基于内容的图像搜索重排序研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着互联网技术和网络共享服务的发展,网络上的视频/图像数据呈几何级数增长。为了满足大量用户的搜索需求,建立快速有效的视频/图像搜索系统成为迫切需要解决的问题。为了借鉴文本搜索中的成熟技术并满足搜索对高效性的要求,目前大多数的商业搜索引擎(Bing, Google, Yahoo, Baidu等)对视频和图像的搜索主要是通过索引其相关的文本信息。由于这些文本信息不足以全面充分地描述视频/图像丰富的视觉内容,基于文本的视频/图像搜索结果不尽如人意。重排序被提出在基于文本的搜索结果基础上,通过加入视频/图像视觉信息、用户反馈等知识改进搜索结果。
     目前的重排序方法已经取得了一定进展,然而由于低层特征和高层语义概念之间的语义鸿沟的存在,视频/图像搜索重排序中还有很多问题需要研究。本论文首先提出了无监督的贝叶斯重排序算法,接着分析了将重排序应用到实际系统中的几个关键问题,最后提出了有用户反馈情况下的半监督主动重排序方法和基于结构学习的有监督主题多样化重排序方法。本文对基于内容的重排序方法进行了深入研究,主要工作和创新之处归纳为以下几点:
     1.本文在分析视觉信息和文本信息在重排序中的本质作用基础上,从贝叶斯角度将这两种信息分别看作是先验和似然提出了贝叶斯重排序。贝叶斯重排序是一个通用的重排序框架,很多现有重排序算法都可以统一到该框架下。针对现有算法对视觉信息和文本信息的描述中存在的问题,分别提出了局部学习正则化模型和基于点对的偏好强度重排序距离。在标准数据集上的大量实验验证了本文提出的方法的有效性。
     2.重排序研究的最终日的是成功地将其应用到实际的搜索系统中有效提高基于文本的视频/图像搜索结果。本文从多方面探讨将重排序应用到实际的图像搜索系统中的关键问题,对这些问题的讨论不仅对于将来重排序的实际应用有重要意义,对我们进一步的研究工作也有指导意义。本文从算法、特征表达、计算复杂度等方面提炼了六个关键问题,并从三个常用的商业搜索引擎中搜集了一个网络图像数据集,在该数据集上进行了大量的实验,通过对这些实验结果的分析和总结,给出了这六个问题的答案。
     3.无监督的重排序为所有的用户返回一样的查询结果,因此不能满足不同用户的不同搜索需求,尤其是在用户的查询词指代不明的情况下。研究表明相关反馈是解决这一问题的有效途径,但是现有的基于用户交互的重排序方法不能很好地从用户反馈中准确学习用户的搜索意图。为了解决这一问题,本文提出了半监督的主动重排序方法,该方法首先通过人机交互获得用户的标注信息,在此基础上利用子空间学习算法区分与用户查询相关和不相关的图像。在学习用户的真正搜索意图过程中,为了减少用户的标注量提出了一种基于结构信息的样本主动选择方案:为了学习反映与用户查询相关的图像子空间提出了一种局部-整体区分式子空间学习算法。在人工数据集和网络图像搜索数据集上的实验表明本文提出的主动重排序方法可以有效学习用户的搜索意图,返回满足用户需求的结果。
     4.在图像搜索中,用户希望返回的结果同时具有高相关性和高主题覆盖性。主题多样化重排序受到越来越多的重视,但是现有的多样化重排序方法受到两方面的限制。首先,这些方法对相关性和多样性的优化是分两步进行的,因此得不到联合最优的结果;另一方面这些方法普遍使用视觉多样性来近似主题多样性,由于语义鸿沟的存在,这一方法很难得到好的结果。针对这些问题,本文提出了联合优化相关性和主题多样性的主题多样化重排序。该方法在结构学习框架下设计了一组特征来描述排序结果的相关性和多样性,然后利用用户标注信息,从一组训练数据中学习得到主题多样化重排序模型。利用该模型,可以对未标注的查询进行预测得到高相关性和高主题多样性的重排序结果。在网络图像搜索数据集上的实验表明本文提出的方法可以同时提高相关性和主题多样性。
With the rapid development of recording and storage devices, as well as the significant improvement of transmission and compression techniques, the amount of multimedia data (e.g., image, video and audio) on Internet increases explosively and the video/image-sharing websites become more and more popular. Efficient and effective multimedia search tools are essential for Web surfing. Due to the requirement of high efficiency and the leverage of successful techniques already de-veloped in text search, most of our frequently-employed image search engines, e.g. Bing, Google, Yahoo and Baidu, are implemented by indexing and searching the images'associated textual information, e.g., image file names, URLs, surrounding texts and so on. However, this text-based image search result is not satisfactory because that the textual information is not the essential description of image's rich content. Reranking is then proposed to refine this text-based search result by incorporating images' visual information, user feedback and other information.
     Although a lot of works have been done on image search reranking, there are still many problems need to be solved, due to the semantic gap between low-level visual features and high-level semantic concepts. In this thesis, we first propose an unsupervised Bayesian reranking method, and then distill six most important problems which should be carefully considered in a practical reranking system, finally proposed semi-supervised active reranking with user feedback and structural learning based supervised topic-aware reranking method. This thesis conducts a deep research on reranking and obtains the following achievements
     1. By analyzing the intrinsic roles of the textual and visual information in reranking, we propose Bayesian reranking in which the two cues are mod-eled as as prior and likelihood respectively from probabilistic perspective. Bayesian reranking is an general framework and can unify several existing reranking methods. To well model the textual and visual information in Bayesian reranking framework, we also propose to use a local learning regu-larizer to model visual consistency and a pair-wise preference strength rank-ing distance respectively. The experiments conducted on benchmark datasets have demonstrated the effectiveness of the proposed Bayesian reranking method.
     2. To incorporate reranking technique into practical image search system, there are several issues which will greatly influence the reranking performance, besides the reranking algorithm design. This thesis distills six most impor-tance problems which should be carefully considered in a practical reranking system. the six aspects include algorithm selection, effective visual feature representation, efficient feature extraction, computational cost, the charac-teristics of the text-based reranking, and the utilization of the text-based search results. Their effects to the resulting reranking performance are ana-lyzed based on comprehensive experiments on a dataset collected from three most frequently-used commercial image search engines. We believe that these analysis and insightful findings will provide useful guidelines for the practical application and further research on Web image search reranking.
     3. unsupervised reranking methods fail to capture the user's search intentions when the query term is ambiguous. Relevance feedback has been proven to be an effective way to solve this problem. However, current work on rerank-ing with user interaction cannot learn the user's intention precisely. This thesis proposes semi-supervised active reranking methods to learn use's in-tention more extensively and completely. This method first obtain the user's labeling information by interacting with users, and then learn the user's in-tention by distinguishing relevant images from irrelevant ones via subspace learning. Furthermore, this thesis proposes a structural information based sample selection strategy to reduce the labeling efforts and a novel local-global discriminative dimension reduction algorithm to localize the user's intention in the visual feature space. Experiments conducted on both syn-thetic datasets and Web image search dataset demonstrate the effectiveness of the proposed active reranking method.
     4. In image search, the desired result should satisfy both high relevance and high topic diversity. Topic diverse reranking has drawn increasing attentions. However, existing diversified reranking methods suffer from two problems. First, the maximization of diversity and relevance is performed in two-step, which typically will not achieve the joint optimum. Second, visual diversifica-tion, which is used in diversified reranking, usually cannot well approximate the topic diversity due to the semantic gap. In this paper, we propose topic-aware reranking which jointly maximizes the relevance and topic diversity. Through a structured learning framework, the relevance and diversity are modeled by a set of carefully designed features, and then learned from hu-man labeled training samples. The experiments conducted on a web image search dataset demonstrate that the proposed method not only improves the topic coverage compared with existing diversified reranking methods but also improves the relevance compared with relevance-based reranking methods.
引文
[1]C.Dorai and S.Venkatesh.Bridging the semantic gap in content manage-ment systems:computational media aesthetics.Conference on Computa-tional Semiotics for Games and New Media, Amsterdam, pages 94-99,2001.
    [2]X.Mu.Content-based video retrieval:does video's semantic visual feature matter? ACM SIGIR,2006.
    [3]TRECVID.Trecvid video retrieval evaluation.hppt://www-nlpir.nist.gov/projects/trecvid/.
    [4]Gustavo Carneiro,Antoni B.Chan,Pedro J.Moreno,and Nuno Vascon-celos.Supervised learning of semantic classes for image annotation and re-trieval.In IEEE Transactions on Pattern,Analysis and Machine Intelligence, 29(3):394-410,2007.
    [5]J.Jeon,V.Lavrenko,and R.Manmatha.Automatic image annotation and retrieval using cross-media relevance models.In Proceedings of the 26th annual international ACM SIGIR conference on Research and Development in Informaion Retrieval, pages 119-126,2003.
    [6]Milind R.Naphade,Lyndon Kennedy,John R.Kender,Shih fu Chang,John R.Smith,Paul Over,and Alex Hauptmann.A light scale concept ontology for multimedia understanding for trecvid 2005.Technical report,In IBM Research Technical Report,2005.
    [7]Apostol Natsev.Alexander Haubold,Jelena Tesic,Lexing Xie,and Rong Yan.Semantic concept-based query expansion and re-ranking for multime-dia retrieval.In MULTIMEDIA'07:Proceedings of the 15th international conference on Multimedia, pages 991-1000,2007.
    [8]Cees Snoek,Marcel Worring,Jan van Gemert,Jan-Mark Geusebroek,and Arnold W.M.Sineulders.The challenge problem for automated detection of 101 semantic concepts in multimedia. In MULTIMEDIA'06:Proceedings of the 14th annual ACM international conference on Multimedia, pages 421-430,2006.
    [9]Michael S.Lew, Nicu Sebe,Chabane Djeraba, and Ramesh Jain.Content-based multimedia information retrieval:State of the art and challenges.In ACM Trans. Multimedia Comput. Commun. Appl,2(1):1-19,2006.
    [10]A.W.M.Smeulders,M.Worring, S.Santini, A.Gupta, and R.Jain.Content-based image retrieval at the end of the early years.IEEE Trans.Pattern Analysis and Machine Intelligence,22:1349-1380,2000.
    [11]H.S.Chang, S.Sull,and S.U.Lee.Efficient video indexing scheme for content-based rerieval.IEEE Trans. Circuits Systems for Video Technol-ogy, pages 1269-1279,1999.
    [12]Winston H.Hsu,Lyndon S.Kennedy,and Shih-Fu Chang. Video search reranking via information bottleneck principle. ACM Int'l Conf. Multimedia, pages 35-44,2006.
    [13]Yushi Jing and Shumeet Baluja. Visualrank:Applying pagerank to large-scale image search.In IEEE Transactions on Pattern Analysis and Machine Intelligence,30(11):1877-1890,2008.
    [14]Yuan Liu,Tao Mei,and Xian-Sheng Hua.Crowdreranking:exploring mul-tiple search engines for visual search reranking.ACM Special Interest Group on Information Retrieval, pages 500-507,2009.
    [15]Xinmei Tian,Linjun Yang, Jingdong Wang,Yichen Yang,Xiuqing Wu,and Xian-Sheng Hua. Bayesian video search reranking. ACM Int'l Conf. Multi-media,pages 131-140,2008.
    [16]Kalervo Jarvelin and Jaana Kekalainen.Ir evaluation methods for retrieving highly relevant documents.In In 23rd Annual International ACMSIGIR Conference on Research and Development in Information Retrieval, pages 11-48.2000.
    [17]Jaime G.Carbonell and Jade Goldstein.The use of mmr,diversity-based reranking for reordering documents and producing summaries.SIGIR, pages 335-336,1998.
    [18]Roelof van Zwol,Vanessa Murdock,Lluis Garcia Pueyo,and Georgina Ramirez.Diversifying image search with user generated content.Multimedia Information Retrieval, pages 67-74,2008.
    [19]Kai Song, YongHong Tian,Wen Gao,and Tiejun Huang. Diversifying the image retrieval results.ACM Multimedia, pages 707-710,2006.
    [20]Sergey Brin and Lawrence Page.The anatomy of a large-scale hypertextual web search engine.In Computer Networks and ISDN Systems, pages 107-117,1998.
    [21]Reinier H.van Leuken,Lluis Garcia Pueyo,Ximena Olivares,and Roelof van Zwol.Visual diversification of image search results. WWW, pages 341-350, 2009.
    [22]Kuiyuan Yang,Meng Wang,Xian-Sheng Hua, and Hong-Jiang Zhang. So-cial image search with diverse relevance ranking. Advances in Multimeida Modeling, pages 174-184,2010.
    [23]Mark Sanderson,Jiayu Tang,Thomas Ami,and Paul Clough.What else is there? search diversity examined.ECIR,pages 562-569,2009.
    [24]Wei-Hao Lin,Rong Jin,and Alexander Hauptmann.Web image retrieval re-ranking with relevance model.IEEE Int'l Conf. Web Intelligence, pages 242-248,2003.
    [25]Xirong Li,Dong Wang,Jianmin Li,and Bo Zhang.Video search in concept subspace:a text-like paradigm.ACM Int'l Conf. Content-based Image and Video Retrieval, pages 603-610,2007.
    [26]Yi-Hsuan Yang,Po-Tun Wu,Ching-Wei Lee,Kuan-Hung Lin,and Winston H.Hsu.Contextseer:context search and recommendation at query time for shared consumer photos.ACM Int'l Conf.Multimedia,pages 199-208.2008.
    [27]Milind Naphade, John R. Smith, Jelena Tesic, Shih-Fu Chang, Winston Hsu, Lyndon Kennedy, Alexander Hauptmann,and Jon Curtis.Large-scale con-cept ontology for multimedia. IEEE MultiMedia, pages 86-91,2006.
    [28]Markus Stricker and Markus Orengo.Similarity of color images. SPIE Storage and Retrieval for Still Image and Video Databases, pages 381-392, 1995.
    [29]Anil K.Jain and Aditya Vailaya. Image retrieval using color and shape. Pattern Recognition,29(8):1233-1244,1996.
    [30]Anil K.Jain and Aditya Vailaya. Shape-based retrieval:a case study with trademark image database. Pattern Recognition,31(9):1369-1390,1998.
    [31]Aditya Vailaya, Anil K.Jain,and Hong Jiang Zhang.On image classification: city vs.landscape.IEEE Workshop on Content-Based Access of Image and Video Libraries, pages 3-8,1998.
    [32]M.Unser.Texture classification and segmentation using wavelet frames. IEEE Transactions on Image Processing,4(11):1549-1560,1995.
    [33]B.S.Manjunath and Wei-Ying Ma.Texture features for browsing and re-trieval of image data. IEEE Trans.Pattern Anal. Mach. Intell.,pages 837-842,1996.
    [34]A.Oliva and A.Torralba.Modeling the shape of the scene:A holistic repre-sentation of the spatial envelope.International Journal of Computer Vision, 42(3):145-175,2001.
    [35]Xininei Tian,Dacheng Tao,Xian-Sheng Hua, and Xiuqing Wu.Active reranking for web image search.IEEE Trans. Image Processing,19(3):805-820,2010.
    [36]Rong Yan,Alexander G.Hauptmann,and Rong Jin.Multimedia search with pseudo-relevance feedback.In Second International Conference on Image and Video Retrieval, pages 238-247,2003.
    [37]Josef Sivic and Andrew Zisserman.Video google:A text retrieval approach to object matching in videos. International Conference on Computer Vision ICCV, page 1470-1477,2003.
    [38]K.Mikolajczyk and C.Schmid.A performance evaluation of local descrip-tors.IEEE Transactions on Pattern Analysis and Machine Intelligence,page 1470-1477,2003.
    [39]K.Mikolajczyk and C.Schmid.An affine invariant interest point detector. European Conference on Computer Vision, pages 128-142,2002.
    [40]K.Mikolajczyk and C.Schmid.Scale & affine invariant interest point detec-tors.International Journal of Computer Vision,60(1):63-86,2004.
    [41]F.Schaffalitzky F.and A.Zisserman.Multi-view matching for unordered image sets, or "how do i organize my holiday snaps?".European Conference on Computer Vision, pages 414-431,2002.
    [42]Crowley James L.and Alice C.Parker.A representation for shape based on peaks and ridges in the difference of lowpass transform.IEEE Trans,on Pattern Analysis and Machine Intelligence,6(2):156-170,1984.
    [43]Lindeberg Tony. Detecting salient blob-like image structures and their scales with a scale-space primal sketch:a method for focus-of-attention.Interna-tional Journal of Computer Vision,11(3):283-318,1993.
    [44]D.G.Lowe.Object recognition from local scale-invariant features.In Pro-ceedings of the International Conference on Computer Vision ICCV,2:1150-1157,1999.
    [45]Li Wang,Linjun Yang, and Xinmei Tian.Query aware visual similarity propagation for image search reranking. ACM International Conference on Multimedia, pages 725-728,2009.
    [46]V.N.Vapnik.Statistical learning theory.NY Wiley,1998.
    [47]B.E.Boser,I.M.Guyon,and V.N.Vapnik. A training algorithm for optimal margin classifier. ACM workshop on Computational Learning Theory, pages 144-152,1992.
    [48]N.Tishby, F.C.Pereira, and W. Bialek. The information bottleneck method. Annual Allerton Conference on Communication, Control and Computing,, 1999.
    [49]Feng Jing, Changhu Wang, Yuhuan Yao,Kefeng Deng, Lei Zhang,and Wei-Ying Ma. Igroup:web image search results clustering.ACM Int'l Conf. Multimedia, pages 377-384,2006.
    [50]J.Carbonell,Y. Yang, R. Frederking, and R.D.Brown. Translingual infor-mation retrieval:a comparative evaluation.IJCAI,1997.
    [51]Rong Yan and Alexander G.Hauptinann.Co-retrieval:A boosted reranking approach for video retrieval.In Third International Conference on Image and Video Retrieval, pages 60-69,2004.
    [52]Yuan Liu, Tao Mei, Xian-Sheng Hua, Jinghui Tang, Xiuqing Wu, and Shipeng Li. Learning to video search rerank via pseudo preference feedback. In Proceedings of the 2008 IEEE International Conference on Multimedia and Expo, pages 297-300,2008.
    [53]Winston H. Hsu, Lyndon S. Kennedy, and Shih-Fu Chang. Video search reranking through random walk over document-level context graph. ACM Int'l Conf. Multimedia, pages 971-980,2007.
    [54]Jingyu Cui, Fang Wen, and Xiaoou Tang. Real time google and live image search re-ranking. ACM Multimedia, pages 729-732,2008.
    [55]Jen-Hao Hsiao and Ming-Syan Chen. Intention-focused active reranking for image object retrieval. ACM Int'l Conf. Information and knowledge man-agement, pages 157-166,2009.
    [56]Thorsten Joachims. Optimizing search engines using clickthrough data. ACM SIGKDD international conference on Knowledge discovery and data mining, pages 133-142,2002.
    [57]Jingjing Liu, Wei Lai, Xian-Sheng Hua, Yalou Huang, and Shipeng Li. Video search re-ranking via multi-graph propagation. ACM Int'l Conf. Multimedia, pages 208-217,2007.
    [58]Robert Fergus, Pietro Perona, and Andrew Zisserman. A visual category filter for google images. European Conf. Computer Vision, pages 242-256, 2004.
    [59]Xiaojin Zhu, Zoubin Ghahramani, and John D. Lafferty. Semi-supervised learning using gaussian fields and harmonic functions. In Proceedings of the Twentieth International Conference Machine Learning, pages 912-919,2003.
    [60]Dengyong Zhou, Olivier Bousquet, Thomas Navin Lai, Jason Weston, and Bernhard Scholkopf. Learning with local and global consistency. In Advances in Neural Information Processing Systems 16,2003.
    [61]M. Wu and B. Scholkopf. Transductive classification via local learning reg-ularization. Int'l Conf. Artificial Intelligence and Statistics, pages 624-631, 2007.
    [62]Nello Cristianini and John Shawe-Taylor. An introduction to support vector machines and other kernel-based learning methods. Cambridge University, 2000.
    [63]Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank:from pairwise approach to listwise approach. Int'l Conf. Machine Learning, pages 129-13,2007.
    [64]Sir Maurice Kendall and Jean Dickinson Gibbons. Rank correlation methods. Edward Arnold:London,1990.
    [65]Alan F. Smeaton, Paul Over, and Wessel Kraaij. Evaluation campaigns and trecvid. ACM Int'l Workshop on Multimedia Information Retrieval, pages 321-330,2006.
    [66]TRECVID. Trec video retrieval evaluation. http://www-nlpir.nist.gov/projects/trecvid/.
    [67]Stephen E. Robertson, Steve Walker, Micheline Hancock-Beaulieu, Mike Gatford, and A. Payne. Simple, proven approaches to text retrieval. Cam-bridge University Computer Laboratory Technical Report TR356,1997.
    [68]Wei-Ying Ma and Hong Jiang Zhang. Benchmarking of image features for content-based retrieval. Conf. Record of the Thirty-Second Asilomar Con-ference on Signals, Systems & Computers, pages 253-257,1998.
    [69]X. Tian, L. Yang, J. Wang, X. Wu, and X.-S. Hua. Transductive video annotation via local learnable kernel classifier. IEEE Int'l Conf. Multimedia (?) Expo, pages 1509-1512,2008.
    [70]Jing Huang, S Ravi Kumar, Mandar Mitra, Wei-Jing Zhu, and Ramin Zabi. Image indexing using color correlograms. Computer Vision and Pattern Recognition,1997.
    [71]C.L. Novak and S.A. Shafer. Anatomy of a color histogram. Computer Vision and Pattern Recognition, pages 599-605,1992.
    [72]Yushi Jing and Shumeet Baluja. Pagerank for product image search. Proc. Int'l Conf. World Wide Web, pages 307-316,2008.
    [73]E. Y. Chang, S. Tong, K. Goh, and C.-W. Chang. Support vector machine concept-dependent active learning for image retrieval. IEEE Trans. Multi-media,2005.
    [74]D. D. Lewis and W. A. Gale. A sequential algorithm for training text, classi-fiers. Int'l Conf. Research and Development in Information Retrieval, pages 3-12.1994.
    [75]X.Zhu, J.Lafferty, and Z.Ghahramani.Combining active leanring and semi-suppervised learning using gaussian fields and harmonic functions.Int'l Conf.Machine Learning, pages 58-65,2003.
    [76]H.T.Nguyen and A.Smeulders.Active learning using pre-clustering.Int'l Conf. Machine Learning, pages 623-630,2004.
    [77]S.C.H.Hoi and M.R.Lyu.A semi-supervised active learning framework for image retrieval.IEEE Int'l Conf. Computer Vision and Pattern Recognition, pages 302-309,2005.
    [78]L.Wang, K.L.Chan,and Z.Zhang.Bootstrapping svin active learning by incorporating unlabelled images for image retrieval.IEEE Int'l Conf. Computer Vision and Pattern Recognition, pages 629-634,2003.
    [79]H.Hotteling.Analysis of a complex of statistical variables into principal components.Journal of Educational Psychology, pages 417-441,1933.
    [80]S.T.Roweis and L.K.Saul.Nonlinear dimensionality reduction by locally linear embedding.Science, pages 2323-2326,2000.
    [81]J.B.Tenenbaum,V.de Silva,and J.C.Langfoid.A global geometric frame-work for nonlinear dimensionality reduction.Science, pages 2319-2323,De-cember 2000.
    [82]X.He and P.Niyogi.Locality preserving projections.Advances in Neural Information Processing Systerms,2003.
    [83]D.Cai,X.He,and J.Han.Using graph model for face analysis.Technical Report,Computer Science Department, UIUC,2005.
    [84]H.-T.Chen,H.-W.Chang,and T.-L.Liu.Local discriminant embedding and its variants.IEEE Int'l Conf. Computer Vision and Pattern Recognition, pages 846-853,2005.
    [85]Y.-Y.Lin,T.-L.Liu,and H.-T.Chen.Semantic manifold learning for image retrieval.ACM Int'l Conf. Multimedia, pages 06-11,2005.
    [86]M.Belkin and P.Niyogi.Laplacian eigenmaps for dimensionality reduction and data representation.Neural Computation, pages 1373-1396,2003.
    [87]R.A.Fisher.The use of multiple measurements in taxonomic problems. Annals Eugen.,pages 179-188,1936.
    [88]D.Xu,S.Yan,D.Tao,and H.-J.Zhang.Marginal fisher analysis and its variants for human gait recognition and content-based image retrieval.IEEE Trans. Image Processing, pages 2811-2821,2007.
    [89]X.S.Zhou and T.S.Huang.Small sample learning during multimedia retrieval using biasmap.IEEE Int'l Conf.Computer Vision and Pattern Recognition, pages 11-17,2001.
    [90]D.Cai,X.He,and J.Han.Semi-supervised discriminant analysis.IEEE Int'l Conf. Computer Vision, pages 1-8,2007.
    [91]T.Joachims.Transductive inference for text classification using support vector machines.Int'l Conf.Machine Learning,pages 200-209,1999.
    [92]E.Parzen.The annals of mathematical statistics.Estimation of a Probability Density Function and Mode, pages 1065-1076,1962.
    [93]H.D.Ⅲ and D.Marcu.Domain adaptation for statistical classifiers.Journal of Artificial Intelligence Research, pages 101-126,2006.
    [94]S.Thrun and T.M.Mitchell.Learning one more thing.Int'l Mont Conf. Artificial Intelligence, pages 1217-1225,1995.
    [95]I.J.Myung and M.A.Pitt.Applying Occam's razor in modeling cognition: A bayesian approach.Psychonomic Bulletin (?) Review,1997.
    [96]Z.Zhang and H.Zha. Principal manifolds and nonlinear dimensionality re-duction via tangent space alignment.SI AM Journal of Scientific Computing, pages 313-338.2004.
    [97]T.Zhang, D.Tao,X.Li,and J.Yang.Patch alignment for dimensionality reduction.IEEE Trans. Knowledge and Data Engineering,pages 1299-1313, 2009.
    [98]T.Zhang, D.Tao,and J.Yang.Discriminative locality alignment.European Conf.Computer Vision, pages 725-738,2008.
    [99]Trec-10 proceddings appendix on common evaluation measures. http://trec.nist.gov/pubs/trec10/appendices/measures.pdf.
    [100]Kalervo Jarvelin and Jaana Kekalainen.Cumulated gain-based evaluation of ir techniques.ACM Trans.Inf.Syst,20(4):422-446,2002.
    [101]Ioannis Tsochantaridis,Thorsten Joachims,Thomas Hofmann,and Yasemin Altun.Large margin methods for structured and interdependent output variables.Journal of Machine Learning Research, pages 1453-1484,2005.
    [102]Yossi Rubner,Leonidas Guibas,and Carlo Tomasi.The earth mover's distance,multi-dimensional scaling, and color-based image retrieval.ARPA Image Understanding Workshop,pages 661-668,1997.
    [103]David G.Lowe.Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision,60(2):91-110,2004.
    [104]William T.Freeman and Michal Roth.Orientation histograms for hand gesture recognition.International Workshop on Automatic Face and Gesture Recognition, pages 296-301,1994.
    [105]Navneet Dalal and Bill Triggs.Histograms of oriented gradients for human detection.CVPR,pages 886-893,2005.
    [106]Rong Xiao,Huaiyi Zhu,He Sun,and Xiaoou Tang.Dynamic cascades for face detection.IEEE International Conference on Computer Vision,pages 1-8,2007.