天然高分子共价修饰碳纳米管的衍生物合成与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1991年,日本科学家S. Iijima发现了碳纳米管(Carbon nanotubes, CNTs)。经过十几年的发展,碳纳米管已经成为纳米科技重要的研究前沿,其重大研究成果层出不穷,在21世纪科技发展中占有举足轻重的地位。
     碳纳米管奇特的准一维中空管结构使其在吸附、电学、磁学、场致发射、力学、电化学等许多方面具有优异的性能。然而,极差的溶解性严重限制了碳纳米管的研究与应用。通过化学修饰不仅能有效改善碳纳米管的溶解性,而且能赋予其更多功能,进一步拓宽其应用领域。
     近几年来,利用高分子对碳纳米管进行共价化学修饰尤其得到了广泛重视,它已成为制备具有某些特定功能的碳纳米管及其复合材料的有力手段,对研发相关纳米器件和新型材料有很大的理论和现实意义。目前,国内外利用高分子共价修饰碳纳米管的很多研究主要集中于合成高分子,还没有利用天然高分子共价修饰碳纳米管的研究报道。然而,合成高分子主要来源于日益枯竭的化石资源,而且用来修饰的一些高分子还含有毒性苯环等芳香烃。与合成高分子相比,壳聚糖、纤维素和环糊精等天然高分子及其衍生物是无毒、生物相容、生物可降解、环境友好、用之不竭的可再生资源,作为解决人类面临的能源、资源、环境三大问题的重要材料,在众多领域中应用广泛。因此,天然高分子及其衍生物可作为共价修饰碳纳米管的理想高分子。
     本研究首次明确提出选择天然高分子及其衍生物对碳纳米管进行化学修饰,通过共价键将两者相结合,合成出结构新颖的天然高分子/碳纳米管共价衍生物,在改善碳纳米管溶解性的同时,可望为最终研发出兼具甚至优于两者性能的,在分离、吸附、催化、环保、电极和微摩擦等领域有应用前景的,绿色环保的新型纳米复合材料奠定较好的基础。这将开拓碳纳米管化学与天然高分子化学,以及超分子化学相交叉的新的研究分支,属于开创性的前沿基础研究,具有重要的理论意义和潜在的应用价值。
     与单壁碳纳米管(SWNTs)相比,短切的多壁碳纳米管(MWNTs)在吸附、分离、催化、摩擦等方面更具研究和应用价值。因此,本研究在对原始MWNTs进行球磨短切、纯化、酸化和酰氯化处理的基础上,首先采用易溶于水、反应活性较强的低分子量壳聚糖(LMCS,Mw≈8770 g·mol-1)对MWNTs进行共价修饰,首次合成出结构新颖的低分子量壳聚糖/多壁碳纳米管共价衍生物(MWNT-LMCS),并利用FTIR、13C NMR、XPS、Raman和TEM对MWNT-LMCS的结构进行了综合表征,结果说明,LMCS分子的部分氨基及伯羟基与MWNTs的酰氯基之间发生亲核取代反应,形成了新的酰胺键和酯键,从而将LMCS的分子链接枝在MWNTs表面。MWNT-LMCS由81.6% C、11% O和7.4% N组成。同时,MWNT-LMCS中LMCS的含量约为58 wt%,并且MWNTs的每1000个碳原子上接枝的LMCS分子链数大约为4。十分有趣的是,XRD测试表明,LMCS在接枝到MWNTs表面后,其非晶态结构发生很大改变,LMCS的结晶性增强。MWNTs与LMCS间的共价和非共价作用可能共同导致LMCS的结晶性增强。经计算确定MWNT-LMCS的晶胞属单斜晶系,其结晶度为26%。MWNT-LMCS在醋酸水溶液,以及DMF、DMAc、DMSO等有机溶剂中具有良好的溶解性。
     尽管采用LMCS对MWNTs成功进行了修饰,然而实验证明,目前在碳纳米管酰氯化的基础上直接进行化学修饰的普遍方法对高分子量壳聚糖等天然高分子并不可行。这一方面可能是由于MWNTs属碳素无机物,具有管状的石墨片层结构,其化学稳定性较高,空间位阻大,且不能在溶剂中溶解,因而MWNTs的反应活性差。另一方面,由于分子量大幅度增加,空间位阻增大,且分子链具有一定的刚性,导致高分子量壳聚糖等的反应活性比LMCS差。
     为此,本研究另辟蹊径,在MWNTs短切、酸化和酰氯化的基础上,首先采用链延长的方法,利用活性强、结构简单的1,3-丙二胺对MWNTs进行修饰,合成出1,3-丙二胺/多壁碳纳米管共价衍生物(MWNT-NH2),使反应基团从MWNTs的外层管壁“伸长”出来,以减小空间位阻对反应的影响。在链延长的基础上,采用拥有能与天然高分子的羟基或氨基反应的活泼氯原子的三氯均三嗪,通过与MWNT-NH2的低温均相反应,首次合成出结构新颖的2, 4, 6-三氯- 1, 3, 5-三嗪/多壁碳纳米管共价衍生物(MWNT-triazine)。同时,利用FTIR、13C NMR、XPS和UV等对MWNT-NH2和MWNT-triazine的结构进行了表征。MWNT-triazine中三嗪环的含量约为0.8 mmol/g。MWNT-triazine能溶于水、酸溶液和醇,在DMF、DMAc、DMSO等有机溶剂中也具有很好的溶解性。MWNT-triazine的合成达到了在MWNTs表面引入活泼基团、增加活性基团数量的同时,减小反应的空间位阻,并改善MWNTs溶解性的目的,为天然高分子对MWNTs的化学修饰提供了有利条件。
     由于直接采用高分子量壳聚糖修饰MWNTs导致产物的分离与纯化很困难,因此在碱性条件下,首先利用氯乙酸对脱乙酰度为84.7%、粘均分子量为1.99×105的壳聚糖进行化学改性,制备了取代度约为16.9%的水溶性N,O-CMC。在此基础上,采用N,O-CMC对MWNT-triazine进行化学修饰,首次合成出结构新颖的N,O-羧甲基壳聚糖/多壁碳纳米管共价衍生物(MWNT-CMC)。同时,尝试采用简便的UV测试手段对纯化效果进行分析。利用FTIR、13C NMR、XPS、UV和TEM对MWNT-CMC进行表征,结果说明,MWNT-triazine的氯原子被N,O-CMC分子链中的羟基和氨基亲核取代,从而将N,O-CMC的氨基葡萄糖单元接枝在MWNTs表面。MWNT-CMC由78.1% C、15.6% O和6.3% N组成,且MWNTs表面接枝的N,O-CMC的含量约为31.9 wt%。与结晶性差的反应物N,O-CMC(结晶度为14%)和非晶态的MWNT-triazine相比,MWNT-CMC的结晶性增强,其结晶度为21%。MWNT-CMC能部分溶于盐酸和醋酸水溶液,并在DMF、DMAc、DMSO及NMP等溶剂中具有良好的溶解性。
     进一步采用β-环糊精(β-CD)、醋酸纤维素(CA)、羟乙基纤维素(HEC)和甲基纤维素(MC)对MWNT-triazine分别进行化学修饰,首次合成出β-环糊精/多壁碳纳米管共价衍生物(MWNT-β-CD)、醋酸纤维素/多壁碳纳米管共价衍生物(MWNT-CA)、羟乙基纤维素/多壁碳纳米管共价衍生物(MWNT-HEC)和甲基纤维素/多壁碳纳米管共价衍生物(MWNT-MC)。由于这四种天然高分子/多壁碳纳米管共价衍生物都是通过均相反应合成得到,因此是对碳纳米管的众多非均相修饰的一个重要突破。同时,本研究还尝试利用简便的UV测试手段对这四种共价衍生物的纯化效果分别进行了分析,结果表明,衍生物中不存在UV可检测出的游离的天然高分子,与TEM的测试结果一致。利用FTIR、13C NMR、XPS、UV和TEM等多种分析手段对这四种衍生物的结构分别进行表征,结果表明,MWNT-triazine的氯原子分别被β-CD、CA、HEC或MC分子链中的羟基亲核取代,从而将β-CD、CA、HEC或MC的吡喃葡萄糖环结构接枝在MWNTs表面。MWNT-β-CD由79.7% C、14.3% O和6.0% N组成,且MWNTs表面接枝的β-CD的含量约为26.6 wt%。MWNT-CA由76.3% C、18.4% O和5.3% N组成,且MWNTs表面接枝的CA的含量约为42.8 wt%。MWNT-HEC由76.2% C、19.5% O和4.3% N组成,且MWNTs表面接枝的HEC的含量约为32.1 wt%。MWNT-MC由77.1% C、18.9% O和4.0% N组成,且MWNTs表面接枝的MC的含量约为38.3 wt%。
     结晶性研究表明,与MWNT-triazine的反应分别破坏了β-CD、CA、HEC及MC原有的晶形结构。与非晶态的MWNT-triazine相比,MWNT-β-CD和MWNT-HEC的结晶性增强,而MWNT-MC及MWNT-CA的结晶性则有所增强。经计算,MWNT-β-CD、MWNT-CA、MWNT-HEC和MWNT-MC的结晶度分别为19%、15%、18%和17%。溶解性测试表明,衍生物MWNT-β-CD、MWNT-CA、MWNT-HEC和MWNT-MC在DMF、DMAc、DMSO及NMP等有机溶剂中具有良好的溶解性。
     以上研究说明,对碳纳米管表面先采用扩链和引入活泼基团的手段进行修饰,合成出衍生物MWNT-triazine,以改善MWNTs的溶解性和化学反应活性,再通过亲核取代反应,将天然高分子及其衍生物接枝到MWNTs表面,是一种新的十分有效修饰方法。
     综上所述,本研究在国家自然科学基金(50374039)、中国科学院纤维素化学重点实验室开放基金(LCLC-2005-159)和华中科技大学优秀博士学位论文基金(2004-044)的资助下,分别采用低分子量壳聚糖、N,O-羧甲基壳聚糖、β-环糊精、醋酸纤维素、羟乙基纤维素和甲基纤维素对多壁碳纳米管进行化学修饰,首次合成出六种结构新颖的天然高分子/多壁碳纳米管共价衍生物,并综合利用多种分析手段对其结构进行充分表征。在此基础上,研究了含有刚性碳纳米管的衍生物的结晶性质和溶解性。本研究采用独特的化学修饰方法以及活性衍生物MWNT-triazine,不仅成功合成得到五种天然高分子/碳纳米管共价衍生物,而且实现了醋酸纤维素等四种天然高分子对碳纳米管的均相化学修饰,这是对碳纳米管的众多非均相修饰的一个重要突破,将为实现包括天然高分子在内的众多高分子化合物对MWNTs的共价化学修饰提供新的有效方法。本研究在改善碳纳米管溶解性的同时,为研发出在众多领域有应用前景、绿色环保的新型纳米复合材料提供了可选择的基础材料。这将开拓碳纳米管化学与天然高分子化学,以及超分子化学相交叉的新的研究分支,具有重要的理论意义和潜在的应用价值。
In 1991, Japanese scientist S. Iijima discovered carbon nanotubes (CNTs). Through the development of more than ten years, the CNTs has already become the important research frontier of nanoscience and nanotechnology, with vital fruits piling up one after another. Thus the CNTs occupies the prominent position in the development of science and technology in the 21st centuries,
     Due to the unique one-dimension like hollow tube structure, the CNTs has many attractive properties in the fields of adsorb, electricity, magnetism, field emission, mechanics and electrochemistry, etc. However, solubility of the CNTs is very poor, therefore limited their research and application seriously. Chemical modifications not only improve the solubility of the CNTs effectively, but also endow the CNTs with more functions, thus further broaden the application fields of the carbon nanotubes.
     Covalent modifications of the CNTs with polymers aroused peculiar attentions in the last few years. The strategy of polymer modifications not only has become of an effective means to prepare CNTs and their composites with special functions, but also has great theoretical and realistic significance to the development of nano-apparatus and novel materials. Thus far, most of the studies focused on synthetic polymers, and there is little report relating to natural polymers. However, these synthetic polymers are generally derived from nonrenewable and increasingly finite fossil resources, and some bear toxic aromatic rings. Compared with the synthetic polymers, the natural polymers, such as chitosan, cellulose and cyclodextrin, etc, are renewable resources with properties of nontoxicity, biocompatibility, biodegradability, abundance and environmental friend. As the important materials to resolve the problems of energy sources, resources and environment, natural polymers have broad applications in many fields. Thus, it is ideal to functionalize the CNTs with natural polymers and their derivatives.
     For the first time, this study presents definitely the strategy that utilizes natural polymers and their derivatives to modify the CNTs, and combines the CNTs and natural polymers through covalent bonds, thus obtains covalent derivatives of the CNTs and natural polymers with novel structures. The strategy will not only improve the solubility of the CNTs effectively, but also appear as a desirable way to develop ultimately environment friendly nanocomposites provided with properties that are inherent in both components. And these novel nanocomposites will probably be applied in many fields, such as separation, absorbance, catalysis, environment protection, electrode and micro friction, etc. As an innovative frontier and basis research, this research will develop a new research branch that crosses the CNTs chemistry, polymer chemistry and supermolecule chemistry, thus has great theoretical significance and potential utility value.
     Compared with siglewalled carbon nanotubes (SWNTs), multiwalled carbon nanotubes (MWNTs) are of better research and utility value in fields of adsorb, separation, catalysis and tribology, etc. Therefore in the study, the MWNTs were shortened, purified, oxidized and acylated with acyl chlorides, and further modified with a natural low molecular weight chitosan (LMCS, Mw≈8770 g·mol-1), which was water-soluble and relatively active. The obtained novel derivative of the MWNTs covalently modified with the LMCS (MWNT-LMCS) was characterized by FTIR, 13C NMR, XPS, Raman and TEM. Results indicate that nucleophilic substitution reaction happened between acyl chlorides of the MWNTs and a part of amino and primary hydroxyl groups of the LMCS. Consequently, amide and ester bonds formed between the LMCS and the MWNTs, and molecular chains of the LMCS were attached to surfaces of the MWNTs. The MWNT-LMCS consists of 81.6% C、11% O and 7.4% N. Moreover, the LMCS content in the MWNT-LMCS is about 58 wt %, and about four molecular chains of the LMCS are attached to 1000 carbon atoms of the nanotube sidewalls. Most interestingly, the amorphous packing structure of the LMCS changed dramatically when it attached to the surfaces of the MWNTs. The crystallinity of the attached LMCS was much improved. Covalent and noncovalent interactions between the MWNTs and the attached LMCS might induce the crystalline character of the LMCS. By complex calculations, the unit cell of the MWNT-LMCS was determined to be monoclinic, and degree of crystallinity of the MWNT-LMCS was 26%. The MWNT-LMCS was soluble in DMF, DMAc, DMSO and acetic acid aqueous solution.
     Although the MWNTs was successfully modified with the LMCS, however, further experiments indicated that the common modification approach that based on the acylated MWNTs was not feasible to natural polymers such as high molecular weight chitosan and etc. On the one hand, as inorganic carbon chemicals, the carbon nanotubes have tube like structures of graphitic sheet, which conduce to a higher chemical stability, considerable steric hindrance, and very poor solubility. So the reactivity of the MWNTs is poor. On the other hand, the great increase in molecular weight may cause considerable steric hindrance. Moreover, the molecular chains are usually stiff. Thus the reactivity of natural polymers such as high molecular weight chitosan is much lower than the LMCS.
     As the reaction between the MWNT-COCl and high molecular weight chitosan was not efficient, chain extension tactics was first adopted in the study. Based on the shortened, oxidized and acylated MWNTs, 1,3-propanediamine, which is very active with simple structure, was chosen to modify the MWNTs. Consequently, novel derivative of the MWNTs covalently modified with the 1,3-propanediamine (MWNT-NH2) was obtained. The active groups were extending out from the surfaces of the MWNTs in order to decrease the steric hindrance in reactions. On the basis of chain extension, 2,4,6-trichloro-1,3,5- triazine, which has active chlorine atoms, was chosen to homogeneously react with the MWNT-NH2 under low temperatures. The obtained novel derivative of the MWNTs covalently modified with the 2,4,6-trichloro-1,3,5-triazine (MWNT-triazine) was characterized by XPS, FTIR, 13C NMR and UV spectra. The triazine ring content in the MWNT-triazine sample is 0.8 mmol/g. The MWNT-triazine can dissolve in distilled water, acid aqueous solution, alcohols, DMF, DMAc and DMSO, etc. The synthesis of the MWNT-triazine attained purposes such as introducing reactive groups to the surfaces of the MWNTs, increasing amount of the active groups, decreasing the steric hindrance in reactions and improving the solubility of the MWNTs. Therefore the MWNT-triazine will be of advantage to the modification of the MWNTs with natural polymers.
     As it was very difficult to separate and purify the product of the MWNTs modified directly with high molecular weight chitosan, a chitosan sample, which has a degree of deacetylation of 84.7% and viscometric average molecular weight of 1.99×105, was first modified with chloroacetic acid under an alkaline condition. And a water soluble N,O-carboxymethyl chitosan (N,O-CMC), which had a overall degree of substitution of about 16.9%, was obtained. Then the MWNT-triazine was further modified with the N,O-CMC, and UV spectrum was adopted to attempt to analyze the purification effect of the product. The obtained novel derivative of the MWNTs covalently modified with the N,O-CMC (MWNT-CMC) was characterized by FTIR, 13C NMR, XPS, UV and TEM. Results indicate that chlorine atoms of the MWNT-triazine were nucleophilic substituted by a part of amino and hydroxyl groups of the N,O-CMC. Consequently, chitosamine units of the N,O-CMC were attached to surfaces of the MWNTs. The MWNT-CMC consists of 78.1% C, 15.6% O and 6.3% N. Moreover, the N,O-CMC content in the MWNT-CMC is about 31.9 wt%. Compared with reactant N,O-CMC, which had a low crystallinity and degree of crystallization of 14%, and the amorphous packing structure of the MWNT-triazine, the crystallinity of the MWNT-CMC was improved. The degree of crystallization of the MWNT-CMC was about 21%. The MWNT-CMC dissolved in DMF, DMAc, DMSO and NMP, and was partly soluble in hydrochloric acid and acetic acid aqueous solutions.
     The MWNT-triazine was further modified withβ-cyclodextrin (β-CD), cellulose acetate (CA), hydroxyl ethyl cellulose (HEC) and methyl cellulose (MC), respectively. Consequently, four novel derivatives of the MWNTs, namely MWNT-β-CD, MWNT-CA, MWNT-HEC and MWNT-MC were obtained respectively. As the four novel derivatives were synthesized in homogeneous systems, the modification strategy in the study is a significant breakthrough, compared with the many covalent modifications of the CNTs that carried out in non-homogeneous systems. Moreover, UV spectrum was adopted to attempt to analyze the purification effect of the four products, results verified that there was not any individual natural polymers that physical mixed in the products and could be detected with UV spectrum. This was consistent with the results of TEM imaging. The obtained four novel derivative of the MWNTs were characterized by FTIR, 13C NMR, XPS, UV and TEM, respectively. Results indicate that chlorine atoms of the MWNT-triazine were nucleophilic substituted by a part of hydroxyl groups in the molecular chains of theβ-CD, CA, HEC or MC, respectively. Consequently, glucopyranose rings of theβ-CD, CA, HEC or MC were attached to surfaces of the MWNTs, respectively. The MWNT-β-CD consists of 79.7% C, 14.3% O and 6.0% N, and theβ-CD content in the MWNT-β-CD is about 26.6 wt%. The MWNT-CA consists of 76.3% C, 18.4% O and 5.3% N, and the CA content in the MWNT-CA is about 42.8 wt%. The MWNT-HEC consists of 76.2% C, 19.5% O and 4.3% N, and the HEC content in the MWNT-HEC is about 32.1 wt%. The MWNT-MC consists of 77.1% C, 18.9% O and 4.0% N, and the HEC content in the MWNT-HEC is about 38.3 wt%.
     Crystallinity studies indicated that reactions with the MWNT-triazine destroyed original crystal forms of theβ-CD, CA, HEC or MC, respectively. Compared with the amorphous packing structure of the reactant MWNT-triazine, the crystallinity of the MWNT-β-CD and MWNT-HEC was improved, and the crystallinity of the MWNT-MC and MWNT-CA was somewhat improved. The degree of crystallization of the MWNT-β-CD, MWNT-HEC, MWNT-MC and MWNT-CA was about 19%、15%、18% and 17%, respectively. The four novel derivatives of the MWNTs were easily soluble in DMF, DMAc, DMSO and NMP.
     Above studies illuminate the strategy, which adopts chain extension and introducing active groups to obtain novel active derivative MWNT-triazine first, in order to improve the reactivity and solubility of the MWNTs, and then attach the molecular chains of the natural polymers and their derivatives to the surfaces of the MWNTs through the nucleophilic substitution reactions, is novel and very effective to the covalent modifications of the MWNTs.
     In summary, based on the supporting by the National Natural Science Foundation of China (No. 50374039), the opening foundation of key laboratory of cellulose and lignocellulosics chemistry of the Chinese Academy of Sciences (LCLC-2005-159), and excellent doctorial dissertation foundation of the Huazhong University of Science and Technology (2004-044), this study adopted natural polymers and their derivatives, such as low molecular weight chitosan, N,O-carboxymethyl chitosan,β-cyclodextrin (β-CD), cellulose acetate (CA), hydroxyl ethyl cellulose (HEC) and methyl cellulose (MC) to covalently modify MWNTs, respectively. Consequently, six novel derivatives of the MWNTs were synthesized for the first time, and further characterized by several modern analysis instruments, respectively. Moreover, crystallinity and solubility of the derivatives that contain rigid carbon nanotubes were studied.
     Based on the novel strategy and the active derivative MWNT-triazine, the study not only synthesized successfully five novel derivatives of the MWNTs modified with natural polymers, but also realized the syntheses of four novel derivatives in homogeneous systems. This is a significant breakthrough compared with the many covalent modifications of the CNTs that carried out in non-homogeneous systems, and will provide a novel and very effective method to the covalent modifications of the MWNTs with many polymers, including natural polymers and their derivatives. The study not only improves the solubility of the CNTs effectively, but also provides several basic materials, which might be useful in the development of novel environment friendly nanocomposites that will be applied in many fields. As an innovative frontier and basis research, this research will develop a new research branch that crosses the CNTs chemistry, polymer chemistry and supermolecule chemistry, thus has great theoretical significance and potential utility value.
引文
[1] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56-58
    [2] Iijima S. Discovery of carbon nano-tubes. Kagaku to Kogyo, 1993, 67(12): 500-506
    [3] Philip B. Roll up for the revolution. Nature, 2001, 414: 142-144
    [4] Thomas W. E. Self-preservation of rough-wall turbulent boumdary layers. Phys. Today, 1996, 49(6): 26-31
    [5] Saito R., Dresselhaus G., Dresselhaus M. S. Physical properties of carbon nanotubes. (第一版).北京:世界图书出版公司北京公司, 2003. 25-32
    [6] Mintmire J. W., White C. T. Electronic and structural properties of carbon nanotubes. Carbon, 1995, 33(7): 893-902
    [7] Yamabe T. Recent development of carbon nanotube. Synth. Met., 1995, 70(1-3): 1511-1518
    [8] Cook J. S. J., Green M. L. Carbon nanotube chemistry. Chem. Ind., 1996, (16): 600-603
    [9] Rao C. N. R., Sen R., Govindaraj A. Fullerenes and carbon nanotubes. Curr. Opin. Solid State Mater. Sci., 1996, 1(2): 279-284
    [10] Thomas W. E. Carbon nanotubes. Annu. Rev. Mater. Sci., 1994, 24: 235-264
    [11] Philip B. Through the nanotube. New Sci., 1996, 151: 28-31
    [12]成会明.纳米碳管制备、结构、物性及应用.北京:化学工业出版社, 2002. 12-160
    [13] Hughes M., Chen G. Z., Shaffer M. S. P., et al. The effect of nanotube loading and dispersion on the three-dimensional nanostructure of carbon nanotube-conducting polymer composite films. Mater. Res. Soc. Symp. Pro., 2003, 739: 211-216
    [14] Kavan L., Dunsch L. Diameter-selective electrochemical doping of hipco single-walled carbon nanotubes. Nano Lett., 2003, 3(7): 969-972
    [15] Xu Q., Zhang L., Zhu J. Controlled growth of composite nanowires based on coating ni on carbon nanotubes by electrochemical deposition method. J. Phys. Chem. B, 2003, 107(33): 8294-8296
    [16] Shin H. C., Liu M. L., Sadanadan B., et al. Electrochemical insertion of lithium into multi-walled carbon nanotubes prepared by catalytic decomposition. J. Power Sources, 2002, 112(1): 216-221
    [17] Wu G. T., Chen M. H., Zhu G. M., et al. Structural characterization and electrochemical lithium insertion properties of carbon nanotubes prepared by the catalytic decomposition of methane. J. Solid State Electr., 2003, 7(3): 129-133
    [18] Shimoda H., Gao B., Tang X. P., et al. Lithium intercalation into etched single-wallcarbon nanotubes. Phys. B: Condensed Matter, 2002, 323(1-4): 133-134
    [19] Singh M. K., Titus E., Tyagi P. K., et al. Ni and Ni/Pt filling inside multiwalled carbon nanotubes. J. Nanosci. Nanotech., 2003, 3(1/2): 165-169
    [20] Chan L. H., Hong K. H., Lai S. H., et al. The formation and characterization of palladium nanowires in growing carbon nanotubes using microwave plasma-enhanced chemical vapor deposition. Thin Solid Films, 2003, 423(1): 27-32
    [21] Gao Y. H., Bando Y., Golberg D. Melting and expansion behavior of indium in carbon nanotubes. Appl. Phys. Lett., 2002, 81(22): 4133-4135
    [22] Suzuki S., Maeda F., Watanabe Y., et al. Electronic structure of single-walled carbon nanotubes encapsulating potassium. Phys. Rev. B: Condensed Matter and Materials Physics, 2003, 67(11): 1-6
    [23] Zhang G. Y., Wang E. G. Cu-filled carbon nanotubes by simultaneous plasma-assisted copper incorporation. Appl. Phys. Lett., 2003, 82(12): 1926-1928
    [24] Watts P. C. P., Hsu W. K., Kotzeva V., et al. Fe-filled carbon nanotube-polystyrene: RCL composites. Chem. Phys. Lett., 2002, 366(1,2): 42-50
    [25] Marco J. F., Gancedo J. R., Hernando A., et al. Moessbauer study of iron-containing carbon nanotubes. Hyperfine Interactions, 2002, 139/140: 535-542
    [26] Ma X. C., Cai Y. H., Li X., et al. Growth and microstructure of Co-filled carbon nanotubes. Mater. Sci. & Eng., 2003, A357(1-2): 308-313
    [27] Jeong G. H., Hatakeyama R., Hirata T., at al. Formation and structural observation of cesium encapsulated single-walled carbon nanotubes. Chem. Comm., 2003, (1): 152-153
    [28] Chancolon J., Archaimbault F., Delpeux S., et al. Filling of multiwalled carbon nanotubes with oxides and metals. AIP Conf. Proc., 2002, 633: 131-134
    [29] Didik A. A., Kodolov V. I., Volkov A, Y,, et al. Low-Temperature Growth of Carbon Nanotubes. Inorg. Mater., 2003, 39(6): 583-587
    [30] Satishkumar B. C., Taubert A., Luzzi D, E. Filling single-wall carbon nanotubes with d- and f-metal chloride and metal nanowires. J. Nanosci. Nanotech., 2003, 3(1/2): 159-163
    [31] Vavro J., Llaguno M. C., Satishkumar B. C., et al. Electrical and thermal properties of C60-filled single wall carbon nanotubes. AIP Conf. Proc., 2002, 633: 127-130
    [32] Takenobu T., Shiraishi M., Yamada A., et al. Hydrogen storage in C70 encapsulated single-walled carbon nanotube. Synth. Metals, 2003, 135-136: 787-788
    [33] Kimura K., Ikeda N., Maruyama Y., et al. Evidence for substantial interaction between Gd ion and SWNT in (Gd@C82)n@SWNT peapods revealed by STM studies. Chem. Phys. Lett., 2003, 379(3,4): 340-344
    [34] Suenaga K., Okazaki T., Wang C-R, et al. Direct imaging of sc2@c84 molecules encapsulated inside single-wall carbon nanotubes by high resolution electron microscopy with atomic sensitivity. Phys. Rev. Lett., 2003, 90(5): 1-4
    [35] Fu K., Martin R. B., Rao A. M., et al. Spectroscopic probing of organic molecules encapsulated in functionalized carbon nanotubes in solution. J. Nanosci. Nanotech., 2003, 3(1/2): 127-131
    [36] Takenobu T., Takano T., Iwasa Y. Magnetoresistance of organic molecules encapsulated single-walled carbon nanotubes. Tohoku Daigaku Kinzoku Zairyo Kenkyusho Kyojiba Chodendo Zairyo Kenkyu Senta Nenji Hokoku, 2003: 142-144
    [37] Naguib N., Ye H., Gogotsi Y. Filling and chemical modification of carbon nanotubes with polymers. Polym. Mater. Sci. and Eng., 2003, 89: 848
    [38] Gao H. J., Kong Y., Cui D. X., et al. Spontaneous insertion of DNA oligonucleotides into carbon nanotubes. Nano Lett., 2003, 3(4): 471-473
    [39] Soundarrajan P., Patil A., Dai L. M.. Surface modification of aligned carbon nanotube arrays for electrochemical sensing applications. J. Vac. Sci. & Technol., A: Vacuum, Surfaces, and Films, 2003, 21(4): 1198-1201
    [40] Xia H. S., Wang Q., Qiu G. H.. Polymer-encapsulated carbon nanotubes prepared through ultrasonically initiated in situ emulsion polymerization. Chem. Mater., 2003, 15(20): 3879-3886
    [41] Wang X. F., Wang D. Z., Liang J. Carbon nanotube capacitor materials loaded with different amounts of ruthenium oxide. Wuli Huaxue Xuebao, 2003, 19(6): 509-513
    [42] Sun J., Gao L. Development of a dispersion process for carbon nanotubes in ceramic matrix by heterocoagulation. Carbon, 2003, 41(5): 1063-1068
    [43] Min Y. S., Bae E. J., Jeong K. S., et al. Ruthenium oxide nanotube arrays fabricated by atomic layer deposition using a carbon nanotube template. Adv. Mater., 2003, 15(12): 1019-1022
    [44] Kong F. Z., Zhang X. B., Xiong W. Q., et al. Electroless plated multiwalled carbon nanotubes for reinforcing metal-matrix composites. Fuhe Cailiao Xuebao, 2002, 19(5): 71-74
    [45] Liu Z. J., Xu Z. D., Yuan Z. Y., et al. A simple method for coating carbon nanotubes with Co-B amorphous alloy. Mater. Lett., 2003, 57(7): 1339-1344
    [46] Park N., Han S., Ihm J. Field-emission properties of carbon nanotubes coated with boron nitride. J. Nanosci. Nanotech., 2003, 3(1/2): 179-183
    [47] Jiang K. Y., Eitan A., Schadler L. S., et al. Selective Attachment of Gold Nanoparticles to Nitrogen-Doped Carbon Nanotubes. Nano Lett., 2003, 3(3): 275-277
    [48] Czerw R., Chiu P. W., Choi Y. M., et al. Substitutional doping of carbon nanotubes. AIP Conf. Proc., 2002, 633: 86-91
    [49] Meunier V., Nardelli M. B., Shelton W., et al. Field emission properties of BN/C and BN@C hybrid nanotubes. Mater. Res. Soc. Symp. Pro., 2003, 739: 181-186
    [50] Fagan S. B., Mota R., Baierle R. J., et al. Ab initio study of an organic molecule interacting with a silicon-doped carbon nanotube. Diamond and Related Materials, 2003, 12(3-7): 861-863
    [51] Liu B. B., Cui Q. L., Yu M., et al. Raman study of bromine-doped single-walled carbon nanotubes under high pressure. J. Phys.: Condensed Matter, 2002, 14(44): 11255-11259
    [52] Debarre A., Jaffiol R., Richard A., et al. Raman hyperspectral imaging applied to chemical co-localization in diluted samples of perylene-doped nanotubes. Chem. Phys. Lett., 2002, 366(3,4): 274-278
    [53] Miyake T., Saito S. Electronic structure of potassium-doped carbon nanotubes. Phys. B: Condensed Matter, 2002, 323(1-4): 219-221
    [54] Ye J. T., Li Z. M., Tang Z. K., et al. Raman spectra of lithium doped single-walled 0.4 nm carbon nanotubes. Phys. Rev. B: Condensed Matter and Materials Physics, 2003, 67(11): 1-4
    [55] Yang Z. H., Li Z. F., Wu H. Q., et al. Effects of doped copper on electrochemical performance of the raw carbon nanotubes anode. Mater. Lett., 2003, 57(21): 3160-3166
    [56] Liu Y., Yukawa H., Morinaga M. Local electronic structure of lithium absorbed in carbon nanotubes. Mol. Crystals and Liquid Crystals Sci. and Technol., 2002, 387: 99-105
    [57] Liu Y., Yukawa H., Morinaga M. Energetics and chemical bonding of lithium absorbed carbon nanotubes. Adv. in Quan. Chem., 2003, 42: 315-330
    [58] Yim W. L., Gong X. G., Liu Z. F. Chemisorption of NO2 on carbon nanotubes. J. Phys. Chem. B, 2003, 107(35): 9363-9369
    [59] Yu R. Q., Cheng D. D., Zhan M. X., et al. Purification and end-opening of carbon nanotubes by liquid chemical corrosion. Huaxue Tongbao, 1996, (4): 25-26
    [60] Tsang S. C., Harris P. J. F., Green M. L. H. Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature, 1993, 362(6420): 520-522
    [61] Hiura H., Ebbesen T. W., Tanigaki K. Opening and purification of carbon nanotubes in high yields. Adv. Mater., 1995, 7(3): 275-276
    [62] Maurin G., Stepanek I., Bernier P., et al. Segmented and opened multi-walled carbon nanotubes. Carbon, 2001, 39(8): 1273-1278
    [63] An K. H., Jeon K. K., Moon J. M., et al. Transformation of single-walled carbon nanotubes to multiwalled carbon nanotubes and onion-like structures by nitric acid treatment. Synth. Metals, 2004, 140(1): 1-8
    [64] Yang Z. H., Wu H. Q., Simard B. Charge-discharge characteristics of raw acid-oxidized carbon nanotubes. Electro. Comm., 2002, 4(7): 574-578
    [65] Hwang K. C. High yield conversion of carbon nanotubes to nanostraws at mild conditions. Mater. Res. Soc. Symp. Proc., 1995, 359: 75-80
    [66] Yang Z. H., Li X. H., Wang H. Q., et al. Purifying carbon nanotube by K2Cr2O7 oxidation method. Huaxue Shijie, 1999, 40(12): 627-630
    [67] Kuznetsova A., Popova I., Yates J. T., et al. Oxygen-containing functional groups on single-wall carbon nanotubes: nexafs and vibrational spectroscopic studies. J. Am. Chem. Soc., 2001, 123(43): 10699-10704
    [68] Morishita K., Takarada T. Purification of carbon nanotubes by wet oxidation. Kagaku Kogaku Ronbunshu, 1998, 24(4): 670-674
    [69] Taji K., Ito H., Tanaka Y. Refining of carbon nanotubes by wet oxidation and sedimentation-separation. JP: 2002265209, 2002.
    [70] Moon C. Y., Kim Y. S., Lee E. C., et al. Mechanism for oxidative etching in carbon nanotubes. Phys. Rev. B: Condensed Matter and Materials Physics, 2002, 65(15):1-4
    [71] Cai L. T., Bahr J. L., Yao Y. X., et al. Ozonation of single-walled carbon nanotubes and their assemblies on rigid self-assembled monolayers. Chem. Mater., 2002, 14(10): 4235-4241
    [72] Zhang X. F., Cao A., Sun Q. H., et al. Oxidation and opening of well-aligned carbon nanotube tips. Mater. Trans., 2002, 43(7): 1707-1710
    [73] Miyagi K., Kunimatsu K. Processing method for nano-size substance. US: 2003217933, 2003.
    [74] Dujardin E., Ebbesen T. W., Krishnan A., et al. Purification of single-shell carbon nanotubes. Adv. Mater., 1998, 10(8): 611-613
    [75] Holzinger M., Hirsch A., Bernier P., et al. Novel purification procedure and derivatization method of single-walled carbon nanotubes. AIP Conf. Proc., 2000, 544: 246-249
    [76] Kuznetsova A., Popova I., Yates J. T., et al. Oxygen-containing functional groups on single-wall carbon nanotubes: nexafs and vibrational spectroscopic studies. J. Am. Chem. Soc., 2001, 123(43): 10699-10704
    [77] Tagmatarchis N., Georgakilas V., Prato M., et al. Sidewall functionalization of single-walled carbon nanotubes through electrophilic addition. Chem. Comm., 2002, 18: 2010-2011
    [78] Lu X., Tian F., Zhang Q. The [2+1] cycloadditions of dichlorocarbene, silylene, germylene, and oxycarbonylnitrene onto the sidewall of armchair (5,5) single-wall carbon nanotube. J. Phys. Chem. B, 2003, 107(33): 8388-8391
    [79] Holzinger M., Vostrowsky O., Hirsch A., et al. Sidewall functionalization of carbon nanotubes. Angew. Chem., Inter. Edi., 2001, 40(21): 4002-4005
    [80] Li R. F., Shang Z. F., Wang G. C., et al. Study on dichlorocarbene cycloaddition isomers of armchair single-walled carbon nanotubes. Theochem, 2002, 583: 241-247
    [81] Lu X., Tian F., Xu X., et al. A Theoretical exploration of the 1,3-dipolar cycloadditions onto the sidewalls of (n,n) armchair single-wall carbon nanotubes. J. Am. Chem. Soc., 2003, 125(34): 10459-10464
    [82] Georgakilas V., Kordatos K., Prato, M., et al. Organic functionalization of carbon nanotubes. J. Am. Chem. Soc., 2002, 124(5): 760-761
    [83] Lu X., Zhang L. L., Xu X., et al. Can the sidewalls of single-wall carbon nanotubes be ozonized?. J. Phys. Chem. B, 106(9), 2002: 2136-2139
    [84] Lu X., Tian F., Zhang Q. Organic functionalization of the sidewalls of carbon nanotubes by diels-alder reactions: a theoretical prediction. Organ. Lett., 2002, 4(24): 4313-4315
    [85] Segura J. L., Martin N. o-Quinodimethanes: efficient intermediates in organic synthesis. Chem. Rev., 1999, 99(11): 3199-3246
    [86] Nakajima T., Kasamatsu S., Matsuo Y. Synthesis and characterization of fluorinated carbon nanotube. Eur. J. Solid State Inorg. Chem., 1996, 33(9): 831-840
    [87] Pehrsson P. E., Zhao W., Baldwin J. W., et al. Thermal fluorination and annealing of single-wall carbon nanotubes. J. Phys. Chem. B, 2003, 107(24): 5690-5695
    [88] An K. H., Park K. A., Heo J. G., et al. Structural transformation of fluorinated carbon nanotubes induced by in situ electron-beam irradiation. J. Am. Chem. Soc., 2003, 125(10): 3057-3061
    [89] Okotrub A. V., Romanenko A. I., Yudanov N, F,, et al. Fluorine effect on the structure and electrical transport of arc-produced carbon nanotubes. AIP Conf. Proc., 2002, 633: 263-266
    [90] Schreiber J., Marcoux P. R., Albertini D., et al. Surface enhanced Raman scattering on fluorinated single-wall carbon nanotubes. AIP Conf. Proc., 2002, 633: 298-301
    [91] Khabashesku V. N., Billups W. E., Margrave J. L. Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions. Acc. Chem. Res., 2002, 35(12): 1087-1095
    [92] Bauschlicher C. W. Hydrogen and fluorine binding to the sidewalls of a (10,0) carbon nanotube. Chem. Phys. Lett., 2000, 322(3,4): 237-241
    [93] Hamwi A., Gendraud P., Gaucher H., et al. Electrochemical properties of carbon nanotube fluorides in a lithium cell system. Mol. Crystals and Liquid Crystals Sci. and Technol., Section A: Mol. Crystals and Liquid Crystals, 1998, 310: 185-190
    [94] Mickelson E. T., Chiang I. W., Zimmerman J. L., et al. Solvation of fluorinated single-wall carbon nanotubes in alcohol solvents. J. Phys. Chem. B, 1999, 103(21): 4318-4322
    [95] Kelly K. F., Chiang I. W., Mickelson E. T., et al. Insight into the mechanism of sidewall functionalization of single-walled nanotubes: an STM study. Chem. Phys. Lett., 1999, 313(3,4): 445-450
    [96] Hamwi A., Alvergnat H., Bonnamy S., et al. Fluorination of carbon nanotubes. Carbon, 1997, 35 (6): 723-728
    [97] Yudanov N. F., Okotrub A. V., Bulusheva L. G., et al. Synthesis and characterization of fluorinated carbon material containing multilayer nanoparticles. Zhurnal Neorganicheskoi Khimii, 2000, 45 (12): 1960-1969
    [98] Kudin K. N., Bettinger H. F., Scuseria G. E. Fluorinated single-wall carbon nanotubes. Phys. Rev. B: Condensed Matter and Materials Physics, 2001, 63(4): 1-8
    [99] Kyotani T., Tomita A. Carbon nanotubes. Reaction in anodic aluminum oxide films. Surf. Sci. Series, 2000, 92: 552-572
    [100] Hattori Y., Kaneko K., Okino F., et al. Adsorptive properties of designed fluorinated carbon nanotubes. Adsorp. Sci. and Technol., Proc. of the Pacific Basin Conf. on Adsorp. Sci. and Technol., 2nd. Singapore: World Scientific Publishing Co. Pte. Ltd., 2000. 309-313.
    [101] Seifert G., Kohler T., Frauenheim T. Molecular wires, solenoids, and capacitors by sidewall functionalization of carbon nanotubes. Appl. Phys. Lett., 2000, 77(9): 1313-1315
    [102] Lozano K., Files B., Rodriguez-Macias F. J., et al. Purification and functionalization of vapor grown carbon nanotubes and single wall nanotubes. Warrendale: Miner., Metals & Mater. Soc., 1999: 333-340
    [103] Boul P. J., Liu J., Mickelson E. T., et al. Reversible sidewall functionalization of buckytubes. Chem. Phys. Lett., 1999, 310(3,4): 367-372
    [104] Hattori Y., Watanabe Y., Kawasaki S., et al. Carbon-alloying of the rear surfaces of nanotubes by direct fluorination. Carbon, 1999, 37(7): 1033-1038
    [105] Mickelson E. T., Huffman C. B., Rinzler A. G., et al. Fluorination of single-wall carbon nanotubes. Chem. Phys. Lett., 1998, 296(1,2): 188-194
    [106] Gu Z., Peng H., Hauge R. H., et al. Cutting single-wall carbon nanotubes through fluorination. Nano Lett., 2002, 2(9): 1009-1013
    [107] An K. H., Heo J. G., Jeon K. G., et al. X-ray photoemission spectroscopy study of fluorinated single-walled carbon nanotubes. Appl. Phys. Lett., 2002, 80(22): 4235-4237
    [108] Touhara H., Inahara J., Mizuno T., et al. Property control of new forms of carbon materials by fluorination. J. Fluor. Chem., 2002, 114(2): 181-188
    [109] Hayashi T., Terrones M., Scheu C., et al. NanoTeflons: structure and EELS characterization of fluorinated carbon nanotubes and nanofibers. Nano Lett., 2002, 2(5): 491-496
    [110] Yudanov N. F., Okotrub A. V., Shubin Y. V., et al. Fluorination of arc-produced carbon material containing multiwall nanotubes. Chem. Mater., 2002, 14(4): 1472-1476
    [111] Zaporotskova I. V., Lebedev N. G., Chernozatonskii L. A. A study of the oxidation and fluorination of single-walled carbon nanotubes by the MNDO method. Phys. Solid State, 2002, 44(3): 482-484
    [112] Zhao W., Song C., Zheng B., et al. Thermal recovery behavior of fluorinated single-walled carbon nanotubes. J. Phys. Chem. B, 2002, 106(2): 293-296
    [113] Peng H. Q., Gu Z. N., Yang J. P., et al. Fluorotubes as Cathodes in Lithium Electrochemical Cells. Nano Lett., 2001, 1(11): 625-629
    [114] Frauenheim T., Seifert G., Koehler T., et al. A theoretical approach to functionalization of carbon nanotubes. NATO Sci. Series, II: Math., Phys. and Chem., 2001, 24: 347-356
    [115] Bettinger H. F. Experimental and computational investigations of the properties of fluorinated single-walled carbon nanotubes. Chem. Phys. Chem., 2003, 4(12): 1283-1289
    [116] Lebedev N. G., Zaporotskova I. V., Chernozatonskii L. A. Fluorination of carbon nanotubes: quantum chemical investigation within MNDO approximation. Inter. J. Quant. Chem., 2003, 96(2): 142-148
    [117] Giraudet J., Dubois M., Claves D., et al. Modifying the electronic properties of multiwall carbon nanotubes via charge transfer, by chemical doping with some inorganic fluorides. Chem. Phys. Lett., 2003, 381(3,4): 306-314
    [118] Peng H. Q., Reverdy P., Khabashesku V. N., et al. Sidewall functionalization of single-walled carbon nanotubes with organic peroxides. Chem. Comm., 2003, (3): 362-363
    [119] Jian C., Mark A. H., Hui H., et al. Solution properties of single-walled carbon nanotubes. Science, 1998, 282: 95
    [120] Haddon R. C., Chen J.. Dissolution and solubilization of single-walled carbonnanotubes by direct reaction with long-chain amines and alkylaryl amines. US: 6187823, 2001.
    [121] Gromovoy T. Y., Basiuk E. V., Pokrovskiy V. A., et al. Mass-spectrometric study of single-walled carbon nanotubes modified by aliphatic amines. Khimiya, Fizika ta Tekhnologiya Poverkhni, 2002, 7-8: 215-220
    [122] Xu M., Huang Q. H., Chen Q., et al. Synthesis and characterization of octadecylamine grafted multi-walled carbon nanotubes. Chem. Phys. Lett., 2003, 375(5,6): 598-604
    [123] Ham H. T., Koo C. M., Kim S. O., et al. Chemical modification of single-wall carbon nanotubes with octadecylamine and amino-terminated polystyrene. Hwahak Konghak, 2002, 40(5): 618-623
    [124] Pompeo F., Resasco D. E. Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine. Nano Lett., 2002, 2(4): 369-373
    [125] Huang W. J., Fernando S., Allard L. F., et al. Solubilization of single-walled carbon nanotubes with diamine-terminated oligomeric poly(ethylene glycol) in different functionalization reactions. Nano Lett., 2003, 3(4): 565-568
    [126] Sun Y., Wilson S. R., Schuster D. I., et al. High dissolution and strong light emission of carbon nanotubes in aromatic amine solvents. J Am. Chem. Soc., 2001, 123(22): 5348-5349
    [127] Kong J., Dai H. J. Full and modulated chemical gating of individual carbon nanotubes by organic amine compounds. J. Phys. Chem. B, 2001, 105(15): 2890-2893
    [128] Wong S. S., Woolley A. T., Joselevich E., et al. Covalently-functionalized single-walled carbon nanotube probe tips for chemical force microscopy. J. Am. Chem. Soc., 1998, 120(33): 8557-8558
    [129] Ying Y. M.,Saini R. K.,Liang F., et al. Functionalization of carbon nanotubes by free radicals. Organ. Lett., 2003, 5(9): 1471-1473
    [130] Long L. S., Lu X., Tian F., et al. Hydroboration of C(100) surface, fullerene, and the sidewalls of single-wall carbon nanotubes with borane. J. Organ. Chem., 2003, 68(11): 4495-4498
    [131] Lu X., Yuan Q. H., Zhang Q., et al. Sidewall epoxidation of single-walled carbon nanotubes: a theoretical prediction. Organ. Lett., 2003, 5(19): 3527-3530
    [132] Wei Z. X., Wan M. X., Lin T., et al. Polyaniline nanotubes doped with sulfonated carbon nanotubes made via a self-assembly process. Adv. Mater., 2003, 15(2): 136-139
    [133] Lim J. K., Yun W. S., Yoon M., et al. Selective thiolation of single-walled carbon nanotubes. Synth. Metals, 2003, 139(2): 521-527
    [134] Li B., Cao T. B., Cao W. X., et al. Self-assembly of single-walled carbon nanotube based on diazoresin. Synth. Metals, 2002, 132(1): 5-8
    [135] Tour J. M., Bahr J. L., Yang J. P.. Process for derivatizing carbon nanotubes with diazonium species and compositions thereof. WO: 2002060812, 2002.
    [136] Velasco S. C., Martinez H. A. L., Lozada C. M., et al. Chemical functionalization of carbon nanotubes through an organosilane. Nanotechnology, 2002, 13(4): 495-498
    [137] Giordano R., Serp P., Kalck P., et al. Preparation of rhodium catalysts supported on carbon nanotubes by a surface mediated organometallic reaction. Eur. J Inorg. Chem., 2003, (4): 610-617
    [138] Sano M., Kamino A., Okamura J., et al. Ring closure of carbon nanotubes. Science, 2001, 293(5533): 1299-1301
    [139] Li X. H., Zhang J., Li Q. W., et al. Polymerization of short single-walled carbon nanotubes into large strands. Carbon, 2003, 41(3): 598-601
    [140]官文超,吴春炜,卢海峰.碳纳米管-乙烯基吡咯烷酮聚合物的合成研究.华中科技大学学报(自然科学版), 2002, 9: 114-116
    [141] Viswanathan G., Chakrapani N., Yang H., et al. Single-step in situ synthesis of polymer-grafted single-wall nanotube composites. J. Am. Chem. Soc., 2003, 125(31): 9258-9259
    [142] Xie J. N., Zhang N. Y., Guers M., et al. Ultraviolet-curable polymers with chemically bonded carbon nanotubes for microelectromechanical system applications. Smart Mater. and Structures, 2002, 11(4): 575-580
    [143] Lin Y., Zhou B., Fernando K. A. S., et al. Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer. Macromolecules, 2003, 36(19): 7199-7204
    [144] Williams K. A., Veenhuizen P. T. M., Beatriz G., et al. Towards DNA-mediated self assembly of carbon nanotube molecular devices. AIP Conf. Proc., 2002, 633: 444-448
    [145] Baker S. E., Cai W., Lasseter T. L., et al. Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes: synthesis and hybridization. Nano Lett., 2002, 2(12): 1413-1417
    [146] Cai H., Cao X. N., Jiang Y., et al. Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection. Anal. and Bio. Chem., 2003, 375(2): 287-293
    [147] Li J., Ng H. T., Cassell A., et al. Carbon nanotube nanoelectrode array for ultrasensitive dna detection. Nano Lett., 2003, 3(5): 597-602
    [148] Shi L., Wu G. H., Majumdar A.. Integration of nanosensors in microstructures. Proc.Symp. on Energy Eng. Sci., 18th. Springfield: National Technical Information Service, 2000. 194-201
    [149] Dwyer C., Guthold M., Falvo M., et al. DNA-functionalized single-walled carbon nanotubes. Nanotechnology, 2002, 13(5): 601-604
    [150] Williams K. A., Veenhuizen P. T. M., Beatriz G., et al. Nanotechnology: Carbon nanotubes with DNA recognition. Nature, 2002, 420: 761
    [151] Hazani M., Naaman R., Hennrich F., et al. Confocal fluorescence imaging of DNA-functionalized carbon nanotubes. Nano Lett., 2003, 3(2): 153-155
    [152] Dordick J. S., Kim D. Y., Karajanagi S., et al. Nanostructures (single-walled carbon nanotubes and silicon nanopillars) containing enzymes directly attached or as polymer films and coatings. Ann. Meeting Arch. -Am. Inst. Chem. Eng. New York: 2002. 19-24
    [153] Yu X., Chattopadhyay D., Galeska I., et al. Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Polym. Mater. Sci. and Eng., 2003, 89: 77-78
    [154] Yu X., Chattopadhyay D.,Galeska I., et al. Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electro. Comm., 2003, 5(5): 408-411
    [155] Sotiropoulou S., Chaniotakis N. A. Carbon nanotube array-based biosensor. Anal. and Bio. Chem., 2003, 375(1): 103-105
    [156] Besteman K., Lee J. O., Wiertz F. G. M., et al.Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett., 2003, 3(6): 727-730
    [157] Panhuis M., Salvador-Morales C., Franklin E., et al. Characterization of an interaction between functionalized carbon nanotubes and an enzyme. J. Nanosci. Nanotech., 2003, 3(3): 209-213
    [158]陈建海.药用高分子材料与现代药剂.北京:科学出版社, 2003.
    [159]姚日生.药用高分子材料.北京:化学工业出版社, 2003.
    [160]郑俊民.药用高分子材料学.北京:中国医药科技出版社, 1993.
    [161]王天民.生态环境材料.天津:天津大学出版社, 2000.
    [162]杨大智.智能材料与智能系统.天津:天津大学出版社, 2000.
    [163]蒋挺大.甲壳素.北京:中国环境科学出版社, 1996.
    [164]蒋挺大.壳聚糖.北京:化学工业出版社, 2001.
    [165]甘景镐,甘纯玑,胡炳环.天然高分子化学.北京:高等教育出版社, 1993.
    [166]胡玉洁.天然高分子材料改性与应用.北京:化学工业出版社, 2003.
    [167]井上祥平.生物高分子功能及其模型.北京:科学出版社, 1987.
    [168]马宁,汪琴,孙胜玲,等.甲壳素和壳聚糖化学改性研究进展.化学进展, 2004, 16(4):643-653
    [169]杜予民.甲壳素化学与应用的新进展.武汉大学学报(自然科学版), 2000, 46(2): 181-186
    [170] Sashiwa H., Shigemasa Y., Roy R. Chemical modification of chitosan II: chitosan-dendrimer hybrid as a tree like molecule. Carbohydr. Polym., 2002, 49: 195-205
    [171] Jiang H., Su W., Hazel J., et al. Electrostatic self-assembly of sulfonated C60-porphyrin complexes on chitosan thin films. Thin Solid Films, 2000, 372: 85-93
    [172]刘仁庆.纤维素化学基础.北京:科学出版社, 1985.
    [173]高洁,汤烈贵.纤维素科学.北京:科学出版社, 1996.
    [174]许冬生.纤维素衍生物.北京:化学工业出版社, 2001.
    [175]李娜,刘忠洲,续曙光.再生纤维素分离膜制备方法研究进展.膜科学与技术, 2001, 21(6): 27-33
    [176]黄勇.纤维素及其衍生物液晶研究新进展.化学进展, 1997, 9(2): 209-216
    [177]汪维云,朱金华,吴守一.纤维素科学及纤维素酶的研究进展.江苏理工大学学报, 1998, 19(3): 20-28
    [178]李建法,宋湛谦.纤维素制备高吸水材料研究进展.林产化学与工业, 2002, 22(2): 81-85
    [179]汪勇,程博闻,杜启云.分离膜用纤维素材料改性研究的进展.膜科学与技术2002, 22(4): 60-64
    [180]唐爱民,梁文芷.纤维素的功能化.高分子通报, 2000, 4: 1-9
    [181]宋毅,马凤国,邵自强,等.合成纤维素高级脂肪酸酯的研究进展. 2002, 18(2): 11-15
    [182]国家药典委员会.中华人民共和国药典. 2000版.北京:化学工业出版社, 2000.
    [183] He P., Urban M. W. Controlled phospholipid functionalization of single-walled carbon nanotubes. Biomacromolecules, 2005, 6: 2455
    [184] Yoon S. H., Jin H. -J., Kook M. C., et al. Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules, 2006, 7: 1280
    [185] Hill D. E., Lin Y., Rao A. M., et al. Functionalization of carbon nanotubes with polystyrene. Macromolecules, 2002, 35: 9466
    [186] Yang M. J., Koutsos V., Zaiser M. Interactions between polymers and carbon nanotubes: a molecular dynamics study. J. Phys. Chem. B, 2005, 109: 10009-10014
    [187] Qin S. H., Qin D. Q., Ford W. T., et al. Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate. J. Am. Chem. Soc., 2004, 126: 170
    [188] Xu Y. Y., Gao C., Kong H., et al. Growing multihydroxyl hyperbranched polymers on the surfaces of carbon nanotubes by in situ ring-opening polymerization. Macromolecules, 2004, 37: 8846
    [189] Li H. M., Cheng F. Y., Duft A. M., et al. Functionalization of single-walled carbon nanotubes with well-defined polystyrene by "click" coupling. J. Am. Chem. Soc., 2005, 127: 14518
    [190] Feng W., Bai X. D., Lian Y. Q., et al. Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization. Carbon, 2003, 41: 1551
    [191] Jenkins, D. W.; Hudson, S. M. Review of vinyl graft copolymerization featuring recent advances toward controlled radical-based reactions and illustrated with chitin/chitosan trunk polymers. Chem. Rev., 2001, 101: 3249
    [192] Kumar M. N. V. R., Muzzarelli R. A. A., Muzzarelli C., et al. Chitosan chemistry and pharmaceutical perspectives. J. Chem. Rev., 2004, 104: 6018
    [193] Varma A. J., Deshpande S.V., Kennedy J. F. Metal complexation by chitosan and its derivatives: a review. Carbohydr. Polym., 2004, 55: 77
    [194] Welsh E. R., Schauer C. L., Qadri S. B., et al. Chitosan cross-linking with a water-soluble, blocked diisocyanate. I. Solid State. Biomacromolecules, 2002, 3: 1370
    [195] Jin L., Bai R. B. Mechanisms of lead adsorption on chitosan/PVA hydrogel beads. Langmuir, 2002, 18: 9765
    [196] Esumi K., Takei N., Yoshimura T. Antioxidant-potentiality of gold-chitosan nanocomposites. Colloids Surf. B, 2003, 32: 117
    [197] Li Y. H., Wang S. G., Luan Z. K., et al. Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon, 2003, 41: 1057
    [198] Li Y. H., Wang S. G., Wei J. Q., et al. Lead adsorption on carbon nanotubes. Chem. Phys. Lett., 2002, 357: 263
    [199] Philippe S., Massimiliano C., Philippe K. Carbon nanotubes and nanofibers in catalysis. Appl. Catal. A, 2003, 253: 337
    [200] He Z. B., Chen J. H., Liu D. Y., et al. Deposition and electrocatalytic properties of platinum nanoparticles on carbon nanotubes for methanol electrooxidation. Mater. Chem. Phys., 2004, 85: 396
    [201] Kim D. H., Choi J., Kahng Y. H., et al. Shortening multiwalled carbon nanotube on atomic force microscope tip: Experiments and two possible mechanisms. J. Appl. Phys., 2007, 101(6): 1-8
    [202] Aitchison T. J., Ginic-Markovic M., Matisons J. G., et al. Purification, cutting, and sidewall functionalization of multiwalled carbon nanotubes using potassium permanganate solutions. J. Phys. Chem. C, 2007, 111(6): 2440-2446
    [203] Wang Y., Gao L., Sun J., et al. An integrated route for purification, cutting and dispersion of single-walled carbon nanotubes. Chem. Phys. Lett., 2006, 432(1-3): 205-208
    [204] Wang X. X., Wang J. N., Su L. F., et al. Cutting of multi-walled carbon nanotubes by solid-state reaction. J. Mater. Chem., 2006, 16(43): 4231-4234
    [205] Liu J., Rinzler A. G., Dai H., et al. Fullerene Pipes. Science, 1998, 280: 1253-1255
    [206] Saito T., Matsushige K., Tanaka K. Chemical treatment and modification of multi-walled. carbon nanotubes. Phys. B, 2002, 323: 280
    [207] Chen J., Dyer M. J., Yu M. F. Cyclodextrin-mediated soft cutting of single-walled carbon nanotubes. J. Am. Chem. Soc., 2001, 123: 6201
    [208] Stepanek I., Maurin G., Bernier P., et al. Produced short carbon nanotubes with open tips by ball milling. Chem. Phys. Lett., 2000, 331: 125
    [209] Liu F., Zhang X. B., Cheng J. P., et al. Preparation of short carbon nanotubes by mechanical ball milling and their hydrogen adsorption behavior. Carbon, 2003, 41: 2527
    [210] Hu Y. H., Ruckenstein E. Pore size distribution of single-walled carbon nanotubes Ind. Eng. Chem. Res., 2004, 43: 708
    [211] Kónya Z., Zhu J., Niesz K., Mehn D., Kiricsi I. End morphology of ball milled carbon nanotubes. Carbon, 2004, 42: 2001
    [212] Kim Y. A., Hayashi T., Fukai Y., et al. Effect of ball milling on morphology of cup-stacked carbon nanotubes. Chem. Phys. Lett., 2002, 355: 279
    [213] Niesz K., Siska A., Vesselényi I., et al. Mechanical and chemical breaking of multiwalled carbon nanotubes. Catal. Today 2002, 76: 3
    [214] Wang Y., Wu J., Wei F. A treatment method to give separated multi-walled carbon nanotubes with high purity, high crystallization and a large aspect ratio. Carbon, 2003, 41: 2939
    [215] Sato S., Kawabata A., Kondo D., et al. Carbon nanotube growth from titanium-cobalt bimetallic particles as a catalyst. Chem. Phys. Lett., 2005, 402(1-3): 149-154
    [216] Ren S. F., Guo Y. L. Oxidized carbon nanotubes as matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of biomolecules. Rapid Comm. in Mass Spectr., 2005, 19(2): 255-260
    [217] Holzinger M., Abraham J., Whelan P., et al. Functionalization of single-walled carbon nanotubes with (R-)oxycarbonyl nitrenes. J. Am. Chem. Soc., 2003, 125: 8574
    [218] You Y. Z., Hong C. Y., Pan C. Y. Functionalization of carbon nanotubes with well-defined functional polymers via thiol-coupling reaction. Macro. Rapid Comm., 2006, 27(23): 2001-2006
    [219] Coleman K. S., Chakraborty A. K., Bailey S. R., et al. Iodination of Single-Walled Carbon Nanotubes. Chem. Mater., 2007, 19(5): 1076-1081
    [220] Guo G. Q., Yang D., Wang C. C., et al.“Fishing”polymer brushes on single-walled carbon nanotubes by in-situ free radical polymerization in a poor solvent. Macromolecules, 2006, 39(26): 9035-9040
    [221] Yang Y. K., Xie X. L., Wu J. G., et al. Multiwalled carbon nanotubes functionalized by hyperbranched poly(urea-urethane)s by a one-pot polycondensation. Macro. Rapid Comm., 2006, 27(19): 1695-1701
    [222] Ikeda M., Hasegawa T., Numata M., et al. Instantaneous inclusion of a polynucleotide and hydrophobic guest molecules into a helical core of cationic-1,3-glucan polysaccharide. J. Am. Chem. Soc., 2007, 129(13): 3979-3988
    [223] Bonifazi D., Nacci C., Marega R., et al. Microscopic and spectroscopic characterization of paintbrush-like single-walled carbon nanotubes. Nano Lett., 2006, 6(7): 1408-1414
    [224] Zhang L., Zhang J., Schmandt N., et al. AFM and STM characterization of thiol and thiophene functionalized SWNTs: Pitfalls in the use of chemical markers to determine the extent of sidewall functionalization in SWNTs. Chem. Comm., 2005, 43: 5429-5431
    [225] Kim Y., Torrens O. N., Kikkawa J. M., et al. High-purity diamagnetic single-wall carbon nanotube buckypaper. Chem. Mater., 2007, 19(12): 2982-2986
    [226] Strong K. L., Anderson D. P., Lafdi K., et al. Purification process for single-wall carbon nanotubes. Carbon, 2003, 41(8): 1477-1488
    [227] Gajewski S., Maneck H. E., Knoll U., et al. Purification of single walled carbon nanotubes by thermal gas phase oxidation. Diamond and Related Mater., 2003, 12(3-7): 816-820
    [228] Pearson F. G., Marchessault R. H., Liang C. Y. Infrared spectra of crystalline polysaccha rides V. Chitin. J. Polym. Sci., 1960, 43: 101
    [229] Mi F. L. Synthesis and characterization of a novel chitosan-gelatin bioconjugate with fluorescence emission. Biomacromolecules, 2005, 6(2): 980
    [230] Pretsch E., Bühlmann P., Affolter C. Structure determination of organic compounds: tables of special data. 3rd edition. Berlin: Springer-Verlag, 2000.
    [231] Ning Y. C. Structural identification of organic compounds and organic spectroscopy. 2nd edition. Beijing: Science Press, 2000.
    [232] Peng H. Q., Alemany L. B., Margrave J. L., et al. Sidewall carboxylic acid functionalization of single-walled carbon nanotubes. J. Am. Chem. Soc., 2003, 125: 15180
    [233] Rulther M. G., Frehill F., O’Brien J. E., et al. Characterization of Covalent Functionalized Carbon Nanotubes. J. Phys. Chem. B, 2004, 108: 9666
    [234] Wang G. J., Dong Y., Liu L., et al. Modification of carbon nanotubes with surface hyperbranched poly (p-chloromethyl styrene). Gaodeng Xuexiao Huaxue Xuebao, 2007, 28(1): 164-168
    [235] Kim Y. S., Cho J. H., Ansari S. G., et al. Immobilization of avidin on the functionalized carbon nanotubes. Synth. Metals, 2006, 156(14-15): 938-943
    [236] Yao Y., Li W. W., Wang S. B., et al. Polypeptide modification of multiwalled carbon nanotubes by a graft-from approach. Macro. Rapid Comm., 2006, 27(23): 2019-2025
    [237] Liu Y. X., Du Z. J., Li Y., et al. Surface covalent encapsulation of multiwalled carbon nanotubes with poly(acryloyl chloride) grafted poly(ethylene glycol). J. Polym. Sci., Part A: Polym. Chem., 2006, 44(23): 6880-6887
    [238] Wagner C. D., Naumkin A. V., Kraut-Vass A., et al. NIST X-ray Photoelectron Spectroscopy Database. 3.4 edition. National Institute of Standards and Technology, 2003.
    [239] Liao J. D., Lin S. P., Wu Y. T. Dual properties of the deacetylated sites in chitosan for molecular immobilization and biofunctional effects. Biomacromolecules, 2005, 6: 395
    [240] Ramanathan, T.; Fisher, F. T.; Ruoff, R. S.; Brinson, L. C. Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem. Mater. 2005, 17, 1294.
    [241] Tang X. P., Kleinhammes A., Shimoda H., et al. NMR characterization of electronic structures of single. walled carbon nanotubes. Science, 2000, 288:492
    [242] Cahill L. S., Yao Z., Adronov A., et al. Polymer-functionalized carbon nanotubes investigated by solid-state nuclear magnetic resonance and scanning tunneling microscopy. J. Phys. Chem. B, 2004, 108: 11415
    [243] Sun Y. P., Fu K. F., Lin Y. J., et al. Functionalized carbon. nanotubes: properties and applications. Acc. Chem. Res., 2002, 35: 1098
    [244] Qin S. H., Qin D. Q., Ford W. T., et al. Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate. J. Am. Chem. Soc., 2004, 126: 174
    [245] Zhao B., Hu H., Haddon R. C. Synthesis and properties of a water-soluble singlewalled carbon nanotube-poly(m-aminobenzene sulfonic acid) graft copolymer. Adv. Funct. Mater., 2004, 14: 73
    [246] Liu Y. Q., Adronov A. Preparation and utilization of catalyst-functionalized single-walled carbon nanotubes for ring-opening metathesis polymerization. Macromolecules, 2004, 37: 4757
    [247] Kong H., Gao C., Yan D. Y. Functionalization of multiwalled carbon nanotubes by atom transfer radical polymerization and defunctionalization of the products. Macromolecules, 2004, 37: 4026
    [248] Kong H., Gao C., Yan D. Y. Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. J. Am. Chem. Soc., 2004, 126: 413
    [249] Fu K. F., Li H. P., Zhou B., et al. Deuterium attachment to carbon nanotubes in deuterated water. J. Am. Chem. Soc., 2004, 126: 4671
    [250] Coleman K. S., Bailey S. R., Fogden S., et al. Functionalization of single-walled carbon nanotubes via the bingel reaction. J. Am. Chem. Soc., 2003, 125: 8723
    [251] Holzinger M., Vostrowsky O., Hirsch A., et al. Sidewall functionalization of carbon nanotubes. Angew. Chem., Int. Ed., 2001, 40: 4002
    [252] Sashiwa H., Kawasaki N., Nakayama A., et al. Chemical modification of chitosan. 14: synthesis of water-soluble chitosan derivatives by simple acetylation. Biomacromolecules, 2002, 3: 1121
    [253] Yoksan R., Akashi M., Biramontri S., et al. Hydrophobic chain conjugation at hydroxyl group onto gamma-ray irradiated chitosan. Biomacromolecules, 2001, 2: 1038
    [254] Cai L. T., Bahr J. L., Yao Y. X., et al. Ozonation of single-walled carbon. nanotubes and their assemblies on rigid self-assembled monolayers. Chem. Mater., 2002, 14: 4237
    [255] Rao A. M., Richter E., Bandow S., et al. Diameter-selective raman scattering from vibrational modes in carbon nanotubes. Science, 1997, 275: 187
    [256] Liu Y. Q., Yao Z. L., Adronov A. Functionalization of single-walled carbon nanotubes with well-defined polymers by radical coupling. Macromolecules, 2005, 38: 1174
    [257] Li Y., Chen Y., Xiang R., et al. Incorporation of single-wall carbon nanotubes into an organic polymer monolithic stationary phase for mu-hplc and capillary electrochromatography. Anal. Chem., 2005, 77: 1402
    [258] Lin Y., Zhou B., Fernando K. A. S., et al. Polymeric Carbon Nanocomposites from Carbon Nanotubes Functionalized with Matrix Polymer. Macromolecules, 2003, 36: 7202.
    [259] Keogh S. M., Hedderman T. G., Gregan E., et al. Spectroscopic analysis of single walled carbon nanotube and semi-conjugated polymer composites. J. Phys. Chem. B, 2004, 108: 6233-6241
    [260] Wang D. H., Baek J. B., Tan L. S. Grafting of a hyperbranched poly(ether-ketone) PEK onto multi-walled carbon nanotubes MWNT with an AB2 monomer. Polym. Prep., 2006, 47(2): 387-388
    [261] Borondics F., Bokor M., Matus P., et al. Reductive functionalization of carbon nanotubes. Fullerenes, Nanotubes, and Carbon Nanostructures, 13: 375-382
    [262] Pekker S., Salvetat J. P., Jakab E., et al. Chemical functionalization of carbon nanotubes. AIP Conf. Proc., 1999, 486: 474-477
    [263] Yoon K. R., Kim W. J., Choi I. S. Functionalization of shortened single-walled carbon nanotubes with poly(p-dioxanone) by "grafting-from" approach. Macro. Chem. Phys., 2004, 205(9): 1218-1221
    [264] Guo H., Sreekumar T. V., Liu T., et al. Structure and properties of polyacrylonitrile/ single wall carbon Nanotube composite films. Polymer, 2005, 46: 3001
    [265] Feng W., Bai X. D., Lian Y. Q., et al. Well-aligned polyaniline-carbon nano- composite tubes films by adsorption and growth. Carbon, 2003, 41: 1551
    [266] McNally T., P?tschke P., Halley P., et al. Polyethylene multiwalled carbon nanotube composites. Polymer, 2005, 46: 8222
    [267] Wang F. X., Gao X. P., Lu Z. W., et al. Electrochemical properties of Mg-based alloys containing carbon nanotubes. J. Alloys Compd., 2004, 370: 326
    [268] Shan Y., Gao L. Synthesis and characterization of phase controllable ZrO2–carbon nanotube nanocomposites. Nanotechnology, 2005, 16: 625
    [269] Ogawa K., Hirano S., Miyanishi T., et al. A new polymorph of chitosan. Macromolecules, 1984, 17: 973
    [270] Sait? H., Ryoko T., Ogawa K. High-resolution solid-state carbon-13 NMR study of chitosan and its salts with acids: conformational characterization of polymorphs andhelical structures as viewed from the conformation-dependent carbon-13 chemical shifts. Macromolecules, 1987, 20:2425
    [271] Kurita K., Ikeda H., Yoshida Y., et al. Chemoselective protection of the amino groups of chitosan by controlled phthaloylation: facile preparation of a precursor useful for chemical modifications. Biomacromolecules, 2002, 3: 1
    [272] Wang S. F., Shen L., Zhang W. D., et al. Preparation and Mechanical Properties of Chitosan/Carbon Nanotubes Composites. Biomacromolecules, 2005, 6: 3067
    [273] Grady B. P., Pompeo F., Shambaugh R. L., et al. Polypropylene crystallization by single-walled carbon nanotubes. J. Phys. Chem. B, 2002, 106: 5852
    [274] Probst O., Moore E. M., Resasco D. E., et al. Nucleation of polyvinyl alcohol crystallization by single-walled carbon nanotubes. Polymer, 2004, 45: 4437
    [275] Vladimir E. Y., Valentine M. S., Alexander N. S., et al. The nucleating effect of carbon nanotubes on crystallinity in r-bapb-type thermoplastic polyimide. Macromol. Rapid. Commun., 2005, 26: 885
    [276] Kim J. Y., Park H. S., Kim S. H. Unique nucleation of. multiwalled carbon nanotube and poly(ethylene 2,6-naphthalate). nanocomposites during non-isothermal crystallization. Polymer, 2006, 47: 1379
    [277] Haggenmueller R., Fischer J. E., Winey K. I. Single wall carbon nanotubes/ polyethylene nanocomposites: nucleating and templating PE crystallites. Macromolecules, 2006, 39: 2964
    [278] Werner P. E. Physical methods for materials characterization. J. Appl. Cryst., 1985, 18: 367
    [279] Taupin D. Automatic peak determination in X-ray powder patterns. J. Appl. Cryst., 1973, 6:380.
    [280] Smith G. S., Snyder R. J. A criterion for rating. powder diffraction patterns and evaluatingthe reliability of powder-pattern indexing. J. Appl. Cryst., 1979, 12: 60
    [281] Wu C. S. Characterizing composite of multiwalled carbon nanotubes and POE-g-AA prepared via melting method. J. Appl. Polym. Sci., 2007, 104(2): 1328-1337
    [282] Shanmugharaj A. M., Bae J. H., Nayak R. R., et al. Preparation of poly(styrene-co- acrylonitrile)-grafted multiwalled carbon nanotubes via surface-initiated atom transfer radical polymerization. J. Polym. Sci., Part A: Polym. Chem., 2007, 45(3): 460-470
    [283] Liu Y. X., Du Z. J., Li Y., et al. Surface covalent encapsulation of multiwalled carbon nanotubes with poly(acryloyl chloride) grafted poly(ethylene glycol). J. Polym. Sci., Part A: Polym. Chem., 2006, 44(23): 6880-6887
    [284] Chen S., Chen D. Y., Wu G. Z. Grafting of poly(tBA) and PtBA-b-PMMA onto the surface of SWNTs using carbanions as the initiator. Macro. Rapid Comm., 2006, 27(11): 882-887
    [285] Hong C. Y., You Y. Z., Wu D. C., et al. Multiwalled Carbon Nanotubes Grafted with Hyperbranched Polymer Shell via SCVP. Macromolecules, 2005, 38(7): 2606-2611
    [286] Ford W. T., Qin S. H., Tchoul M., et al. Polyelectrolytes grafted to single wall carbon nanotubes. Polym. Prep., 2004, 45(2): 229-230
    [287] Bennett R. D., Xiong G. Y., Ren Z. F., et al. Using Block Copolymer Micellar Thin Films as Templates for the Production of Catalysts for Carbon Nanotube Growth. Chem. Mater., 2004, 16(26): 5589-5595
    [288] Judit M., Anna R., Marcial M. M., et al. Novel Homo- and Heterobimetallic Palladium(0) and Platinum(0) Complexes of Olefinic Mono-, Bis-, and Tris- macrocyclic Ligands. Organometallics, 2004, 23: 2533-2540
    [289] Zhang W., Nowlan D. T., Thomson L. M., et al. Orthogonal, Convergent Syntheses of Dendrimers Based on Melamine with One or Two Unique Surface Sites for Manipulation. J. Am. Chem. Soc., 2001, 123: 8914-8922
    [290] Vollhardt D., Liu F., Rudert R. The Role of Nonsurface-Active Species at Interfacial Molecular Recognition by Melamine-Type Monolayers. J. Phys. Chem. B, 2005, 109: 17635-17643
    [291] Arvanitis A. G., Gilligan P. J., Chorvat R. J., et al. Non-Peptide Corticotropin- Releasing Hormone Antagonists: Syntheses and Structure-Activity Relationships of 2-Anilinopyrimidines and -triazines. J. Med. Chem., 1999, 42: 805-818
    [292]邢其毅,徐瑞秋,周政,等.基础有机化学.第二版.北京:北京大学出版社,1998.
    [293] Khabashesku V. N., Zimmerman J. L., Margrave J. L. Powder synthesis and characterization of amorphous carbon nitride. Chem. Mater., 2000, 12: 3264-3270
    [294] Jürgens B., Irran E., Senker J., et al. Melem (2,5,8-Triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: synthesis, structure determination by x-ray powder diffractometry, solid-state nmr, and theoretical studies. J. Am. Chem. Soc., 2003, 125: 10288-10300
    [295] Gillan E. G. Synthesis of Nitrogen-Rich Carbon nitride networks from an energetic molecular azide precursor. Chem. Mater., 2000, 12: 3906-3912
    [296] Silva A. R., Freire C., Castro de B., et al. Anchoring of a nickel(II) schiff base complex onto activated carbon mediated by cyanuric chloride. Microp. and Mesop. Mater., 2001, 46: 211-221
    [297] Salmain M., Fischer-Durand N., Roche. C., et al. Immobilization of atrazine on gold, a first step towards the elaboration of an indirect immunosensor: characterization by XPS and PM-IRRAS. Surf. Interface Anal., 2006, 38: 1276-1284
    [298] Martins M. C. L., Wang D., Ji J., et al. Albumin and brinogen adsorption on Cibacron blue F3G-A immobilised onto PU-PHEMA (polyurethane-poly(hydroxylethyl meth- acrylate)) surfaces. J. Biomater. Sci. Polym. Edn, 2003, 14(5): 439-455
    [299] Dieckhoff S., Schlett V., Possart W., et al. Characterization of triazine derivatives on silicon wafers studied by photoelectron spectroscopy (XPS, UPS) and metastable impact electron spectroscopy (MIES). Appl. Surf. Sci., 1996, 103: 22l-229
    [300] Guo Q. X., Yang Q., Zhu L., et al. A facile one-pot solvothermal route to tubular forms of luminescent polymeric networks [(C3N3)2(NH)3]n Solid State Comm., 2004, 132: 369-374
    [301]曹丰,黄琪,阮孜炜,等. N,O-羧甲基壳聚糖用于磷酸钙骨水泥调和液的研究.材料科学与工程学报, 2006, 24(3): 436
    [302]杨前荣,陈新,邵正中.天然聚电解质壳聚糖/羧甲基壳聚糖配合物膜的研制.化学学报, 2005, 63(4): 259
    [303]郝红英,徐文国,邵自强.微波法制备羧甲基壳聚糖及其在水处理中的应用.高分子材料科学与工程, 2006, 22(2): 223
    [304]徐云龙,汪传木,雷晓明.相转移催化法制备羧甲基壳聚糖.华东理工大学学报, 2003, 29(1): 80
    [305]王胜,杨黎明,陈捷,等.温度及pH敏感性聚乙烯醇P羧甲基壳聚糖水凝胶的制备与性能研究.化学世界, 2006, 3: 149
    [306]郑化,杜予民.纤维素羧甲基壳聚糖共混膜结构与抗菌性能.高分子材料科学与工程, 2002, 18(4): 124
    [307]杨智宽,袁扬,曹丽芬.羧甲基壳聚糖对水溶性染料废水的脱色研究.环境科学与技术, 1999, 85(2):8
    [308] Muzzarelli R. A. A. Carboxymethylated Chitins and Chitosans. Carbohydr. Polym., 1988, 8: 1-21
    [309]吴刚,沈玉华,谢安建,等. N,O-羧甲基壳聚糖的合成和性质研究.化学物理学报, 2003, 16(6): 501
    [310]吴刚,陈龙,谢安建,等. N,O-羧甲基壳聚糖体系中纳米碳酸钙的仿生合成.应用化学, 2006, 23(10): 1077
    [311] Wang S. F., Shen L., Tong Y. J., et al. Biopolymer chitosan/montmorillonite nanocomposites: Preparation and characterization. Polym. Degrad. and Stab., 2005, 90: 125-126
    [312] Biduru S., Sridhar S., Murthy G. S., et al. Pervaporation of tertiary butanol/water mixtures through chitosan membranes cross-linked with toluylene diisocyanate. J. Chem. Technol. Biotechnol., 2005, 80: 1420
    [313]童林荟.环糊精化学——基础与应用.北京:科学出版社, 2001.
    [314] Jullien L., Canceill J., Valeur B., et al. Multichromophoric cyclodextrins. 4. light conversion by antenna effect. J. Am. Chem.l Soc., 1996, 118(23): 5432-5442
    [315] Ling C. C., Darcy R. 6-S-hydroxyethylated 6-thiocyclodextrins: expandable host molecules. J. Chem. Soc., Chem. Comm., 1993, 2: 203-5
    [316] Lai C. S. I., Moody G. J., Thomas J. D., et al. Piezoelectric quartz crystal detection of benzene vapor using chemically modified cyclodextrins. J. Chem. Soc., Perkin Trans. 2: Phys. Organ. Chem., 1988, 3: 319-24
    [317]王能,丁恩勇.多相体系下微晶纤维素醋酸酯化表面改性的研究.高分子材料科学与工程, 2005, 21(4): 168
    [318]邵自强,郑一平,李永红,等.醋酸羟丙甲纤维素琥珀酸酯的性能表征.中国药学杂志, 2005, 40(11): 846