基于固定化微生物的厌氧—好氧组合工艺处理高浓度有机废水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文试验旨在考察以固定化微生物技术构筑的厌氧-好氧高效生物滤池处理模拟高浓度有机废水和餐饮泔水的可行性研究。厌氧工艺将难降解的大分子有机物转化为易降解的小分子有机物,并产生生物能,好氧工艺将废水进一步处理,使其达标排放,两者有机结合,优势互补,可获得较好的经济效益和环境效益。
     本研究探索了厌氧-好氧高效生物滤池的启动过程、二次启动过程、酸化恢复过程、以及影响系统运行的各项工艺参数,从COD去除效果、出水pH、产气率等方面监测反应器的运行效果,得出以下主要结论:
     1.厌氧-好氧高效生物滤池处理模拟高浓度有机废水,温度为35℃的条件下,反应器启动、二次启动和酸化恢复分别需要20、18、14天,三个阶段的最高负荷分别为5.6、6.0、5.76kg COD/m3·d。厌氧出水经过三级好氧生物处理后,COD小于80 mg/L,pH为8-9之间。
     2.考察了进水流量、pH和温度对生物滤池处理效率的影响。不断提高厌氧反应器的进水流量,使HRT由17.65 h降至10.34 h,容积负荷由6.53kg COD/m3·d提高至11.14kg COD/m3·d,反应器仍可正常运行;在温度为35℃、HRT为15 h、COD为4800 mg/L的条件下,将进水pH调节为4.7左右,厌氧COD去除率保持在78%左右,pH在6.8-7.2之间,产气率为1.02-1.29 L/L·d;在温度25℃、HRT为15 h的条件下,对于2000 mg/L的废水,去除率最高为55%,出水pH维持在6.7-7.2之间,产气率保持在0.79-1.03 L/L·d之间。
     3.厌氧-好氧高效生物滤池处理餐饮废水,在温度为35℃,HRT为15 h的条件下,厌氧滤池的最高负荷达25.6kg COD/m3·d,最高产气率为4.28 L/L·d,出水pH值稳定在6.7-7.2之间,三级好氧处理的COD总去除率保持在98%以上。
     4.扫描电镜显示,反应器内微生物种类丰富,厌氧微生物以产甲烷八叠球菌和产甲烷丝菌为主,好氧微生物以丝状菌和球状菌为主,并有大量的原生动物。
The paper studies on the feasibility of treatment of simulate high concentration organic wastewater and hogwash using anaerobic-aerobic process by immobilized microorganism. Organic matter which is difficult degradable could be converted easily degradable one in anaerobic degradation process, and produces bio-energy. Further treatment of wastewater is done in aerobic process. Combination of anaerobic and aerobic degradation process is availability of good economic and environmental benefits.
     The start-up, second start-up, acidification recovery process and the effluence factor of the high-efficiency anaerobic-aerobic biological filter are studied. COD removal rate, pH and gas production rate are monitored to evaluate effect of the reactor. The main results from these studies are summarized as following:
     1. The treatment of simulate high concentration organic wastewater is studied. The study shows that at the Temperature of 35℃, the start-up、second start-up and acidification recovery process of the reactor could be finished in 20,18,14 days, respectively, and the volumetric loading rate of the three processes are 5.6,6.0,5.76 kg COD/m3·d, respectively. With further treatment of three aerobic processes, COD of the wastewater is below 80 mg/L, and the value of pH is between 8 and 9.
     2. The influential factors of reaction such as flow amount, pH and temperature are investigated. Increasing the flow amount of anaerobic reactor, HRT drops from 17.65 h to 10.43 h, and volumetric loading rate increases from 6.53 kg COD/m3·d to 11.14 kg COD/m3·d, and the reactor is still on normal operation. At the condition of 35℃, HRT 15 h, COD 4800mg/L, pH 4.7, COD removal rate of anaerobic reactor is about 78%, and pH is between 6.8 and 7.2, and the gas production rate is 1.02-1.29 L/L·d. At the condition of 25℃, HRT 15 h, COD 2000mg/L, the highest COD removal rate of anaerobic reactor is 55%, and pH is between 6.7 and 7.2, and the gas production rate is 0.79-1.03 L/L·d.
     3. The treatment of hogwash by anaerobic-aerobic biological filter is studied. The study shows that at the condition of 35℃, HRT 15 h, the highest volumetric loading rate of the anaerobic reactor is 25.6kg COD/m3·d, the highest gas production rate is 4.28 L/L·d, and influential pH reaches a stable level of 6.7-7.2. With further treatment of three aerobic processes, the total COD removal rate is above 98%.
     4. SEM photos reveal that these are rich species of microorganisms. The main anaerobic microorganisms are methanogenic sarcina and methanogenic filamentous bacteria. The main aerobic microorganisms are filamentous bacteria and spherical bacteria, and there is a large number of protozoa.
引文
[1]斯皮思R E,李亚新.工业废水的厌氧生物技术[M].北京:中国建筑工业出版社,2001,2-6.
    [2]McCarty P L. Anaerobic Digestion. Elsevier Biomedical Press, B.V.1982:3-22.
    [3]Zeikus J G.. Anaerobic Digestion. Applied Science Publisher Ltd.1980:61-87.
    [4]郑隆举,李德生.厌氧反应器在国内外的进展研究[J].能源与环境,2007(6):89-90,92.
    [5]管锡瑶,郑西来.从厌氧反应器的发展谈UASB反应器的改良[J].中国海洋大学学报:自然科学版,2004,34(2):261-268.
    [6]迟文涛,赵雪娜,江翰等.厌氧反应器的发展历程与应用现状[J].城市管理与科技,2004,6(1):31-33.
    [7]高小萍,陈吕军.厌氧反应器的发展[J].江苏环境科技,1999,12(3).-32-34
    [8]顾夏生,胡洪营,文湘华等.水处理生物学[M].中国建筑工业出版社,2006,220.
    [9]王海涛.高浓度难降解有机废水的间歇水解-好氧循环生物处理技术研究[D].厦门大学博士学位论文,2007.
    [10]张丽丽,管运涛,赵婉婉等.用一体化生物膜反应器处理生活污水[J].清华大学学报(自然科学版),2007,47(6):822-825.
    [11]Speece R E. Anaerobic biotechnology for industrial wastewater treatment[J]. Environmental Science and Technology,1983,17(9):415-427.
    [12]洪铭媛.高浓度淀粉废水的生物膜水解-好氧组合处理工艺[D].厦门大学硕士学位论文,2004.
    [13]赵健良,童昶,沈耀良.厌氧(水解酸化)-好氧生物处理工艺及其在我国难降解有机废水处理中的应用[J].苏州大学学报(工科版),2002,22(2):84-88.
    [14]朱智强,蒋文生.厌氧水解酸化-生物接触氧化工艺处理印染废水[J].污染防治技术,2008,21(3):80-81.
    [15]敖凯,韩洪军,王伟等.水解酸化-外循环(EC)厌氧-接触氧化工艺处理啤酒废水[J].环境工程,2010,28(1):11-13.
    [16]Karel S F, Libicki S B, et al. Immobilization of whole cells:Engineering principles [J]. Chemical Engineering Science,1985,40(8):1321-1354.
    [17]Lu B, Xie J M, Lu C L, et al. Oriented immobilization of fab'fragments on silica surfaces[J]. Analytical Chemistry,1995,67(1):83-87.
    [18]Basinka T, Slomkowski S. Attachment of horeradish peroxidase(HRP) onto their derivatives with amino groups on the surface; activity of immobilized enzyme [J]. Colloid and Polymer Science,1995,273(5):431-438.
    [19]Zhou L C, Li G Y, An T C, et al. Recent Patents on Immobilized Microorganism Technology and its Engineering Application in Wastewater Treatment[J]. Recent Patents on Engineering, 2008,2:28-35.
    [20]马鹏程,李彦锋,周林成等.固定化微生物技术及其用于废水处理研究进展[C].//西部开发与可持续发展之环境保护——第九届海峡两岸环境保护学术研讨会论文集(上册).西安:西安交通大学出版社,2004,531-534.
    [21]周定,王建龙,侯文华等.固定化细胞在废水处理中的应用及前景[J].环境科学, 1993(5):51-54.
    [22]叶正芳,李彦锋,李贤真等.曝气生物流化床(ABFB)处理煤气化废水的研究[J].中国环境科学,2002,22(1):32-35.
    [23]李彦锋,白雪,门学虎等.大孔网状聚乙烯醇泡沫载体及其制备[P].ZL:200810150836.4.2009.
    [24]李彦锋,周林成,马鹏程等.活性炭复合亲水性聚氨酯泡沫微生物固定化载体[P].ZL:02141723.7,2004.
    [25]Pearce C I, Lioyd J R, Guthrie J T. The removal of color from textile wastewater using whole bacterial cells:a review[J].Dyes and Pigments,2003,58(3):179-196.
    [26]Sirianuntapiboon S, Srisornsak P. Removal of disperse dyes from textile wastewater using biosludge[J]. Bioresource Technology,2007,98(5):1057-1066.
    [27]叶正芳,倪晋仁.污水处理的固定化微生物与游离微生物性能的比较[J].应用基础与工程科学学报,2002,10(4):325-331.
    [28]王建龙,施汉昌,钱易.固定化微生物技术在难降解有机污染物治理中的研究进展[J].环境科学研究,1999,12(1):60-64.
    [29]安太成,周林成,李桂英等.复合磁性聚氨酯泡沫载体的制备方法及应用[P]'ZL:200710028608.5,2007.
    [30]周林成,李彦锋,白雪等.固定化微生物工艺处理印染废水[J].兰州大学学报,2008,44(5):63-68.
    [31]曹钰,李彦锋,马应霞.高浓度退浆印染废水的强化混凝处理研究[J].甘肃科学学报,2006,18(4):35-39.
    [32]Zhou L C, Li G Y, An T C, et al. Synthesis and characterization of novel magnetic Fe304/polyurethane foam composite applied to the carrier of immobilized microorganisms for wastewater treatment[J]. Research on Chemical. Intermediates,2010,36(3):277-288.
    [33]李彦锋,白雪,门学虎等.大孔网状聚乙烯醇球状载体及其制备[P].ZL:200810150835.X,2009.
    [34]Bai X, Ye Z F, Li Y F, et al. Preparation of crosslinked macroporous PVA foam carrier for immobilization of microorganisms[J]. Process Biochemistry,2010,45:60-66.
    [35]门学虎,李彦锋,周林成.聚乙烯醇载体的制备及应用研究进展[J].甘肃科学学报,2004,16(3):30-35.
    [36]李彦锋,赵光辉,马鹏程.改性载体固定化微生物处理高氨氮废水的研究[J].安徽农业科学,2008,36(7):2877-2879.
    [37]Li Y F, Yi L X, Ma P C, et al. Industrial Wastewater Treatment by the Combination of Chemical Precipitation and Immobilized Microorganism Technologies[J]. Environmental Engineering Science,2007,24(6):736-744.
    [38]叶正芳,李彦锋,周林成等.固定化高效微生物菌群处理高氨氮工业废水研究[C].//七届海峡两岸环境保护学术研讨会论文集(上卷).武汉:武汉大学出版社,2001,387-391.
    [39]Yan G Y. Viraraghavan T. Heavy metal removal in a biosorption column by immobilized M.rouxii biomass[J]. Bioresource Technology,2001,78(3):243-249.
    [40]Khoo K M, Ting Y P. Biosorption of gold by immobilized fungal biomass[J]. Biochemical Engineering Journal,2001,8(1):51-59.
    [41]Zhou L C, Li Y F, Bai X, et al. Use of microorganisms immobilized on composite polyurethane foam to remove Cu(Ⅱ) from aqueous solution[J]. Journal of Hazardous Materials,2009,167:1106-1113.
    [42]胡春玲,邱熔处.城市污水回用的途径及技术[J].兰州铁道学院学报,2002,21:102-105.
    [43]李国欣,李旭东.污水资源化利用技术现状及其应用实例[J].给水排水,2001,27(5):15-18.
    [44]周林成,白雪,李彦锋.固定化微生物处理校园污水研究[C].//王继武主编,高浊度水净化及污水资源化应用技术论文集.甘肃科学技术出版社,61-69.
    [45]Zhou L C, Bai X, Li Y F, et al. Immobilization of Micro-Organism on Macroporous Polyurethane Carriers[J]. Environment Engineering Science,2008,25(9):1235-1241.
    [46]李彦锋,周林成,叶正芳等.功能化陶粒载体及其固定化微生物处理废水技术[P].ZL:02129972.2,2004.
    [47]李彦锋,马鹏程,周林成.改性纳米SiOx复合聚氨酯泡沫及其制备方法和应用[P].ZL:200310121064.9,2005.
    [48]任南琪,马放等.污染控制微生物学[M].哈尔滨工业大学出版社,2002
    [49]施悦,任南琪,刘春爽等.不同种泥对两相厌氧工艺快速启动的影响[J].哈尔滨工业大学学报,2007,39,(8):1257-1261.
    [50]李清雪,王欣,刘书燕.ABR酸解及恢复过程中的特征研究[J].河北师范大学学报(自然科学版),2007131(2):225-227.
    [51]刘豆豆,乔梁,赵大传等.ABR处理甘薯淀粉废水的试验研究[J].山东大学学报(工学版),2006,36(4):70-74.
    [52]徐金兰,王志盈.关于ABR系统中酸解过程的特征及其恢复调控问题[J].环境科学学报,2004,24(1):20-26.
    [53]Cho Y M, Lee G W, Jang J S, et al. Effects of feeding dried leftover food on growth and body composition of broiler chicks Asian-Aust[J]. Journal of Anita Science,2004,17(3): 386-393.
    [54]赵伟伟,史耀疆,高东胜等.西安市泔水油循环利用模式研究[J].生态经济,2007,8:112-116.
    [55]李鹏,王文杰.我国餐饮废弃物的利用现状及饲料化利用前景[J].广东饲料,2009,18(3):40-42.
    [56]Sallis P J, Uyanik S. Granule development in a split-feed anaerobic baffled reactor [J]. Bioresource Technology,2003,89(3):255-265.
    [57]Wang J L, Quan X C., Han L P, et al. Microbial degradation of quinoline by immobilized cells of Burkholderia pickettii[J]. Water Research,2002,36(9):2288-2296.
    [58]Manohar S, Kim C K, Karegoudar T B. Enhanced degradation of naphthalene by immobilization of Pseudomonas sp. strain NGK1 in polyurethane foam[J]. Applied. Microbiology and Biotechnology[J].2001,55(3):311-316.