受抑制过程的三维荧光光谱解析[J].光谱学与光谱分析,2011,31(8):2131-2135.
    [175] Hellinga C, ScheUen A A, Mulder J W, et a1.The Sharon process:An innovative method fornitrogen removal from ammonium-rich wastewater[J]. Water Science and Technology,1998,37(9):135-142.
    [176] Peng Y Z, Gao S Y, Wang S Y, et al. Partial nitrification from domestic wastewater byaeration control at ambient temperature[J]. Chinese Journal of Chemical Engineering,2007,15(1):115-121.
    [177] Hellinga C, Van Loosdrecht M, Heijnen J. The SHARON process for nitrogen removal inammonium rich waste water. Proceedings of the XI Forum for Applied Biotechnology,1997,18(3):1743-1750.
    [178]张少辉,康淑琴.低C/N值下短程硝化反应器的启动及影响因素[J].中国给水排水,2010,26(11):96-99.
    [179]吴伟伟,王舜和,王建龙.短程硝化反应器的快速启动与运行特性[J].清华大学学报,2006,46(12):2077–2080.
    [180] Ruiz G, Jesion D, Rublar O. Nitrification–denitrification via nitrite accumulation for nitrogenremoval from wastewaters [J]. Bioresource Technology,2006,97(2):330-335.
    [181] Dong J K, Dong I L, Keller J. Effect of temperature and free ammonia on nitrification andnitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community byFISH [J].Bioresource technology,2006,97(3):459-368.
    [182] Li H Q, Han H J, Du M A, et al. Inhibition and recovery of nitrification in treating real coalgasification wastewater with moving bed biofilm reactor [J]. Journal of EnvironmentalSciences,2011,23(4):568-574.
    [183] Osman N A. Characterization and treatment of Denizli landfill leachate using anaerobichybrid/aerobic CSTR systems [J]. Environmental Technology,2011,32(7):699-711.
    [184]彭绪亚,李治阳,王璐等. UASB反应器培养厌氧氨氧化茵的试验研究[J].中国给水排水,2011,11(7):20-24.
    [185] AbelingA U, Seyfrid C F. Anaerobic-aerobic treatment of high strength ammoniumwastewater-nitrogen removalvia nitrite [J]. Water Science Technology,1992,26(5/6):1007-1015.
    [186] Balmelle B, Nguyen M, Capdeville B, et al. Study of factors controlling nitrite build-up inbiological processes for water nitrification [J].Water Science Technology,1992,26(5-6):1017-1025.
    [187]贾传兴.有机垃圾厌氧消化系统失衡机理及预警调控机制研究[D].重庆:重庆大学,2010.