高浓度难降解有机废水的间歇水解—好氧循环生物处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
印染废水和化工废水是典型的两类工业废水。其中,蒽醌染料是合成染料中重要的一类,是继偶氮染料之后使用量最大的一类染料,被广泛地应用于纺织、印染等行业。由于其具有很强的水溶性,工业生产中约50 %的蒽醌染料残留在生产废水中,导致废水色度极高且难生物降解,这给水环境带来了严重的危害。2,4-二氯苯酚(2,4-DCP)是芳香类化合物中用途较广、毒性较大、环境污染较严重的一类化合物,被广泛地用作木材防腐剂、防锈剂、杀真菌剂和一般杀虫剂等。中国、美国EPA等国家都将2,4-DCP列入了“优先控制污染物黑名单”。
     本文以活性艳蓝KN-R和2,4-DCP为目标污染物,研究生物膜和活性污泥体系下,间歇水解-好氧循环工艺降解两种有机污染物的可行性,为间歇水解-好氧循环工艺处理高浓度难降解有机废水的工程应用奠定理论基础。
     研究发现,循环流量、水解/好氧反应器有效液体体积比(水解/好氧反应器体积比)、好氧曝气流量是生物膜法和活性污泥法水解-好氧循环工艺降解活性艳蓝KN-R和2,4-DCP的关键工艺参数,对废水处理效果、反应器运行稳定性、菌体活性、微生物代谢产物累积情况及污泥特性等均有显著的影响。
     生物膜法水解-好氧循环工艺降解活性艳蓝KN-R过程中,活性艳蓝KN-R初始浓度为600 mg/L,葡萄糖浓度2000 mg/L,在循环流量为10 mL/min,曝气流量3 L/min,水解/好氧反应器体积比2:2时,降解24 h,化学需氧量(COD)和色度的总去除率分别达到94.2 %和94.4 %。适当地增加循环流量,可以减轻水解反应器的酸化程度,避免挥发性脂肪酸(VFA)的积累对水解微生物的活性产生抑制。同时,提高了废水COD、色度的总去除率以及平均去除速率。但循环流量过高,导致水解反应器中溶解氧(DO)浓度增大,对水解微生物的生物降解活性产生抑制,不利于废水中活性艳蓝KN-R的降解。
     活性污泥法水解-好氧循环工艺降解活性艳蓝KN-R过程中,活性艳蓝KN-R初始浓度为200 mg/L,葡萄糖浓度2000 mg/L,在循环流量为10 mL/min,曝气流量3 L/min,水解/好氧反应器体积比2:2时,COD和色度的总去除率分别达到90 %和85 %。废水COD和色度总去除率随着循环流量的增大呈现先增加后减小的趋势。循环流量增加,VFA浓度的峰值有所降低,水解和好氧污泥胞外多聚物(EPS)中胞外多糖(PS)和蛋白(PN)含量增加,污泥表面Zeta电位值减小,细胞表面相对疏水性增大,促进了微生物细胞间的相互粘附,有效地改善了污泥的沉降性能。
     生物膜法水解-好氧循环工艺降解2,4-DCP过程中, 2,4-DCP初始浓度为20 mg/L,葡萄糖2000 mg/L,在循环流量为10 mL/min、曝气流量3 L/min、水解/好氧反应器体积比2:2时,降解24 h,COD和2,4-DCP的总去除率分别达到95 %和99 %。2,4-DCP和COD的总去除率随着循环流量增加而增大。但是,循环流量过高时,VFA浓度较高,水体的缓冲能力下降,水解微生物活性被抑制,不利于循环系统的稳定运行。在一定范围内提高曝气流量,可以提高废水2,4-DCP、COD的总去除率和去除速率。
     活性污泥法水解-好氧循环工艺降解2,4-DCP过程中, 2,4-DCP初始浓度为20 mg/L,葡萄糖2000 mg/L,在循环流量为15 mL/min、曝气流量3 L/min、水解/好氧反应器体积比1:3时,降解24 h,COD和2,4-DCP的总去除率分别达到95 %和96 %。增大循环流量,加快了2,4-DCP、COD的总去除率和去除速率,VFA浓度的峰值逐渐降低且VFA达到最大值的时间加快,水解和好氧污泥EPS中胞外多糖和胞外蛋白质含量逐渐增加,污泥表面Zeta电位值减小。PN/PS也随循环流量增加呈线性增加趋势。同时,水解和好氧反应器内活性微生物量逐渐增加,污泥沉降性能得到改善。水解/好氧反应器体积比对2,4-DCP的降解有显著的影响。在1:3的体积比下,反应器中VFA浓度较低,体系保持较强的缓冲能力,微生物具有较强的活性,水解和好氧污泥EPS中胞外多糖和蛋白质含量最高,污泥的表面Zeta电位分布均最小,污泥整体性能稳定。
     水解和好氧反应器间溶液的循环类似于天然水环境中厌氧和好氧界面间液体的传质。它将水解和好氧两个独立的过程“同时”进行,发挥了水解和好氧微生物间的协同作用,强化了水解和好氧降解过程,有效地解决了水解反应器中酸化抑制的难题,提高了废水的处理速率和效率。
Dyeing wastewater and chemical industry wastewater are two kinds of typical industry wastewater. Anthraquinone dyes constitute the second largest class of textile dyes after azo dyes, which are extensively used in the textile and dyeing industry because of their wide variety of color shades, high wet fastness profiles, ease of application, brilliant colors, and minimal energy consumption. Under typical industrial conditions, about 50 % of the dyes remain in the spent dye in unfixed or hydrolyzed form resulting in colored effluent, which brings major aesthetic problems for the industry. Thus, environmental concerns and the need of meeting the stringent international standards for rejecting wastewater have made the development of efficient and low cost processes for dealing with textile aqueous effluents an issue of major technological importance. Chlorophenols, such as 2,4-dichlorophenol (2,4-DCP), are used extensively in the manufacture of pesticides, herbicides, glue, paint, leather and pulp and wood preservatives. Due to its manufacture in large quantities and toxicity, DCP is an Environmental Protection Agency (EPA) priority pollutant identified in hazardous waste sites identified on the National Priorities List.
     The objectives of the present work were to investigate the feasibility of a batch operated biofilm and activated sludge hydrolytic-aerobic recycling process (HARP) in degrading anthraquinone dye Reactive Blue KN-R (KN-R) and 2,4-DCP in wastewater. This study may be valuable for experimental design and engineering application of high concentration organic wastewater treatment by the batch hydrolytic-aerobic recycling process.
     The results showed that recycling flux, hydrolytic/aerobic reactor volume ratio and aeration flux were the key process parameters for the batch operated biofilm and activated sludge hydrolytic-aerobic recycling process in treating KN-R and 2,4-DCP wastewater, which had great effects on removal efficiency and rate, stability of process, activity of microorganisms and characteristics of activated sludge and so on.
     When the synthetic wastewater of KN-R 600 mg/L and glucose 2000 mg/L was treated by the batch operated biofilm hydrolytic-aerobic recycling process with recycling flux 10 mL/min, aeration flux 3 L/min, hydrolytic/aerobic reactor volume ratio 2:2, chemical oxygen demand (COD) and color removal efficiency could be up to 94.2 % and 94.4 %, respectively. Increase in recycling flux would alleviate acidification degree in the hydrolytic reactor and decrease volatile fatty acids (VFA) accumulation. Moreover, COD and color removal efficiency and average removal rate could be greatly enhanced. However, when recycling flux was much higher, the dissolved oxygen (DO) in the hydrolytic reactor was gradually increasing, which resulted in the fact that the activity of hydrolytic microorganisms was depressed and removal efficiency of COD and color was decreased.
     When the synthetic wastewater of KN-R 200 mg/L and glucose 2000 mg/L was treated by the batch operated activated sludge hydrolytic-aerobic recycling process with recycling flux 10 mL/min, hydrolytic/aerobic reactor volume ratio 2:2, aeration flux 3 L/min, COD and color removal efficiencies reached 90 % and 85 %, respectively. With recycling flux increasing from 5 mL/min to 15 mL/min, COD and color removal efficiency increased and the maximum of VFA decreased. Meanwhile, the increase of the content of polysaccharide (PS) and protein (PN) in extracellular polymeric substances (EPS) of hydrolytic and aerobic activated sludge resulted in the increasing of Zeta potential and accelerated the conglutination and the settling of activated sludge.
     When the synthetic wastewater of 2,4-DCP 20 mg/L and glucose 2000 mg/L was treated by the batch operated biofilm hydrolytic-aerobic recycling process with recycling flux 10 mL/min, hydrolytic/aerobic reactor volume ratio 2:2, aeration flux 3 L/min, COD and 2,4-DCP removal efficiencies could be up to 95 % and 99 %, respectively. COD and 2,4-DCP removal efficiency rose with recycling flux increasing from 5 mL/min to 10 mL/min. However, when recycling flux was above 10 mL/min, the trace amounts of oxygen transported to the hydrolytic reactor by recycling solution from the aerobic reactor could reduce the activity of hydrolytic microorganisms. COD and 2,4-DCP removal efficiency could be greatly enhanced by increasing aeration flux.
     When the synthetic wastewater of 2,4-DCP 20 mg/L and glucose 2000 mg/L was treated by the batch operated activated sludge hydrolytic-aerobic recycling process with recycling flux 15 mL/min, hydrolytic/aerobic reactor volume ratio 1:3, aeration flux 3 L/min, COD and 2,4-DCP removal efficiencies reached 95 % and 96 %, respectively. With recycling flux increasing from 5 mL/min to 15 mL/min, COD and 2,4-DCP removal efficiency increased and the maximum of VFA decreased.
     Meanwhile, the increase of the content of PS and PN in EPS of hydrolytic and aerobic activated sludge resulted in the decreasing of Zeta potential. As a result, the conglutination and the settling performance of activated sludge were enhanced. The linear increase in PN/PS values with increasing of recycling flux was observed. Hydrolytic/aerobic reactor volume ratio had great effects on 2,4-DCP and COD removal. When hydrolytic/aerobic reactor volume ratio was 1:3, VFA concentrations were much lower, which indicated that the activity of hydrolytic microorganisms had not been inhibited and the whole process maintained a stable condition. The content of PS and PN in EPS of hydrolytic and aerobic activated sludge were highest and the Zeta potential was lowest at volume ratio 1:3. This implied that the stability of hydrolytic and aerobic activated sludge during the recycling process was enhanced.
     The above results suggested that the KN-R and 2,4-DCP in wastewater could be highly removed in the batch operated hydrolytic-aerobic recycling process. The exchange of metabolites between hydrolytic reactor and aerobic reactor could be compared to the metabolite exchange at interfaces between the anaerobic and aerobic zones of natural eco-process (sediments, bacterial colonies, stratified lakes and seas, microbial mats, biofilm, etc.). But the resistance to mass transfer across the hydrolytic-aerobic“interface”in reactors of the recycling process was much lower than it was in the natural process. The hydrolytic-aerobic recycling process benefited from the combination of“reductive and oxidative degradation mechanisms”and“cooperative metabolism”caused by the exchange of metabolites between hydrolytic and aerobic reactor. The metabolic and kinetic limitations to hydrolytic and aerobic microorganisms could be overcome in the recycling process. Meanwhile, the hydrolytic-aerobic recycling process could successfully solve the problem of over-acidification and effectively enhance the removal efficiency and rate of KN-R, 2,4-DCP and COD.
引文
[1] 赵月龙, 祁佩时, 杨云龙. 高浓度难降解有机废水处理技术综述[J]. 四川环境, 2006, 25(4): 98-103.
    [2] 李杰. 难降解有机物的生物处理技术进展[J]. 环境科学与技术, 2005, 25(增): 187-189.
    [3] 陈华, 严莲荷, 王瑛, 等. 难降解有机废水的高效优势菌的研究进展[J]. 工业水处理, 2005, 25(4): 17-21.
    [4] 丁真真,王建中. 难降解有机物废水的处理方法[J]. 城市与减灾, 2006, 4: 25-27.
    [5] 李少婷, 张宏, 余训民, 等. 难降解有机污染物生物处理技术的研究进展[J]. 广西科学, 2005, 12(3): 236-240.
    [6] 徐中其, 戴航, 陆晓华. 难降解有机废水处理新技术[J]. 江苏环境科技, 2000, 13(1): 32-35.
    [7] 侯红漫. 白腐菌 Pleurotus ostreatus 漆酶及对蒽醌染料和碱木素脱色的研究[D]. 大连理工大学博士学位论文, 2003.
    [8] 李家珍. 染料、染色工业废水处理[M]. 北京: 化学工业出版社, 1997.
    [9] 程荣, 王建龙, Zhang Wei-xian. 纳米 Fe0 降解 2,4-二氯酚的影响因素及其机理[J].中国科学 B, 2007, 37(1): 82-87.
    [10] 梁立丹,武书彬. 我国有机磷农药废水的生化法处理研究进展[J]. 环境污染治理技术与设备, 2002, 3(3): 67-73.
    [11] 郁志勇, 王文华, 彭安. 紫外光作用下氯酚的矿化程度比较[J]. 环境化学, 1998, 17(5): 490-493.
    [12] 李军, 杨秀山, 彭永臻. 微生物与水处理工程[M]. 北京: 化学工业出版社, 2002.
    [13] Speece, R.E. Anaerobic biotechnology for industrial wastewater treatment [J]. Environ. Sci. Technol., 1983, 17 (9): 415-427.
    [14] 范俊. PTA 生产废水高效生化处理技术的研究[D]. 南京工业大学硕士学位论文, 2004.
    [15] 牛樱, 陈季华. 兼氧-好氧工艺处理高浓度化工废水[J]. 工业水处理, 2000, 20(8): 8-10.
    [16] 洪铭媛. 高浓度淀粉废水的生物膜水解-好氧组合处理工艺[D]. 厦门大学硕士学位论文, 2004.
    [17] 芮尊元, 阎宁, 蔡晶. 有机污水的水解-好氧处理技术[J]. 环境保护, 2000, 12-13.
    [18] 张丽丽, 管运涛, 赵婉婉, 等. 用一体化生物膜反应器处理生活污水[J]. 清华大学学报(自然科学版), 2007, 47(6): 822-825.
    [19] 赵健良, 童昶, 沈耀良. 厌氧(水解酸化)-好氧生物处理工艺及其在我国难降解有机废水处理中的应用[J].苏州大学学报(工科版), 2002, 22(2): 84-88.
    [20] Torrijos M., Cerro R.M., Capdeville B., et al. Sequencing batch reactor: A tool for wastewater characterization for the lawprc model [J]. Water Sci. Tech., 1994, 29: 81-90.
    [21] Irvine R.L., Wilderer P.A., Flemming H.-C. Controlled unsteady state processes and technologies and technologies-an overview [J]. Water Sci. Tech., 1997, 35(1): 1-10.
    [22] 周雹. SBR 工艺的分类和特点[J]. 给水排水, 2001, 27(2):31-33.
    [23] Stephenson R.J., Patoine A., Guiot S.R. Effects of oxygenation and upflow liquid velocity on a coupled anaerobic/aerobic reator system [J]. Water Sci. Tech., 1999, 33(12): 2855-2863.
    [24] Guiot S.R., Stephenson R.J., Frigon J.-C., et al. Single-stage anaerobic/aerobic biotreatment of resin acid-containing wastewater [J]. Water Sci. Tech., 1998, 38(4/5): 255-262.
    [25] Tartakovsky B., Michott A., Cadieux J.C., et al. Degradation of aroclor 1242 in a single-stage coupled anaerobic/aerobic bioreactor [J]. Water Res., 2001, 35(18): 4323-4330.
    [26] John G., Schügerl K. Co-immobilized aerobic/anaerobic mixed cultures in stirred tank and gaslift loop reactors [J]. J Biotech., 1996(50): 115-122.
    [27] Meyerhoff J. John G., Bellgardt K.-H., et al. Characterization and modelling of coimmobilized aerobic/anaerobic mixed cultures [J]. Chem. Eng. Sci., 1997, 52(14): 2313-2329.
    [28] Menoud P., Wong C.H., Robinson H.A., et al. Simultaneous nitrification and denitrification using Siporax? packing [J]. Water Sci. Tech., 1999, 40(4/5): 153-160.
    [29] Hsieh Y.L., Tseng S.K., Chang Y.J. Nitrogen removal from wastewater by using a double-biofilm reactor with a continuous-flow method [J]. Bioresour. Technol., 2003, 88: 107-113.
    [30] Armenante P.M., Kafkewitz D., Lewandowski G., et al. Integrated anaerobic-aerobic process for the biodegradation of chlorinated aromatic compounds [J]. Environ. Prog., 1992, 11: 113-122.
    [31] Bode H. Anaerobic-aerobic treatment of industrial wastewater [J]. Water Sci. Tech., 1988, 20(4/5): 189-198.
    [32] Dienemann E.A., Kosson D.S., Ahlert R.C. Evaluation of serial anaerobic/aerobic packed bed bioreactors for treatment of a superfund leachate [J]. J Hazard. Mater., 1990, 23: 21-42.
    [33] Wahaab R.A., El-awady M. H. Anaerobic-aerobic treatment of meat processing wastewater [J]. The Environmentalist, 1999, 19: 61-65.
    [34] Bhattacharya S.K., Yuan Q., Jian P. Removal of pentachlorophenol from wastewater by combined anaerobic-aerobic treatment [J]. J Hazard. Mater., 1996(49): 143-154.
    [35] Atuanya E. I., Purohit H. J., Chakrabarti T. Anaerobic and aerobic biodegradation of chlorophenols using UASB and ASG bioreactors[J]. World J Microbiol.Biotech., 2000, 16: 95-98.
    [36] Ciftci T., ?ztürk I. Nine years of full-scale anaerobic-aerobic treatment experiences with fermentation industry effluents [J]. Water Sci. Tech., 1995, 32(12): 131-139.
    [37] 翟素军, 蔡翠雪, 盛杰. 浅谈 A/O 系统流程在石油化工废水处理中的应用[J]. 山东环境, 1998(6): 26-27.
    [38] 蔡萌萌, 赵庆良, 刘志刚. 串联活性污泥系统处理制药废水工艺研究[J]. 哈尔滨工业大学学报, 2007, 39(4): 576-580.
    [39] 白端超, 阳运河. 水解-好氧-氯氧化工艺处理染整废水的探讨[J]. 环境工程, 1994, 12(1): 7-17.
    [40] 宁天禄, 姚重阳, 闫春娥, 等. 应用水解-好氧生物法处理中药厂废水[J]. 工业水处理, 1998, 18(6): 35-37.
    [41] 韩正昌, 黄勇, 王少浦, 等. A/O 装置处理表面活性剂废水的运行经验[J]. 化工环保, 2001, 21(3): 177-180.
    [42] 关卫省, 曾涛, 朱浚黄. A/O 生物法处理石化废水的研究[J]. 中国环境科学, 1995, 15(5): 363-368.
    [43] 施英乔, 丁来保, 李萍, 等. 厌氧-好氧处理高得率浆 APMP 废水的研究[J]. 环境科学与技术, 2000(3): 8-11.
    [44] 柴社立, 宋若海, 李清泉, 等. 多阶段水解-好氧工艺处理淀粉废水的研究[J]. 长春科技大学学报, 2000, 30(3): 266-270.
    [45] 薛玉琴. 缺氧-好氧工艺处理高浓度废水的应用[J]. 工业用水与废水, 1998(1): 3-8.
    [46] Fahmy M., Kut O.M., Heinzle E. Anaerobic-aerobic fluidized bed biotreatment of sulphite pulp bleaching effluents-I. Global parameters [J]. Water Res., 1994, 28(9): 1987-1996.
    [47] Fahmy M., Kut O.M., Heinzle E. Anaerobic-aerobic fluidized bed biotreatment of sulphite pulp bleaching effluents-II. Fate of individual chlorophenolic compounds [J]. Water Res., 1994, 28(9): 1997-2010.
    [48] Ascón M.A., Lebeault J. M. High efficiency of a coupled aerobic-anaerobic recycling biofilm reactor system in the degradation of recalcitrant chloroaromatic xenobiotic compounds [J]. Appl. Microbiol. Biotechnol., 1999, 52: 592-599.
    [49] Beeman R.E., Bleckmann C.A. Sequential anaerobic–aerobic treatment of an aquifer contaminated by halogenated organics: field results [J]. J Contam. Hydrol., 2002 (57): 147-159.
    [50] 方建章, 黄少斌. 生化法处理煤气废水[J]. 环境污染与防治, 1999, 21(4): 10-14.
    [51] Bernet N., Delgenes N., Akunna J. C., et al. Combined anaerobic-aerobic SBR for the treatment of piggery wastewater [J]. Water Res., 2000, 34 (2): 611-619.
    [52] Jeong H., Hae J. W., Myung W. C., et al. Simultaneous organic and nitrogen removal from municipal landfill leachate using an anaerobic-aerobic system [J]. Water Res., 2001, 35(10): 2403-2410.
    [53] Del P. R., Diez. V. Organic matter removal in combined anaerobic–aerobic bioreactors [J]. Water Res., 2003 (37): 3561-3568.
    [54] Takai T., Hirata A., Yamauchi K., et al. Effects of temperature and volatile fatty acids on nitrification-denitrification activity in small-scale anaerobic-aerobic recirculation biofilm process [J]. Water Sci. Tech., 1997, 35(6):101-108.
    [55] 廖鑫凯. 处理高浓度有机废水的新型水解-好氧循环 SBR 技术的研究[D]. 厦门大学硕士学位论文, 2004.
    [56] 邹小勤. 高浓度模拟 PTA 生产废水的间歇生物处理技术研究[D]. 厦门大学硕士学位论文, 2006.
    [57] 国家环保局,《水和废水监测分析方法》编委会. 水和废水监测分析方法(第三版)[M]. 北京: 中国环境科学技术出版社, 1989.
    [58] 贺延龄. 废水的厌氧生物处理[M]. 北京: 中国轻工业出版社, 1998.
    [59] 董晓丽, 周集体, 王竞. 蒽醌染料降解菌 XL-I 活细胞色素及降解产物的紫外可见光谱分析[J].光谱学与光谱分析, 2003, 4, 23(2): 340-341.
    [60] Gerhardt P., Murray R.G.E., Wood W.A., et al. Methods for general and molecular bacteriology, American Society for Microbiology [M]. Washington, D.C., 1996.
    [61] Frolund B., Griebe T., Nielsen P.H. Enzymatic activity in the acitivated-sludge floc matrix [J]. Appl. Microbiol. Biotechnol., 1995, 43,755-761.
    [62] de Beer D., Flaharty V.O., Thaveesri J., et al. Distribution of extracellular polysaccharides and flotation of anaerobic sludge[J]. Appl. Microbiol. Biotechnol., 1996, 46, 197-201.
    [63] Zhang L. L., Zhang B., Huang Y. F., et al. Re-activation characteristics of preserved aerobic granular sludge[J]. J Environ. Sci., 2005, 17(4): 655-658.
    [64] 刘雨, 赵庆良, 郑新灿. 生物膜法污水处理技术[M]. 北京: 中国建筑工业出版社, 2000.
    [65] American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 20th ed. [M]. APHA, Washington, DC, USA, 1998.
    [66] 薛少华, 成建家. 蒽醌染料生产废水处理工艺研究[J]. 化工环保, 2002, 22(4): 198-203.
    [67] 肖继波, 胡勇有, 田静. 活性艳蓝 KN-R 的生物吸附脱色研究[J]. 中国环境科学, 2004, 24(1): 63-67.
    [68] DelgenesN B.N., Akunna J.C., Delgenes J.P. Moletta R.Combined anaerobic-aerobic SBR for the treatment of piggery wastewater [J]. Water Res., 2000, 34(1): 611-619.
    [69] Dong X.L., Zhou J.T., Liu Y. Peptone-induced biodecolorization of reactive brilliant blue (KN-R) by Rhodocyclus gelatinosus XL-1 [J]. Process Biochem., 2003, 39: 89-94.
    [70] Haug W., Schmidt A., Nortemann B., et al. Mineralization of the sulfonated azo dye mordant yellow 3 by a 6-aminophthalene-2-sulfonated-degrading bacterial consortium [J]. Appl. Environ. Microbiol. 1991, 57, 3144-3149.
    [71] Carliell C.M., Barclay S.J., Naidoo N., et al. Microbial decolorization of a reactive azo dye under anaerobic conditions [J]. Water SA. 1995, 21, 61-69.
    [72] Kapdan I.K., Kargi F., McMullan G., et al. Effect of environmental conditions on biological decolorization of textile dyestuff by Phanerochaete chrysosporium [J]. Enzyme. Microb. Technol., 2000, 26: 381-387.
    [73] Castillo A., Cecchi F., Mata-Alvarez J. A combined anaerobic-aerobic system to treat domestic sewage in coastal areas [J]. Water Res., 1997, 31(12): 3057-3063.
    [74] Dos Santos A.B., Bisschops I.A.E., Cervantes F.J., et al. The transformation and toxicity of anthraquinone dyes during thermophilic and mesophilic anaerobic treatments [J]. J Biotechnol., 2005, 115: 345-353.
    [75] Li Q.B., Liao X.K., Wu Z.W., et al. Preliminary study on the performance and interaction of recycling hydrolytic-aerobic combined process of high concentration starch wastewater [J]. Chin. J Chem. Eng., 2004, 12: 108-112.
    [76] Lie T.J., Godchaux W., Leadbetter E.R., Sulfonates as terminal electron acceptors for growth of sulfite-reducing bacteria and sulfate-reducing bacteria: effects of inhibitors of sulfidogenesis [J]. Appl. Environ. Microbiol., 1996, 65: 4611-4617.
    [77] Zollinger H. Color chemistry [M], 2nd Ed. New York: VCH Publishers. 1991.
    [78] Prestera T., Prochaska J., Talalay P. Inhibition of NAD(P)H: (Quinone-acceptor) oxireductase by Cibracon Blue and related anthraquinone dyes: a structure-activity study [J]. Biochem., 1992, 31: 824-833.
    [79] Denizli A., Piskin E. Dye affinity systems [J]. Biochem. Biophys. Methods., 2001, 49: 391-416.
    [80] Podgornik H., Grgic I., Perdih A. Decolorization rate of dyes using lignin peroxidases of Phanerochaete chrysosporium [J]. Chemosphere, 1999, 38: 1353-1359.
    [81] Kettunn R.H., Pulkkinen E.M. Biological treatment at low temperatures of sulfur-rich phenols containing oil shale ash leachate [J]. Water Res., 1996, 30: 1395-1402.
    [82] Fontenot E.J., Beydilli M.I., Lee Y.H., et al. Kinetics and inhibition during the decolorization of reactive anthraquinone dyes under methanogenic conditions [J]. Water Sci. Technol., 2002, 10: 105-111.
    [83] Droste R. L. Theory and Practice of Wastement Treatment [M]. John Wiley & Sons, Inc., New York, 1997.
    [84] Leslie G.C.P., Glen Jr., Daigger T., et al. Biological Wastewater Treatment [M]. 2nd Ed, New York: Marcel Dekker, Inc, 1999.
    [85] Fr?lund B., Palmgren R., Keiding K., et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin [J]. Water Res., 1996, 30(8): 1749-1758.
    [86] Laspidou C.S., Rittmann B.E. A unified theory for extracellular polymeric substances, soluble microbial products and active and inert biomass [J]. Water Res., 2002: 2711-2720.
    [87] Christensen B.E. The role of extracellular polysaccharides in biofilms [J]. J. Biotechnol., 1989, 10: 181-202.
    [88] Rittmann B.E., Laspidou C.S. Biofilm detachment, In: Bitton G., editor, The encyclopedia of environmental microbiology [M], New York, Wiley, 2001.
    [89] Flemming H.C. The forces that keep biofilm together, In: Sand W., editor, Bioderioration and biodegradation [M], Dechema monographs 133, Weinheim, VCH, 1996.
    [90] Wolfaardt G.M., Lawrence J.R., Korber D.R., et al. In: Wingender J., Neu T.R., Flemming H.C., editors, Microbial Extracellular polymeric substances: Characterization, structure and function[M], Berlin, Springer, 1999.
    [91] Tsuneda S., Jung J., Hayashi H., et al. Influence of extracelluar polymers on electrokinetic properties of heterotrophic bacterial cells examined by soft particle electrophoresis theory [J]. Colloids Surf. B, 2003, 29: 181-188.
    [92] Shen C.F., Kosaric N., Blaszczyk R. The effect of selected heavy metals (Ni, Co and Fe) on anaerobic granules and their extracellular polymeric substance (EPS) [J]. Water Res., 1993, 27: 25-33.
    [93] Matthew J.H., John T.N. Characterization of exocellular protein and its role in bioflocculation [J]. J. Environ.Eng., 1997: 479-485.
    [94] Laspidou C.S., Rittmann B.E. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass [J]. Water Res., 2002: 2711-2720.
    [95] Dignac M.F., Urbain V., Rybacki D. et al. Chemical description of extracellular polymers: implication on activated sludge floc structure [J]. Water Sci. Technol., 1998, 38: 45-53.
    [96] 胡纪萃. 废水厌氧生物处理理论与技术[M], 北京: 中国建筑工业出版社, 2003.
    [97] Liu Y.Q., Liu Y., Tay J.H. The effect of extracellular polymeric substances on the formation and stability of biogranules [J]. Appl. Microbiol. Biotechnol., 2004, 65: 143-148.
    [98] Rouxhet P.G., Mozes N. Physical chemistry of the interaction between attached microorganism and their support [J]. Water Sci. Technol., 1990, 22: 1-16.
    [99] Tsuneda S., Jung J., Hayashi H. Influence of extracellular polymers on electrokinetic properties of heterotrophic bacterial cells examined by soft particle eletrophoresis theory[J]. Colloids Surf. B, 2003, 29: 181-188.
    [100] 安虎仁, 钱易, 顾夏声等. 厌氧条件下染料的生物降解性能与染料废水处理的研究[J]. 化工环保, 1994, 14(4): 200-203.
    [101] Panswad T, Luangdilok W. Decolorization of reactive dyes with different molecular structures under different environmental conditions [J]. Water Res., 2000, 34: 4177-4184.
    [102] Jung, M.W., Ahn, K.H., Lee, Y., et al. Adsorption characteristics of phenol and chlorophenols on granular activated carbons [J]. Microchem., 2001, 70: 123-131.
    [103] Kim J.H., Oh K.K., Lee S.T., et al. Biodegradation of phenol and chlorophenols with defined mixed culture in shake-flasks and packed bed reactor[J]. Process Biochem., 2002, 37: 1367-1373.
    [104] Farrell A., Quilty, B. Substrate-dependent autoaggregation of psedomonas putida CP1 during the degradation of mono-chlorophenols and phenol [J]. J. Ind. Microbiol. Biotechnol., 2002, 28: 316-324.
    [105] Delia T.S., Aysen U. Treatment of 2,4-dichlorophenol (DCP) in a sequential anaerobic (upflow anaerobic sludge blanket) aerobic (completely stirred tank) reactor system[J]. Process Biochem., 2005, 40: 3419-3428.
    [106] Quan X.C., Shi H.C., Liu H. Removal of 2,4-dichlorophenol in a conventional activated sludge system through bioaugmentation[J]. Process Biochem., 2004, 39: 1701-1707.
    [107] Spain J.C., Gibson D.T. Pathway for biodegradation of p-nitrophenol in a Moraxella sp [J]. Appl. Environ. Microbiol., 1991, 57(3): 812-819.
    [108] Bhatti Z.I., Toda H., Furukawa K. p-Nitrophenol degradation by activated sludge attached on nonwovens [J]. Water Res., 2002, 36(5): 1135-1142.
    [109] Hollender J., Hopp J., Dott W. Degradation of 42chlorophenol via the meta cleavage pathway by Comamonas testosteroni J H5[J]. Appl. Environ. Microbiol., 1997, 63: 4567-4572.
    [110] Hollender J., Dott W., Hopp J. Regulation of chloro- and methylphenol degradation in Comamomas testosteroni . J H5[J]. Appl. Environ. Microbiol., 1994, 60: 2330-2338.
    [111] Koh S.C., Mccullar M.V., Focht D.D. Biodegradation of 2,4-dichlorophenol through a distal meta-fission pathway[J]. Appl. Environ. Microbiol., 1997, 63: 2054-2057.
    [112] Haggblom M.M., Young L. Y. Anaerobic degradation of halo2genated phenols by sulfate-reducing Consortia[J]. Appl. Microbiol. Biotechnol., 1995, 61: 1546-1550.
    [113] James R.C., Cascarelli A., William W.M., et al. Isolation and characterization of a novel bacteriumgrowing via reductive dehalogenation of 2-chlorophenol[J]. Appl. Environ. Microbiol., 1994, 60: 3536-3542.
    [114] Steinle P., Stucki G., Stettler R., et al. Aerobic mineralization of 2,6-dichlorophenol by Ralstonia sp. strain RK1[J]. Appl. Environ. Microbiol., 1998, 64: 2566-2571.
    [115] Utkin J., Woese C., Wiegel J. Isolation and characterization of Desulfutobacterium dehalogenans gen., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds [J]. Int. J. Syst. Bacteriol., 1994, 44: 612-619.
    [116] 施汉昌, 王颖哲, 韩英健, 等. 补充碳源对厌氧生物处理 2,4,6-三氯酚的影响[J]. 环境科学,1999, 20(5): 11-15.
    [117] Pukakka J.A., Jarimen K. Aerobic fluidized-bed treatnent of polychlorinated phenolic wood preservative constituents[J]. WaterRes., 1992, 26(6): 766-770.
    [118] Buitron G., Gonzales A. Characterization of microorganisms from an acclimated activated sludge degrading phenolic compounds [J]. Water Sci. Technol., 1996, 34: 289-294.
    [119] Wang C.C., Lee C.M., Kuan C.H. Removal of 2,4-dichlorophenol by suspended and immobilized Bacillus insolitus[J]. Chemosphere, 2000, 41: 447-452.
    [120] Fikret K., Serkan E. Effect of sludge age on performance of an activated sludge unit treating 2,4-dichlorophenol-containing synthetic wastewater[J]. Enzy. Microbial. Technol., 2006, 38: 3860-3864.
    [121] Lin S.H., Ho S.J. Kinetic and performance characteristics of wet air oxidation of high concentration wastewater [J]. Ind. Eng. Res., 1996, 35: 307-314.
    [122] 刘晓云, 王琳, 林跃枚, 等. 好氧颗粒污泥胞外多糖的细胞化学定位研究[J]. 电子显微学报, 2006, 25 (增): 247-248.
    [123] Schmidt J.E., Ahring B.K. Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors [J]. Appl. Microbiol. Biotechnol., 1994, 42: 457-462.
    [124] Morgan J.W., Evison L.M., Forster C.F. The internal architecture of anaerobic sludge granules[J]. J. Chem. Technol. Biotechnol., 1991, 50: 211-216.
    [125] Ettinger M.B., Ruchhoft C.C. Persistence of chlorophenols in polluted river water and sewage dilutions [J]. Sewage Ind. Wastes, 1950, 22:1214-1217.
    [126] Manila V.B. Photocatalytic treatment of toxic organics in wastewater: toxicity of photodegradation products [J]. Water Res., 1992, 26(81): 1035-1038.