纳米颗粒及其混合物在磁场流化床中的流态化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验以原生纳米级的SiO_2、ZnO、TiO_2以及Al_2O_3为物料,首先系统地在直径为4cm的玻璃流化床中考察了它们的流态化行为,结果发现四种纳米颗粒在刚接通气源时都形成活塞,活塞破裂后有沟流和固定床现象。增大气速后除纳米ZnO外其他三种纳米颗粒都出现聚团分层现象:上部为聚团鼓泡流态化(ABF)的小聚团,下部为未实现流态化的大聚团和固定床。通过在流化床中加入平均粒径2mm铸铁颗粒作为磁响应性物质后,铸铁颗粒在由电磁线圈和交流电源产生的交变磁场作用下在分布板上发生强烈的无序振动,可以有效破碎纳米SiO_2在较低气速下形成的大聚团和沟流,抑制鼓泡和扬析的发生。
     实现聚团散式流态化(APF)的纳米SiO_2具有很明显的液体性质,生成的小聚团随流化气体在床层内循环流动。针对其他三种纳米颗粒在添加大颗粒磁场流化床中改善效果不明显的缺点,实验中尝试以纳米SiO_2为流化介质,通过减小待流化物料与流化介质之间的密度差来提高其流化性能。结果发现,一定质量分数的添加纳米颗粒能与流态化的纳米SiO_2形成共同流态化的混合系统,其中纳米ZnO的最大添加质量分数在90%以上。混合物的APF操作气速范围由添加纳米颗粒的质量分数和磁场强度决定,添加质量分数的增大使APF区域减小。
     最后,分别应用Matsuda等提出的模型和Richardson-Zaki方程对纳米SiO_2聚团与最小流化速度和混合纳米颗粒流态化的散式化程度进行了验证,提出了预测混合纳米颗粒流态化的终端流速模型,为更大规模的混合纳米颗粒的流态化研究及其应用打下了良好的基础。
The fluidization behavior of SiO_2, ZnO, TiO_2 and Al_2O_3nanoparticles in glass pip with diameter of 4 mm is investigated. Thereexisted fixed bed, plug formation, and channeling at the low superficialgas velocity. There exist two areas even at high gas velocities for SiO_2,TiO_2 and Al_2O_3 nanoparticles in traditional fluidized bed, smallagglomerate bubbling fluidized (ABF) area at the upper and bigagglomerate de-fluidized area at the bottom. By adding cast iron particleswith the average size of 2mm into the fluidized bed as magnets, bigagglomerates and channeling formed by SiO_2 nanoparticles at lowsuperficial gas velocity were broken up then, the bubbling and elutriationwere also restrained because cast iron particles vibrated violently abovethe distributor under oscillating magnetic filed engendered by a magneticstator and AC current.
     The agglomerate particle fluidized (APF) of SiO_2 nanoparticlesshowed liquid-like properties and the agglomerates circulated in thefluidized bed just like fluid. When the fluidization ability of ZnO, TiO_2and Al_2O_3 nanoparticles was poor in a traditional fluidized bed or even inthe magnetic fluidized bed with adding coarse magnets, the fluidizedSiO_2 nanoparticles were used as the fluidized medium in order to improvetheir fluidization ability. It was found that homogeneous mixtures formedwhen ZnO nano-particles were added in the fluidized bed of SiO_2nanoparticles, and the maximum mass fraction of nano-ZnO that canform homogenous mixtures is more than 90%. The stable operation areaof the APF was determined by the mass fraction of additivenano-particles and magnetic field intensity, and the stable operation areadecreased with increasing the mass fraction of additive nano-particles.
     Finally, the Matsuda's model and the Richardson-Zaki equation wereused to check the relation between the agglomerate size and the minimumfluidization superficial gas velocity of SiO_2 nanoparticles and theexpansion degree of nanoparticle mixtures, respectively. Model forestimating the terminal velocity of the mixture formed by APF and ABFnano-particles is proposed for further research in mixed nano-particles and its application in the future.
引文
[1] 金涌,祝京旭,汪展文,等.流态化工程原理.清华大学出版社,北京,2001,8
    [2] 易江林,金涌,俞芷青,等.MSB树脂的流化床干燥.见:第五届全国干燥技术交流会议论文集.上海:1995,316~319
    [3] 崔玉斌,魏飞,金涌,等.气固逆并流多级旋流干燥的流体力学行为研究.化工冶金,1996,17(3):248~253
    [4] 黄水源,汪展文,金涌,等.气固循环流化反应器的流体力学行为.化工学报,1996,47(3):357~361
    [5] Ralph S, Carsten V, Joachim W, et al. Fluidized bed coating at supercritical fluidized conditions. Journal of Supercritical Fluids, 2002, 24: 137~151
    [6] 蔡平,金涌,俞芷青,等.鼓泡流态化向湍动流态化过渡的判别.化工学报,1986,4:341~401
    [7] 金涌,俞芷青,张礼,等.流化床反应器塔形内构件的研究.化工学报,1980,2:117~127
    [8] 汪展文,金涌,姚文虎,等.湍动流化床醋酸乙烯合成反应器的工业试验.化学反应工程与工艺,1995,11(1):50~55
    [9] 杨贵林,黄哲,陈大保,等.快速流化床H-98催化剂丁烯氧化脱氢制丁二烯.石油化工,1988,16(10):680~685
    [10] Squires A M. The story of fluid catalytic cracking. Circulating fluidized bed technology, ed. P Basu, Pergamon Press, Toronto, 1986, 1~19
    [11] Bai D R, Zhu J X, Jin Y, et al. Novel designs and simulations of FCC Riser Regenerator. Ind. Eng. Chem. Res, 1997, 36(11): 4543~4549
    [12] Shingles T, McDonald A F. Commercial experience with synthol CFB reactors. Circulating fluidized bed technology Ⅱ, eds. P Basu, J F Large, Pergamon Press, Toronto, 1988, 43~50
    [13] 时钧,汪家鼎,余国琮,等.化学工程手册.化学工业出版社,北京,1996
    [14] Reh L. The Circulating fluid bed reactor—A key to efficient gas/solid Processing. Circulating fluidized bed technology, ed. P Basu, Pergamon Press, Toronto, 1986, 105~118
    [15] Zhu J X, Bi H T. Distinctions between low density and high density circulating fluidized beds. J. Chem. Eng., 1995, 73: 644~649
    [16] 李洪钟,郭慕孙.气固流态化的散式化.北京:化学工业出版社,2002
    [17] Liu D, Kwauk M, Li H Z. Aggregative and particulate fluidization-the two extremes of a continuous spectrum, Chem. Eng. Sci., 1996, 51 (17): 4045~4063
    [18] Geldart D. Types of gas fluidization, Powder Technology, 1973, 7: 285~292
    [19] Geldart D, Harnby N, Wong A C. Fluidization of cohesive powders, Powder Technology, 1984, 37: 25~37
    [20] 赵珺,刘辉,许贺卿.C类粉体的流化及其膨胀特性研究.化工冶金,1991,12(3):249~255
    [21] 刘得金.超临界流体流态化:[博士学位论文],北京:中国科学院化工冶金研究所,1994年
    [22] 秦绍宗,李国征.运动颗粒图象分析系统的研究.化学反应工程与工艺,1990,2(6):58~63
    [23] Brooks E F, Fizgerald T J. Fluidization of novel tendrillar carbonaceous materials, in Fluidization V. Engineering Foundation, New York, 1986, 217~224
    [24] 周涛.黏性颗粒聚团流态化实验与理论研究:[博士学位论文].北京:中国科学院化工冶金研究所,1998
    [25] Zhou T, Li H Z. Effects of adding different size particles on fluidization of cohesive particles. Powder Technology, 1999, 102(3): 215~220
    [26] 周涛,李洪钟.黏附性颗粒添加组分流态化实验.化工冶金,1998,19(3):231~236
    [27] 周涛,李洪钟,王兆霖.粘附性颗粒添加组份流态化进展.化工冶金,1998,19(2):186~192
    [28] 王兆霖.细颗粒的流态化及添加颗粒的作用:[博士学位论文],北京:中国科学院化工冶金研究所,1995
    [29] 唐洪波,赵珺.微细粉体在振动流化床中团聚行为的研究.化学工业与工程,1996,13(3):6~10
    [30] 王亭杰,汪展文,金涌,等.振动波在流化床中的传播行为.化工学报,1996,47(6):718~726
    [31] 陈建平,汪展文,金涌,等.细颗粒振动流化床行为的二维观察.高校化学工程学报,1996,10(1):41~44
    [32] Mawatari Y, Ikegami Y, Tatemoto, et al. Prediction of Agglomerate Size for Fine Particles in a Vibro-fluidized Bed. Journal of Chemical Engineering of Japan, 2003, 36(3): 277~283
    [33] Jose M V, Antonio C. Effect of Vibration on Agglomerate Particulate Fluidization. AIChE Journal, 2006, 52(5): 1705~1714
    [34] Yoshihide M, Yu J Y., Katsuji N. Prediction of minimum fluidization velocity for vibrated fluidized bed. Powder Technology, 2003, 131: 66~70
    [35] Levy E K, Shnitzer I, Masaki T, et al. Effect of an acoustic field on bubbing in a gas fluidized bed. Powder Technology, 1997, 90: 53~57
    [36] Nowak W, Hasatani M, Derczynski M. Fluidization and heat transfer of fine particles in an acoustic field. AICHE Symosium Series, Fluid-Particle Processes, 1993, 89(296): 137~149
    [37] 洪若瑜.内循环和外循环流化床中超细粉流态化的研究:[博士学位论文],北京:中国科学院化工冶金研究所,1996
    [38] 刘勤.添加内构件对黏性颗粒流化质量的改善:[硕士学位论文],北京:中国科学院化工冶金研究所,2000
    [39] Poletto M, Salatino P, Massimilla L. Fluidization of solids with CO_2 at pressures and temperatures ranging from ambient to nearly critical conditions. Chem. Eng. Sci., 1993, 48(3): 617~621
    [40] 曾平,周涛,陈冠群,等.磁场流化床的研究与应用.化工进展,2006,25(4):371~377
    [41] Sornchamni T, Jovanovic G N, Reed B P, et al. Operation of magnetically assisted fluidized beds in microgravity and variable gravity: experiment and theory. Advances in Space Research, 2004, 34: 1494~1498
    [42] Thivel P X, Gonthier Y, Boldo P, et al. Magnetically stabilized fluidization of a mixture of magnetic and non-magnetic particles in a transverse magnetic field. Powder Technology, 2004, 139: 252~257
    [43] 归柯庭,施明恒.磁场对流化床中气泡的湮灭作用.应用科学学报,1999,17(3):349~354
    [44] Chen C M, Leu L P. Hydrodynamics and mass transfer in three-phase magnetic fluidized beds. Powder Technology, 2001, 117: 198~206
    [45] Hausmann R, Hoffmann C, Franzreb M, et al. Mass transfer rates in a liquid magnetically stabilized fluidized bed of magnetic ion-exchange particles. Che(?)ical Engineering Science, 2000, 55: 1477~1482
    [46] Hausmann R, Reichert C, Franzreb M, et al. Liquid-phase mass transfer of magnetic ion exchangers in magnetically influenced fluidized beds. Reactive & Functional Polymers, 2004, 60: 17~26
    [47] Qodah A Z, Hassan A M. Phase holdup and gas-to-liquid mass transfer coefficient in magneto stabilized G-L-S airlift fermenter. Chemical Engineering Journal, 2000, 79: 41~52
    [48] 吕雪松,王守进,王兆霖,等.细铁粉气液固三相磁场流化床的床层膨胀特性.化工冶金,1999,20(2):129~135
    [49] 王迎慧,归柯庭,施明恒.确定磁流化床磁稳操作区域的理论分析与实验研究.应用科学学报,2005,23(1):82~85
    [50] Chen C M, Leu L R Hydrodynamics and mass transfer in three-phase magnetic fluidized beds. Powder Technology, 2001, 117: 198~206
    [51] Qodah A Z, Busoul A M, Hassan A M. Hydro-thermal behvior of magnetically stabilized fluidized beds. Powder Technology. 2001, 115: 58~67
    [52] Hausmann R, Hoffmann C, Franzreb M, et al. Mass transfer rates in a liquid magnetically stabilized fluidized bed of magnetic ion-exchange particles. Chemical Engineering Science, 2000, 55: 1477~1482
    [53] Hausmann R, Reichert C, Franzreb M, et al. Liquid-phase mass transfer of magnetic ion exchangers in magnetically influenced fluidized beds. Reactive & Functional Polymers, 2004, 60: 17~26
    [54] 李辚,张金利,李晓芳,等.液固磁稳定床中的传热与传质特性研究.化工进展,2005,24(6):639~642
    [55] 朱庆山,李洪钟.C类物料磁场流态化.化工学报,1996,47(1):53~64
    [56] Lu X S, Li H Z. Fluidization of CaCO3 and Fe_2O_3 particle mixtures in a transverse rotating magnetic field. Powder Technology, 2000, 107: 66~78
    [57] Rajesh N D, Chang Y W, Bodhisattwa C, et al. Magnetically mediated flow enhancement for controlled powder discharge of cohesive powders. Powder Technology, 2000, 112: 111~125
    [58] 周涛,葛志强,Rajesh N D,等.非磁性粘性颗粒在添加磁性大颗粒磁场流化床中的流化性能.化学反应工程与工艺,2005,21(1):2~25
    [59] 王垚,金涌,魏飞,等.纳米级SiO_2颗粒流化床的塌落行为.化工学报2001,5(11):957~961
    [60] 王垚,金涌,魏飞,等.纳米级SiO_2聚团散式流化中聚团参数及曳力系数.清华大学学报(自然科学版),2001,41(45):32~35
    [61] 王垚,金涌,魏飞,等.原生纳米级颗粒的聚团散式流态化.化工学报,2002,53(4):344~348
    [62] Wang Y, Gu G, Wei F, et al. Fluidization and agglomerate structure of SiO_2 nanoparticles. Powder Technology, 2002, 124: 152~159
    [63] Zhu C, Yu Q, Rajesh N D. Gas Fluidization Characteristics of Nanoparticle Agglomerates. AIChE Journal. 2005, 51(2): 426~439
    [64] Hakim L F, Portman J L, Casper M D, et al. Aggregation behavior of nanoparticles in fluidized beds. Powder Technologv, 2005, 160: 149~160
    [65] Zhu C, Liu G L, Qin Y, et al. Sound assisted fluidization of nanoparticle agglomerates. Powder Technology, 2004, 141: 119~123
    [66] 段蜀波,梁华琼,王亮,等.纳米TiO_2颗粒在声场流化床中的流化特性.化学反应工程与工艺,2005,25(1):7~11
    [67] Qin Y, Rajesh N D, Zhu C Enhanced Fluidization of Nanoparticles in an Oscillating Magnetic Field. AIChE Journal. 2005, 51 (7): 1971~1979
    [68] Matsuda S, Hatano H, Muramoto T, et al. Modeling for Size Reduction of Agglomerates in Nanoparticle Fluidization. AIChE Journal, 2004, 50(11): 2763~2771
    [69] 李爱蓉,周勇,石炎福,等.原生纳米颗粒添加组分流态化研究.石化技术与应用,2004,22(3):165~169
    [70] Dukhin S, Zhu C, Rajesh N D, et al. Hydrodynamic fragmentation of nanoparticle aggregates at orthokinetic coagulation. Advances in Colloid and Interface Science, 2005, 114~115, 119~131
    [71] Jung J W, Gisaspow D. Fluidization of nano-size particles. Journal of Nanoparticle Reseaech, 2002, 4: 483~497
    [72] Valverde J M, Castellanos A. Fluidization of Nanoparticles: A Modified Richardson-Zaki Law. AIChE Journal, 2006, 52 (2): 838~842.
    [73] Wang X L, Soria P J, Rhodes M J. Laser-based planar inaging of nano-particle fluidization: Part Ⅱ-mechanistic analysis of nanoparticle aggregation. Chemical Engineering Science, 2006, 61: 8040~8049
    [74] Hakim L F, Portman J L, Wank J R, et al. High speed laser imaging processing for investigating fluidized nanoparticles. AICHE Annual Meeting, San Francisco, CA, November, 2003, 16~21.
    [75] Wang X L, Palero V, Soria J, Rhodes M, et al. Laser-based planar inaging of nano-particle fluidization: Part Ⅰ-determination of aggregate size and shape. Chemical Engineering Science, 2006 (61): 8040~8049
    [76] 周涛,李洪钟.粘性颗粒流化床中聚团大小的计算模型.化学反应工程与工艺,1999,15(1):44~51
    [77] Zhou T, Li H Z. Force balance modeling for agglomerating fluidization of cohesive particles. Powder Technology, 2000, 111: 60~65
    [78] Morooka S, Kusakabe K, Kato Y. Fluidization state of ultafine powders. J. Chem. Eng. Jpn, 1988, 21, 41
    [79] 魏飞,罗国华,王矗,等.一种流化床连续化制备碳纳米管的方法及其反应装置.中国专利,ZL01118349.7,2003-12-20
    [80] Jung K T, Kim M S, Jeon K G, et al. Treatment of carbon nano-structure using fluidization. US2004253374, 2004-12
    [81] Li C Z, Hu Y J, Cai P X, et al. Deacidification method of nano titanium dioxide preparing from Gas phase method. CN1736878, 2006-02
    [82] 王垚,魏飞,刘毅.碳纳米管的纯化方法及其装置.中国专利,ZL03150121.4,2005-2-10,
    [83] Quintanilla M A, Castellanos A, Valverde J M. Correlation between bulk stresses and interparticle contact forces in fine powders. Physical Review, 2001, 64(3): 031301-1-9
    [84] 周涛,叶红齐,Rajesh Dave,等.粘性颗粒表面改性后的流态化性能.过程工程学报,2004,4(增刊):567~572
    [85] Geldart D, Harnby N, Wong A C. Fluidization of Cohesive Powders. Powder Technology. 1984, 37: 25~37
    [86] Hristov J Y. Magnetic field assisted fluidization-A unified approach. Part 5. A Hydrodynamic Treatise on Liquid-solid Fluidized Beds, Reviews in Chemical Engineering, 2006, 22 (4-5): 195~377.
    [87] Hristov J Y. Magnetic Field Assisted Fluidization: Dimensional analysis and scaling problems, China Particuology, 2007, 5 (1)-in press
    [88] Valverde J M, Castellanos A. Magnetic Field Assisted Fluidization: A Modifed Richardson-Zaki Equation, China Particuology, 2007, 5 (1)-in press