基于消失波的长周期光纤光栅化学传感
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用长周期光纤光栅对折射指数的敏感性,探索了一元醇和多元醇在长周期光栅上的响应,并利用传感灵敏度分析比较了亚甲基和羟基在长周期光栅上的传感灵敏性,发现对于醇在长周期光栅上响应的影响,羟基比亚甲基有更大的贡献。研究了不同浓度的蔗糖、果糖以及苯甲醛、苯甲酸乙酯、三乙醇胺等不同折射率的化学物质在长周期光纤光栅上的敏感规律,考察了环境介质折射率变化对长周期光纤光栅波谱衰减带的影响。利用静电自组装技术,在长周期光栅表面组装了PDDA/PSS、PAH/PSS的聚电解质薄膜,研究了组装层数和厚度对长周期光栅折射率的影响和对不同折射率物质的敏感规律。研究组装了聚电解质薄膜的长周期光栅对甲醇、乙醇、异丙醇、空气和水等五种介质的响应规律。实验表明,随着组装层数的增加,衰减带的中心波长向短波方向移动;研究发现,组装了PAH/PSS薄膜的长周期光栅对异丙醇、乙醇、甲醇、水、空气依次有一个最佳灵敏度,而且它们的灵敏度顺序与在组装了PDDA/PSS薄膜的长周期光栅上的顺序不同,但都表现了对不同折射指数的敏感选择性。说明通过改变薄层表面组装物质和组装厚度可以实现对不同物质的检测。实验显示,组装了薄膜的长周期光栅对0.001-0.2mol/L浓度范围内的亚硝酸钠有较好的响应,随着浓度的增加,衰减带的中心波长向长波方向移动,并且这种响应有较好的可逆性。
We mainly make some investigations to long-period fiber grating(LPFG) by using its sensitivity of refractive index. First of all, the influences of methylene and hydroxyl group on response of the polyol alcohols to LPFG were explored.the sensing sensitivity was utilized to analyse the response of alcohols to LPFG, the results showed hydroxyl group has a greater contribution than methylene in the shift of central wavelength of LPFG spectral attenuation band. Secondly, through preparing different concentrations of sucrose and fructose solutions and selecting high refractive index of benzaldehyde, ethyl benzoate, triethanolamine, the law of the sensitivity of LPFG to refractive index were studied. The experiments displayed that when the refractive index of the surrounding media is less than that of LPFG cladding, with increasing refractive index, the central wavelengths of LPFG spectral attenuation band gradually shifted toward short-wave. The more is the refractive index of environmental media close to that of grating cladding, the greater the range of movement the central wavelengths is. When the refractive index of the surrounding media is equivalent to that of cladding, there is only one attenuation band in the LPFG transmission spectrum. When refractive index of the environmental media is higher than that of the grating cladding, the central wavelengths of attenuation band gradually shifted toward long-wave, the depths of attenuation band become smaller and the response sensitivity of LPFG deseases. To further improve the sensitivity of LPFG, polyelectrolyte PDDA/PSS films were assembled on the grating surface, with increase of the assembly layers, the center wavelengths of attenuation band gradually move toward short-wave, food additive sodium nitrite was detected by using swelling of polyelectrolyte PDDA/PSS films, the experiments showed LPFG assembled thin films had a better response to sodium nitrite concentrations over the range of 0.001-0.2mol/L, the central wavelengths of attenuation bands moved to the long-wave as the concentrations increased, and the responses has a better reversibility.
     In order to explore the response law of LPFG assemblyed films to refractive index of ambient media, polyelectrolyte PDDA/PSS and PAH/PSS films were assembled onto the surface of LPFG cladding. Methanol, ethanol, isopropanol, air and water were used surrounding media of LPFG cladding. The experiments indicated LPFGs assembled PAH/PSS films have an optimal sensitivity following isopropanol, ethanol, methanol, water, air in order, respectively. LPFG assembled PDDA/PSS films made an appearance of the best sensitivity region following to isopropanol, ethanol, air, methanol, water, repectively, that is, there are the best sensitive regions to different refractive index of materials. Based on above appearances, we infer that the sensitivity law of LPFG assembled to different refractive index, when bilayers number is lesser, the films thickness is smaller, the average refractive index of films and media material of the higher refractive index is close to that of LPFG cladding. Under this circumstance, LPFG is sensitive to higher refractive index of material. With the rise of the assembly bilayers number, polyelectrolyte film thickness further increases, making average refractive index of films and a relatively low refractive index material approach that of LPFG cladding. In the case, LPFG is more sensitive to the lower refractive index material. LPFG assembled films incarnated selectivity of different refractive index by phenomena of the best sensitive performance in different regions to different refractive index. Therefore, by controlling assembly layers number to make LPFG have the best sensitivity to different refractive index, selectivity of LPFG to different refractive index of environmental media can be realized. This provides a good way for resolving poor specificity of LPFG, and is promising to play a larger role in the chemical and biological testing in the next step. Due to its high immunity to electromagnetic interference, low background reflection, minor insertion loss, light weight, small size, corrosion-resistant, high sensitivity, to ambient media characteristics of easily implanting and connecting with other the device, LPFG will show more and more promising prospects for applications in a wide range of nondestructive and fast on-line real-time detection of chemical and biological detection and industry measurement in the future.
引文
[1]张耀明.非通信光纤的研究和发展. [J].玻璃纤维,2003, 5:1-9.
    [2]卫乐平.光纤通信的发展和展望. [J].光机电信息, 2001, 2: 12- 19.
    [3]赵梓森.光纤通信发展动向. [J].电信工程技术与标准化,2000, 6:1-5.
    [4]张成良,张海懿.光波分复用技术讲座. [J].电信技术,1999,6: 13-17.
    [5]刘颂豪.光通信技术的新进展.光电子技术与信息, [J]. 2002, 15(2):1-8.
    [6]甘朝钦.中国光纤通信技术的研究、应用和发展. [J].真空电子技术,2003,3:4-6.
    [7]桂厚义.光纤通信技术的现状和发展趋势. [J].江西通信科技,2004,1:10-13.
    [8]Hill K O, Fujii Y, Johnson D C et al. Photosensitivity in optical fiber waveguide: appication to reflection filter fabrication. [J]. Appl. Phys. Lett., 1978, 32(10):647-649.
    [9]G. Meltz, W.W. Morey, W. H. Glenn. Polarimetric heterodyning Bragg grating fiber-laser sensor. [J]. Opt. Lett., 1993, 18: 1976-1978.
    [10]P. Lemaire, R.M. Alkins. High pressure H2 loadings as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres. [J].Electron. Lett.,1993,29(13):1191-1192.
    [11]H.Kawano,H.Muentz,Y.Sato et al..Reduction of transmission spectrum shift of long-period fiber gratings by a UV preexposure method. [J]. Lightwave Technology. 2001,19(8): 1221-1228.
    [12]C.Y. Lin, L.A. Wang. Loss-tunable long period fibre grating made from etched corrugation structure. [J]. Electron. Lett., 1999, 35(21): 1872-1873.
    [13]T. Enomoto, M. Shigehara,S.Ishikawa et al..Long-period fiber grating in a pure-silica-core fiber written by residual stiress relaxation. [J].OFC Technical Digest,1998:277-278.
    [14]Enboa Wu, Yang Rou-Ching, San Kuo-ching, Lin Chien-Hung. A Highly Efficient Thermally Controlled Loss-Tunable Long-Period Fiber Gratingon Corrugated Metal Substrate. [J].IEEE Photon.Techol.Lett., 2005,17(3): 612-614.
    [15]李丽君,孙磊,范万德,王志,罗建花,付圣贵,袁树忠,董孝义. A strain-induced birefringent double-clad fiber Bragg grating. Chin. Opt. Lett., 2005,3(7):383-385.
    [16]Andreas Othonos,Kyriacos Kalli. Fiber Bragg gratings: fundamentals and applications in telecommunications and sensing. Artech House,INC, Boston London.1999.
    [17]C. R. Giles, V. Mizrahi. Low-loss add/drop multiplexers for WDM lightwave networks. Tech. Dig. IOOC’95, Hong Kong, paper ThC2-1,1995.
    [18]J.J.Pan,Y.Shi.Steep skirt fibre Bragg grating fabrication using a new apodised phase mask. [J].Electron. Lett.,1997, 33: 1895-1896.
    [19]Yun-Jiang Rao, Webb D.J., Jackson D.A., Lin Zhang, Bennion I. In-fiber Bragg grating temperature sensor system for medical applications. [J]. J.Lightwave Technol., 1997, 15:779-785.
    [20]莫德举,廖妍,傅伟铮.布拉格光栅温度传感实验特性研究. [J].测控技术,2006,25(3):24-26.
    [21]R. M. Measures, S. Melle, K. Liu. Wavelength demodulated bragg grating fiber optic sensing systems for addressing smart structure critical issues. [J]. J. Smart Mater. Struc., 1992, 1(1):1-36.
    [22]郭金明,姜德生,袁宏才.基于膜片的光纤布拉格光栅压力传感器的研究. [J].量子电子学报,2006, 23(2):258-262.
    [23]张红梅,管效仲.光纤布拉格光栅传感技术在土木结构健康监测中的应用, [J].黑龙江水专学报,2005,32(1):56-57.
    [24]万里冰,武湛君,张博明,王殿富.光纤布拉格光栅监测复合材料固化. [J].复合材料学报,2004,21(3):1-5.
    [25]孔梅,石邦任.长周期光纤光栅对外界折射指数的敏感性. [J].半导体光电, 2003, 24(6):386-446.
    [26]何万迅,施文康,叶爱伦.长周期光纤光栅及其在通信传感领域的新应用.[J].光学精密工程,2001,9(2):104-108.
    [27] Bhatia V, Campbell D K, Sherr D, D’Alberto T G, Zabaronick N A, Ten Eyck G A, Murphy K A ,Claus R O. Temperature-insensitive and strain insensitive long-period grating sensors for smart structures. [J].Opt. Eng., 1997, 36: 1872–1876.
    [28]James S W,Tatam R P,Bateman R,Twin A,Noonan P. Cryogenic temperature response of fibre optic long period gratings [J].Meas. Sci. Technol., 2003,14(8):1409-1411.
    [29] Xu M G, Maaskant R, Ohn M M, Alavie A T. Independent tuning of cascaded long period fibre gratings for spectral shaping. [J].Electron. Lett., 1997,33:1893–1894.
    [30]Ye C C,James S W,Tatam R P.Simultaneous temperature and bend sensing using long-period fibre gratings. [J]. Opt. Lett., 2000, 25:1007–1009.
    [31]Patrick H J, Williams G M, Kersey A D, Pedrazzani J R,Vengsarkar A M. Hybrid fibre Bragg grating/long period grating sensor for strain/temperature discrimination. [J]. IEEE Photon. Technol. Lett., 1996,8:1223-1225.
    [32]Fallon R W, Zhang L, Williams J A R, Bennion I. All-fibre optical sensing system: Bragg grating sensor interrogated by a long period grating. [J]. Meas. Sci. Technol., 1998, 9: 1969- 973.
    [33]Gwandu B A L, Shu X, Allsop T D P et al.. Simultaneous refractive index and temperature measurement using cascaded long period grating in double2cladding fibre. [J].Electron Lett., 2002,38(14):695-696.
    [34]Hou R, Ghassemlooy Z, Hassan A, Lu C, Dowker K P. Modelling of long-period fibre grating response to refractive index higher than that of cladding. [J]. Meas. Sci. Technol.,2001,12: 1709–1713.
    [35]Duhem O, Henninot J F, Warenghem M, Douay M. Demonstration of long-period grating efficient couplings with an external medium of a refractive index higher than that of silica. [J]. Appl. Opt., 1998,37:7223-7228.
    [36] R Hou1, Z Ghassemlooy, A Hassan, C Lu,K P Dowker. Modelling of long period fiber grating response to refraetive index higher than that of cladding. [J]. Meas. Sci. Technol.,2001,12 1709-1713.
    [37]Zhang Z, Sirkis J S. Temperature compensated long-period grating chemical sensor [A]. Proc.of the Opti-cal Fiber Sensors Conf.(OFS-12) [C].Williamsburg,VA,USA,1997,294-297.
    [38]Chong J H, Shum Ping, Haryono H, et al.. Measurements of refractive index sensitivity using long period graing refractometer. [J].Optics Communications,2004,229:65-69.
    [39]Falciai R, Mignani A G, Vannini A.Long period gratings as solution concentration sensors. [J]. Sensors Actuators B, 2001,74:74-77.
    [40]Allsop T, Zhang L, Bennion I. Detection of organic aromatic compounds by a long period fibre grating optical sensor with optimised sensitivity. [J].Opt.Commun.,2001,191:181-190.
    [41]何万迅,施文康,何朔,范晓波,叶爱伦.长周期光纤光栅:原理、制备与应用. [J].光学技术,2001,27(5):396-400.
    [42]Dankers J P, Lenhart J L, Kueh S R, van Zanten J H, Advani S G, Parnas R S. Fibre optic flow and cure sensing for liquid composite molding. [J].Opt. Lasers Eng.,2001,35:91-104.
    [43]Khaliq S, James S W,Tatam R P. Fibre-optic liquid level sensor using a long-period grating. [J]. Opt. Lett., 2001,26: 1224–1226.
    [44]James S W, Rees N D, Ashwell G J, Tatam R P. Optical fibre long period gratings with Langmuir Blodgett thin film overlays. [J]. Opt. Lett., 2002,9: 686–688.
    [45]Flannery D, James S W, Tatam R P, Ashwell G J. A pH sensor using Langmuir–Blodgett overlays on polished optical fibres. [J].Opt. Lett., 1997, 22:567–569.
    [46]Flannery D, James S W, Tatam R P, Ashwell G J. Fibre optic chemicalsensing using Langmuir–Blodgett overlay waveguides. [J].Appl. Opt.,1999,38:7370–7374.
    [47]A.Ulman. Formation and structure of self-assembled monolayers. [J].Chem. Rev., 1996, 96:1533-1554.
    [48]Blodgett K B, Langmuir I. Built-up films of barium stearate and their optical properties [J]. phys. Rev., 1937,51:964-982.
    [49]Khun H,Mobius A. Systems of monomolecular layer assembling and physicochemical behavious. [J]. Angew.Chem.Inst.Ed.Engl., 1971,10:620.
    [50]Morriizumi T. Langmuir-Blodgett films aschemical sensors. [J].Thin Solid Films,1988,160:413-429.
    [51]Girling I R, Jethwa S R. Second order nonlinear optical effects in Langmuir-Blodgett films. [J].Thin solid films, 1988,160:355-362.
    [52]Muhopadhyay S, Hogarth C A. Gas sensing properties of phthalocyanine Langmuir-Blodgett film.[J]. Advanced Materials, 1994,6(2):162-64.
    [53]Roberts G G. Langmuir-Blodgett films. Plenum press.NewYork and London,1990.
    [54]UlmanA. An introduction to ultrath in organic films. Academic press,Inc,1991.
    [55]王文军,刘金凤.LB膜的制备及其在光学中的应用. [J].应用光学,2004,25(1):52- 54.
    [56]郑铁年.LB膜及其应用. [J].齐鲁石油化工, 1999, 27(4): 297- 299.
    [57]Nicholas D R, StephenW J, Ralph P T. Optical fiber long period gratings with Langmuir-Blodgett thin film overlays. [J].Optics Letters, 2002, 27 (9): 686-688.
    [58]G.Decher, J.D. Hong, J.Schmitt.Build up of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. [J]. Thin Solid Films, 1992, 210/211:831-835.
    [59]Decher G, Hong J.D., Makromol. Chem.. Macromol. Symp., 1991, 46321.
    [60]G.Decher, J.D.Hong, Ber.bunsen-Ges.1991,95:1430.
    [61]Gero Decher, Birgit Lehr, Klaus Lowack, Yuri Lvov, Johannes Schmitt. New nanocomposite films for biosensors: layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA.[J].Biosensors and Bioelectronics, 1994,9(9-10): 677-684.
    [62]Gero Decher. Fuzzy NanoassembliesToward Layered Polymeric Multicomposites. [J]. Science,1997,277:1232-1237.
    [63]Decher G, Hong J D, Schmitt J. Buildup of ultrathin multilayer films by a self assembly process: III.Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. [J].Thin Solid Films, 1992,210/211:831-835.
    [64]王洪波,周浩然.自组装法制备有机-无机复合膜. [J].哈尔滨理工大学学报,2005,10(3):1-3.
    [65]刘之景,王克逸等.自组装法制备聚合物纳米复合膜的新进展. [J].膜科学与技术,2003,23(1):50-52.
    [66]H. Hong, D. Davidov, M. Tarabia, H. Chayet, I. Benjamin, E.Z. FaFaraggi, Y. Avny, R. Neumann. Blue to red electroluminescence from self-assembled films. [J].Synth. Met., 1997, 85(1-3):1265-1266.
    [67]S.W. Keller, S.A. Johnson, E.S. Brigham, E.H. Yonemoto, T.E. Mallouk. Photoinduced Charge Separation in Multilayer Thin Films Grown by Sequential Adsorption of Polyelectrolytes. [J]. J. Am. Chem. Soc., 1995,117, 12879-12880.
    [68]Arregui F J, Liub Y, Matiasa I R and Claus R O. Optical fibre humidity sensor using a nano Fabry–Perot cavityformed by the ionic self-assembly method. [J]. Sensors Actuators B,1999,59:54-59.
    [69]Hong H, Davidov D, Chayet H, et al. Blue luminescence induced by confinement in self-assembled films. [J]. Supramolecular Science, 1997,4(1-2):67-73.
    [70] Hammond PT. Form and function in multilayer assembly: New applications at the nanoscale. [J]. Adv. Mater.,2004,16 (15): 1271-1293.
    [71]Xu L,Wang EB,Li Z et al.. Ultrath in multilayer films incorporating keggin-type heteropolyanion clusters. [J]. Chinese Chemical Letters, 2001,12(12):1127-1130.
    [72]I. Ichinose, H. Tagawa, H. Mizuki, Y. Lvov, T. Kunitake. Formation process of ultrathin multilayer films of molybdenum oxide by alternate adsorption of octamolybdate and linear polycations. [J].Langmuir,1998, 14(1):187-192.
    [73]Frank Caruso, Dirk G. Kurth, Dirk Volkmer, Michael J. Koop, Achim Müller. Ultrathin molybdenum polyoxometalate polyelectrolyte multilayer films. [J].Langmuir, 1998, 14(13): 3462-3465.
    [74]Dirk G. Kurth, Dirk Volkmer, Michaela Ruttorf, Bernd Richter, Achim Mller. Ultrathin composite films incorporating the nanoporous isopolyoxomolybdate "Keplerate" (NH4)42Mo132O372- (CH3COO)30(H2O)72]. [J].Chem Mater, 2000, 12 (10):2829-2831.
    [75]J.M. Levasalmi , T.J. McCarthy. Poly(4-methyllpentene) supported polyelectrolyte multilayer films: Preparation and gas permeability. [J]. Macromolecules 1997,30,1752-1757.
    [76]F.Van Ackern, L.Krasemann, B.Tieke. Ultrathin membranes for gas separation and pervaporation prepared upon electrostatic self-assembly of polyelectrolytes. [J]. Thin Solid Films, 1998, 327-329:762-766.
    [77]D. M. Sullivan, M. L. Bruening. Ultrathin, Gas-Selective Polyimide Membranes Prepared from Multilayer Polyelectrolyte Films. [J]. Chem. Mater.,2003,15(1):281-287.
    [78]X.Y. Liu, M.L. Bruening. Size-Selective Transport of Uncharged Solutes through Multilayer Polyelectrolyte Membranes. [J]. Chem. Mater. 2004, 16 (2):351-357.
    [79]B.W. Stanton, J.J. Harris, M.D. Miller, M.L. Bruening, Ultrathin, Multilayered Polyelectrolyte Films as Nano- filtration Membranes. [J]. Langmuir,2003,19:7038-7042.
    [80]Merlin L. Bruening, Daniel M. Sullivan.Enhancing the Ion-Transport Selectivity of Multilayer Polyelectrolyte Membranes. [J]. Chem. Eur. J. 2002,8(17):3832-3837.
    [81]M. Onda, Y. Lvov, K. Ariga, T. Kunitake. Sequential actions of glucose oxidase and peroxidase in molecular films assembled by layer-by-layer alternate adsorption. [J].Biotechnol. Bioeng.,1996, 51(2):163-167.
    [82]D. Trau, R. Renneberg. Encapsulation of glucose oxidase microparticles within a nanoscale layer-by-layer film: Immobilization and biosensor applications. [J]. Biosens. Bioelectron., 2003, 18(12): 1491-1499.
    [83]E.S. Forzani, M. Otero, M.A. Pe′rez, M.L. Teijelo, E.J. Calvo. The structure of layer-by-layer self-assembled glucose oxidase and Os(Bpy)2ClPyCH2NH-poly(allylamine) multilayers: ellipsometric and quartz crystal microbalance studies. [J].Langmuir 2002,18:4020–4029.
    [84]Y.P. Sun, J.Q. Sun, X. Zhang, C.Q. Sun, Y. Wang. J.C. Shen. Chemically modified electrode via layer-by-layer deposition of glucose oxidase (GOD) and polycation-bearing Os complex.[J].Thin Solid Films,1998,327-329: 730-733.
    [85]X.Q. Cui, R.J. Pei, X.Z. Wang, F. Yang, Y. Ma, S.J. Dong, X.R. Yang. Layer by layer assembly of multilayer films composed of avidin and biotin-labeled antibody for immunosensing.[J].Biosens. Bioelectron., 2003,18:59-67.
    [86]Nathalie Anicet, Christian Bourdillon, Jacques Moiroux, Jean-Michel Savant. Step-by-Step Avidin Biotin Construction of Bienzyme Electrodes Kinetic Analysis of the Coupling between the Catalytic Activities of Immobilized Monomolecular Layers of Glucose Oxidase and Hexokinase. [J]. Langmuir, 1999,15(19):6527-6533.
    [87]J. Anzai, Y. Kobayashi,N. Nakamura, M. Nishimura, T.Hoshi.Layer-by-Layer Construction of Multilayer Thin Films Composed of Avidin and Biotin-Labeled Poly(amine)s. [J].Langmuir,1999,15:221-226.
    [88]T. Hoshi, H. Saiki, S. Kuwazawa, C. Tsuchiya, Q. Chen, J. Anzai.Selective Permeation of Hydrogen Peroxide through Polyelectrolyte Multilayer Films and Its Use for Amperometric Biosensors. [J]. Anal. Chem.,2001,73(21):5310-5315.
    [89]T. Hoshi, H. Saiki, J. Anzai. Amperometric uric acid sensors based on polyelectrolyte multilayer films. [J]. Talanta, 2003,61:363-368.
    [90]A.H.Liu, M.Ehara, S.Takahashi, T.oshi, J.Anzai. Electrochemistry (Tokyo,Jpn.), 2003,71,508.
    [91]M.K. Ram, P.Bertoncello, H.Ding, S.Paddeu, C.Nicolini. Cholesterol biosensors prepared by layer-by-layer technique. [J]. Biosens. Bioelectron., 2001,16:849-856.
    [92]D.S. Koktysh, X. Liang, B.G. Yun, I. Pastoriza Santos, R.L. Matts, M. Giersig, C. Serra Rodríguez, L.M. Liz Marzán, N.A. Kotov. Biomaterials by Design: Layer-By-Layer Assembled Ion-Selective and Biocompatible Films of TiO2 Nanoshells for Neurochemical Monitoring. [J].Adv. Funct. Mater. 2002,12(4):255-265.
    [93]A.M.Yu,Z.J.Liang,J.H.Cho, F.Caruso.Nanostructured Electrochemical Sensor Based on Dense Gold Nanoparticle Films. [J].Nanolett., 2003,3:1203-1207.
    [94]C.A. Constantine, S.V. Mello, A. Dupont, X.H.Cao, D. Stantos, O.N. Oliveira, F.T. Strixino, E.C. Pereira, T.C. Cheng, J.J. Defrank, R.M. Leblanc, Layer-by-Layer Self-Assembled Chitosan Poly(thiophene- 3-acetic acid) and Organophosphorus Hydrolase Multilayers. [J]. J.Am.Chem.Soc., 2003,125:1805-1809.
    [95]C.A. Constantine, K.M. Gattas-Asfura, S.V. Mello, G. Crespo, V. Rastogi, T.C. Cheng, J.J. DeFrank, R.M. Leblanc. Layer-by-Layer Biosensor Assembly Incorporating Functionalized Quantum Dots. [J].Langmuir, 2003,19:9863-9867.
    [96]M.H. Yang, C.X. Li, Y.H. Yang, G.L. Shen, R.Q. Yu. Hydrogen peroxide biosensor based on enzyme multilayers through electrostatic adsorption. [J]. Acta Chim. Sinica,2004,62:502-507.
    [97]C.Q. Sun, W.J. Li, Y.P. Sun, X. Zhang, J.C. Shen. Fabrication of multilayer films containing horseradish peroxidase based on electrostatic interaction and their application as a hydrogen peroxide sensor. [J]. Electrochim Acta.,1999,44:3401-3407.
    [98]W.J. Li, Z. Wang, C.Q. Sun, M. Xian, M.Y. Zhao. Fabrication of multilayer films containing horseradish peroxidase and polycation- bearing Os complex by means of electrostatic layer-by-layer adsorption and its application as a hydrogen peroxide sensor. [J]. Anal. Chim. Acta , 2000,418:225-232.
    [99]N.G. Balabushevich, E.P. Zimina, N.I. Larionova. Encapsulation of catalase in polyelectrolyte microspheres composed of melamine formaldehyde, dextran sulfate, and protamine, [J].Biochemistry(Moscow), 2004,69:937-944.
    [100]A. Narvaez, G. Suarez, I.C. Popescu, I. Katakis, E. Dominguez.Reagentless biosensors based on self-deposited redox polyelectrolyte oxidoreductases architectures. [J]. Biosens. Bioelectron.,2000,15:43-52.
    [101]A. Palumbo, C. Pearson, J. Nagel, M.C. Petty. Surface plasmon resonance sensing of liquids using polyelectrolyte thin films. [J]. Sens. Actuators,B,2003,91(1-3):291-297.
    [102]Ignacio Del Villar, Ignacio R. Matías, Francisco J. Arregui. Optimization of sensitivity in Long Period Fiber Gratings with overlay deposition. [J].OPTICS EXPRESS,2005,13,(1):56-69.
    [103]Ignacio Del Villar, Ignacio R. Matias, Francisco J. Arregui. Influence on cladding mode distribution of overlay deposition onlong-period fiber gratings. [J]. J. Opt. Soc. Am.,2006,23(3):651-658.
    [104]A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo. Mode transition in high refractive index coated long period gratings. [J].OPTICS EXPRESS, 2006,14,(1): 19-34.
    [105]Ignacio Del Villar, Jesus M. Corres, Miguel Achaerandio, Francisco J. Arregui,Ignacio R. Matias. Spectral evolution with incremental nanocoatingof long period fiber gratings. [J]. OPTICS EXPRESS, 2006, 14,(25):11972-11981.
    [106]Del Villar I, Achaerandio M, Matias I R, Arregui F J. Deposition of overlays by electrostatic self-assembly in long-period fibre gratings. [J]. Opt. Lett.,2005,30:720-722.
    [107]Zhiyong Wang,J. R. Heflin,Rogers H. Stolen,Siddharth Ramachandran. Analysis of optical response of long period fiber gratings to nm-thick thin-film coatings. [J]. OPTICS EXPRESS, 2005,13(8):2808-2813.
    [108]Ignacio Del Villar, Francisco J. Arregui, Ignacio R. Matias, Andrea Cusano, Domenico Paladino,Antonello Cutolo. Fringe generation with non-uniformly coated long-period fiber gratings. [J].OPTICS EXPRESS, 2007,15,(15):9326-9340.
    [109]Andrea Cusano, Agostino Iadicicco, Pierluigi Pilla, Luigi Contessa, Stefania Campopiano, Antonello Cutolo. Cladding mode reorganization in high-refractiveindex-coated long-period gratings: effects on the refractive-index sensitivity. [J]. OPTICS LETTERS,2005,30(19):2536- 2538.
    [110]DeLisa M P, Zhang Z, Shiloach M, Pilevar S, Davis C C, Sirkis J S, Bentley W E. Evanescent wave long-period fiber Bragg grating as an immobilized antibody biosensor. [J].Anal. Chem., 2000,72(13):2895- 2900.
    [111]Tang J L, Cheng S F, Hsu W T , Chiang T Y , Chau L K. Fiber-optic biochemical sensing with a colloidal gold-modified long period fibergrating. [J]. Sensors and Actuators B,2006,119(1):105-109.
    [112]A. Cusano, P. Pill, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo. High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water. [J]. APPLIED PHYSICS LETTERS, 2005, 87(234105):1-3.
    [113]Jesus M. Corres, Ignacio del Villar, Ignacio R. Matias, Francisco J. Arregui. Fiber-optic pH-sensors in long-period fiber gratings using electrostatic self-assembly. [J].OPTICS LETTERS,2007,32(1):29-31.
    [114]Gu Zhengtian,Xu yanping,Gao Kan. Optical fiber long period grating with solgel coating for gas sensor.[J].OPTICS LETTERS,2006,31(16): 2405-2407.
    [115]Xu yan Ping,Gu Zhengtian,Chen jiabi. Long period fiber grating thin film sensors based on cladding mode coupling. [J]. Chin. Phys. Lett., 2005, 22(7):1702-1705.
    [1]J.Dakin,B.Culshaw.Optical Fiber Sensors: Principles and Components. Artech,Boston: Mass.,1988.
    [2]RZV.Costa, RC. Karnikawachi, M. Muller, J.L. Fabris. Thermal characteristics of long-period gratings 266 nm UV-point-by-point induced. [J]. Opt. Commun.,2009,282:816-823.
    [3] T. Mizunami, Y. Ishida, S. Yoshikura. Long-Period Fiber Grating Temperature Sensors in Ge-B-Codoped Fibers with Temperature/Strain Discrimination. [J]. JAPANESE JOURNAL OF APPLIED PHYSICS,2008,47(8): 6833-6837.
    [4]Yun Zhang, De-Long Zhang, Edwin Yue-Bun Pun. Analysis of temperature--pressure sensitivity of the resonant wavelength of long-period channel waveguide gratings. [J]. J. Opt. Soc. Am. A, 2008, 25(11):2776-2783.
    [5] G.R.C. Possetti, R.C. Kamikawachi, J.L. Fabris, H.J. Kalinowski, R. Falate. Temperature influence of an air conditioner in refractive index measurements using long-period fiber gratings. Proceedings of the SPIE - The International Society for Optical Engineering, 2007,6619:66193W(4 pp.).
    [6]Yu Qingxu, Song Shile, Zheng Jianzhou, Guan Shouhua. Theoretical and experimental study on temperature characteristic of long-period fibre grating. [J]. Chinese Journal of Sensors and Actuators,2007,20(3): 543-545.
    [7]Samer K. Abi Kaed Bey, Tong Sun, Kenneth T.V. Grattan. Optimization of a long period grating based Mach-Zehnder interferometer for temperature measurement.[J].Opt. Commun.,2007,272(1):15-21.
    [8]Zhu T, Rao YJ, Wang JL, Song Y. Strain sensor without temperature compensation based on LPFG with strongly rotary refractive indexmodulation. [J].ELECTRON. LETT.,2007,43(21):1132-1134.
    [9]Bock WJ, Chen J, Mikulic P, Eftimov T, Korwin-Pawlowski M. Pressure sensing using periodically tapered long-period gratings written in photonic crystal fibres. [J]. MEAS. SCI. TECHNOL, 2007,18(10):3098- 3102.
    [10]Kamikawachi RC, Possetti GRC, Falate R, Muller M, Fabris JL. Influence of surrounding media refractive index on the thermal and strain sensitivities of long-period gratings. [J]. APPLIED OPTICS, 2007,46(15):2831-2837.
    [11]Wang YP, Xiao LM, Wang DN, Jin W. Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity. [J]. OPTICS LETTERS,2006,31(23):3414-3416.
    [12]Bock WJ, Chen J, Mikulic P, Eftimov T. A novel fiber-optic tapered long-period grating sensor for pressure monitoring. [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,2007,56(4):1176- 1180.
    [13]Han YG, Kim G, Lee K, Lee SB, Jeong CH, Oh CH, Kang HJ. Bending sensitivity of long-period fiber gratings inscribed in holey fibers depending on an axial rotation angle. [J]. OPTICS EXPRESS, 2007,15(20): 12866-12871.
    [14]Falate R, Frazao O, Rego G, Ivanov OV, Kalinowski HJ, Fabris JL, Santos JL. Bending sensitivity dependent on the phase shift imprinted in long-period fibre gratings. [J]. MEAS. SCI. TECHNOL , 2007, 18(10): 3123-3130.
    [15]Chen SH, Tong ZR, Zhao Q, Liu ZG, Dong XY. A smart bending sensor with a novel temperature- and strain- insensitive long period grating. [J].SENSORS AND ACTUATORS A-PHYSICAL, 2004,116(1):103-106.
    [16]Wang YP, Rao YJ, Ran ZL et al. Bend-insensitive long-period fiber grating sensors. [J].OPTICS AND LASERS IN ENGINEERING,2004,41(1):233-239.
    [17]Patrick H J, Chang C, Vohra S T. Long period fibre gratings for structural bend sensing. [J]. Electron. Lett.,1998, 34(18):1773- 1775.
    [18]Liu Y, Williams J A R, Bennion I, Optical bend sensor based on measurement of resonance modesplitting of long-period fibre grating. [J].IEEE Photonics Technology Letters,2000,12(5):531-533.
    [19]Allsop T, Zhang L, Bennion I. Detection of organic aromatic compounds in paraffin by a long-period fiber grating optical sensor with optimized sensitivity. [J]. Optics Communications, 2001,191(3-6): 181-190.
    [20]Falate R, Kamikawachi R C, Muller M, Kalinowski H J, Fabris J L. Fiber optic sensors for hydrocarbon detection. [J].Sensors and Actuators B,2005,105(2):430-436.
    [21]Falciai R, Mignani A G., Vannini A. Long period gratings as solution concentration sensors. [J]. Sensors and Actuators B,2001,74(1-3): 74- 77.
    [22]Patrick H J, Kersey A D, Bucholtz F. Analysis of the response of long period fibre gratings to external index of refraction. [J].Journal of Lightwave Technology, 1998, 16(9): 1606-1612.
    [23]Shu X, Huang D. Highly sensitive chemical sensor based on the measurement of the separation of dual resonant peaks in a 100μm period fibre grating. [J]. Optics Communications,1999,171(1-3):65-69.
    [24]DeLisa M P, Zhang Z, Shiloach M, Pilevar S, Davis C C, Sirkis J S, Bentley W E. Evanescent wave long-period fiber bragg grating as an immobilized antibody biosensor. [J]. Anal.Chem., 2000,72(13):2895- 2900.
    [25]Tang J L, Cheng S F, Hsu W T, Chiang T Y, Chau L K. Fiber-optic biochemical sensing with a colloidal gold- modified long period fiber grating. [J]. Sensors and Actuators B,2006,119(1):105-109
    [26]王庆亚,张健,张玉书.外写入光纤光栅的进展. [J].吉林大学自然科学学报,1996.
    [27]T.Erdogan,V.Mizrahi,P.J.Lemaire,D.Monroe. Decay of ultraviolet induced fiber Bragg gratings. [J]. J. Appl. Phys., 1994,76(1):73-80.
    [28]H. Patrick, S.L. Gilbert. Annealing of Bragg gratings in hydrogen-loaded optical fiber. [J]. J.Appl.Phys.,1995,78(5):2940- 2945.
    [29]Vikram Bhatia.Optical fiber long-period grating sensors. [J]. OPTICS LETTERS,1996,21(9):692-694.
    [30]廖延彪,黎敏,田芋.长周期光栅一新兴的光纤光栅传感器. [J].激光与红外,1997,27(6).
    [31]S. W. James, R. P. Tatam. Optical fibre long-period grating sensors-characteristics and application. [J]. Meas. Sci. Technol., 2003, 14(5):49-61.
    [32]Kashyap R 1999 Fibre Bragg Gratings (New York: Academic).
    [33]T. Erdogan. Cladding-mode resonance in short-and long- period grating filters.Opt.Soc.Amer.A—Optics Image Science and Vision,1997, 14:1760-1773.
    [34]A.M.Vengsarkar, P.J.Lemaire,J.B.Judkins et al., long period fiber grating as band rejection filters. [J]. Lightwave Technol.,1996,14(1): 58-65.
    [35]Yin Shizhuo, Chung kun-wook, Zhu xin. A novel all- optic tunable long period grating using a unique double-cladding layer. [J]. Optics Communications. 2001,196:181-186.
    [36]杨柏,吕长利,沈家骢.高性能聚合物光学材料.北京:化学工业出版社,2005:34.
    [37]Patrick H J, Kersey A D, Bucholtz F. Analysis of the response of long period fibre gratings to external index of refraction. [J].J.Lightwave Technol.,1998,16:1606-1612.
    [1]Tang HY, Wong WH, Pun EYB. Long period polymer waveguide grating device with positive temperature sensitivity. [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2004,79(1):95-98.
    [2]Ng M N, Chiang K S. Thermal effects on the transmission spectra of long-period fiber gratings. [J]. Opt.Commun., 2002, 208:321-327.
    [3]Mizunami T, Fukuda T, Hayashi A. Fabrication and characterization of long-period-grating temperature sensors using Ge-B-co-doped photosensitive fibre and single-mode fibre.[J]. Meas. Sci. Technol., 2004,15(8):1467- 1473.
    [4]Khaliq S, James S W,Tatam R P. Enhanced sensitivity fibre optic long period grating temperature sensor. [J]. Meas. Sci. Technol., 2002,13: 792-795.
    [5]Liu Q, Chiang KS, Lor KP, Chow CK. Temperature sensitivity of a long-period waveguide grating in a channel waveguide. [J].APPLIED PHYSICS LETTERS,2005,86,(24):241115.
    [6]Guan Shou-hua, Yu Qing-xu, Song Shi-cle, Zheng Jian-zhou. Theoretical and experimental study on temperature characteristic of long-period fibre grating. [J]. Chinese Journal of Sensors and Actuators, 2007,20(3):543-545.
    [7]Han YG, Kim G, Lee K, Lee SB, Jeong CH, Oh CH, Kang HJ. Bending sensitivity of long-period fiber gratings inscribed in holey fibers depending on an axial rotation angle. [J]. OPTICS EXPRESS,2007,15(20): 12866-12871.
    [8]Falate R, Frazao O, Rego G, Ivanov OV, Kalinowski HJ, Fabris JL, Santos JL. Bending sensitivity dependent on the phase shift imprinted in long-period fibre gratings, [J]. Meas. Sci. Technol.,2007,18(10): 3123-3130.
    [9]Chen SH, Tong ZR, Zhao Q, Liu ZG, Dong XY. A smart bending sensor with a novel temperature- and strain-insensitive long-period grating. [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2004, 116(1):103-106.
    [10]Wang YP, Rao YJ, Ran ZL, et al.. Bend-insensitive long period fiber grating sensors. [J]. OPTICS AND LASERS IN ENGINEERING,2004,41(1): 233- 239.
    [11]Liu Y, Zhang L,Bennion I. Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre. [J]. Electron. Lett.,1999,35:661-662.
    [12]Zhang L, Liu Y, Williams J A R, Bennion I. Design and realisation of long-period grating devices in conventional and high birefringence fibers and their novel applications as fibre optic load sensors. [J]. IEEE J. Sel. Top.Quantum Electron. 1999,5:1371-1378.
    [13]Lin C-Y, Wang L A, Chern G-W. Corrugated long-period fibre gratings as strain, torsion and bending sensors. J. Lightwave Technol.,2001,19: 1159-1168.
    [14]Wang L A, Lin C Y, Chern G W. A torsion sensor made of a corrugated long period fibre grating. [J]. Meas. Sci. Technol., 2001,12:793-799.
    [15] Wang YP, Xiao LM, Wang DN,Jin W. Highly sensitive long- period fiber-grating strain sensor with low temperature sensitivity, [J].OPTICS LETTERS,2006,31(23):3414-3416.
    [16]Zhu T, Rao YJ, Wang JL, Song Y. Strain sensor without temperature compensation based on LPFG with strongly rotary refractive index modulation. [J]. ELECTRON. LETT., 2007, 43(21):1132-1134.
    [17]方宏,秦曦,裴丽,简水生.基于长周期光纤光栅的可调谐光滤波器设计. [J].光电子激光, 2005,16 (1):5-8.
    [18]Falciai R, Mignani A G, Vannini A. Long period gratings as solution concentrationsensors. [J]. Sensors Actuators B,2001,74:74-77.
    [1]Allsop T, Zhang L, Bennion I. Detection of organic aro-matic compounds by a long period fibre grating optical sensor with optimized sensitivity. [J]. Optics Communications,2001,191(3-6):181-190.
    [2]Falciai R,Mignani A G,Vannini A. Long period gratings as solution concentration sensors.[J].Sensors and Actuators B,2001,74(1-3): 74-77.
    [3]关寿华,于清旭,宋世德.基于单端长周期光纤光栅的浓度传感器.[J].传感技术学报,2005,18(3):653-656.
    [4]李志全,王莉,黄丽娟.基于长周期光纤光栅的折射率与浓度传感方案的研究. [J]应用光学,2004,25(4):48-50.
    [5]Jian Zhang, Xiling Tang, Junhang Dong, et al..Thin Film-Coated Long Period Fiber Grating Sensor for Measuring Trace Chemical. Optical Society of America ,2008,16:11-17.
    [6]M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, W. E. Bentley. Evanescent wave long-period fiber Bragg grating as an immobilized antibody biosensor. Anal. Chem., 2000 ,72(13):2895-2900.
    [7]A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo,M. Giordano. Cladding mode reorganization in high refractive index coated long-period gratings: effects on the refractive-index sensitivity. Opt. Lett., 2005, 30(19):2536-2538.
    [8]P. T. Hammond. Form and Function in Multilayer Assembly: New Applications at the Nanoscale. Adv.Mater.,2004,16(15),1271-1293.
    [9]Ignacio Del Villar, Ignacio. R. Matias. Long-Period Fiber Gratings With Overlay of Variable Refractive Index. IEEE PHOTONICS TECHNOLOGY LETTERS,2005,17(9):1893-1895.
    [10]Andrea Cusano, Agostino Iadicicco et al.. Cladding mode reorganization in high-refractive index coated long-period gratings:effects on the refractive-index sensitivity. OPTICS LETTERS ,2005,30(19):2536-2538.
    [11]Falate R., Kamikawachi R C, Muller M, Kalinowski H J, Fabris J L. Fiber optic sensors for hydrocarbon detection. Sensors and Actuators B,2005,105(2):430-436
    [12]S. Yin, K. W. Chung, X. Zhu. A novel all-optic tunable long-period grating using a unique double-cladding layer. Opt. Commun.,2001,196 (1-6):181-186 .
    [13]P. Pilla, A.Ladicieco,L. Contessa, S. Campopiano, et al.. Optical Chemo-Sensor Based on Long Period Gratings Coated WithδForm Syndiotactic Polystyrene.IEEE Photon. Technol. Lett., 2005, 17(8):1713-1715.
    [14]J. L. Tang, S. F. Cheng, W. T. Hsu, T. Y. Chiang, L. K. Chau. Fiber-optic biochemical sensing with a colloidal gold-modified long period fiber grating. Sens. Actuators, B,2006,119(1):105-109.
    [15]Zhengtian Gu, Yanping Xu. Design optimization of a long period fiber grating with sol-gel coating for a gas sensor. [J]. Meas. Sci. Technol., 2007,18:3530-3536.
    [16]G.A. Ayangbile, J.P. Fontenot, D.J. Kirk, V.G. Allen, G.J. Flick. Effects of Chemicals on Preservation of Crab-Processing Waste and Fermentation Characteristics of the Waste Straw Mixture. [J]. J. Agric. Food Chem.,1997,45(9):3622-3626.
    [17]K. Osada, S. Hoshina, S. Nakamura, M. Sugano. Cholesterol Oxidation in Meat Products and Its Regulation by Supplementation of Sodium Nitrite and Apple Polyphenol before Processing. [J]. J. Agric. Food Chem.,2000, 48(9):3823-3829.
    [18]V.M. Lakshmi, M.L. Clapper, W.C. Chang, T.V. Zenser. Hemin Potentiates Nitric Oxide-Mediated Nitrosation of 2-Amino-3- methylimidazo[4,5-f]quinoline (IQ) to 2-Nitrosoamino-3- methylimidazo 4,5-f]quinoline. [J]. Chem. Res. Toxicol., 2005,18(3):528-535.
    [19]G. Decher. Fuzzy NanoassembliesToward Layered Polymeric Multicomposites. [J].Science, 1997,277:1232-1237.
    [20]B.S. Joseph, T.D. Stephan. Mechanism of Polyelectrolyte Multilayer Growth: Charge Overcompensation and Distribution. [J].Macromolecules, 2001,34(3):592-598.
    [21]P.T. Hammond. Form and Function in Multilayer Assembly New Applications at the Nanoscale. [J]. Adv. Mater.,2004, 16: 1271-1293.
    [22] J. Zhang, X. Tang, J. Dong, T. Wei, H. Xiao. Zeolite Thin Film-Coated Long Period Fiber Grating Sensor for Measuring Trace Chemical. [J].Opt. Express, 2008,16(11):8317-8323.
    [1]Sarfraz Khaliq, Stephen W. James, Ralph P. Tatam. Fiber-optic liquid-level sensor using a long-period grating. [J].Opt.Lett.,2001, 26(16):1224-1226.
    [2]T.Allsop, L. Zhang, I.Bennion. Detection of organic aromatic compounds in paraffin by a long-period fiber grating optical sensor with optimized sensitivity. [J]. Opt. Commun., 2001, 191:181-190.
    [3]R. Falciai, A.G. Mignani, A. Vannini. Long period gratings as solution concentration sensors. [J].Sensors and Actuators B, 2001,74:74-77.
    [4]Xuewen Shu, Dexiu Huang. Highly sensitive chemical sensor based on the measurement of the separation of dual resonant peaks in a 100-mm-period fiber grating. [J]. Optics Communications, 1999(171):65-69.
    [5]A.Cusano, P.Pilla, L.Contessa, A.Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, G. Guerra. High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water. [J]. Appl. Phys. Lett.,2005, 87,234105:1-3.
    [6]Matthew P. DeLisa, Zheng Zhang, Mira Shiloach, Saeed Pilevar,Christopher C. Davis, James S. Sirkis, William E. Bentley. Evanescent Wave Long-Period Fiber Bragg Grating as an Immobilized Antibody Biosensor. [J].Anal. Chem.,2000,72:2895-2900.
    [7]H.J. Patrick, A.D. Kersey, F. Bucholtz. Analysis of the Response of Long Period Fiber Gratings to External Index of Refraction. [J].J. Lightwave Technol.,1998,16(9):1606-1612.
    [8]Hou R, Ghassemlooy Z, Hassan A, Lu C, Dowker K P. Modelling of long-period fibre grating response to refractive index higher than that of cladding. [J]. Meas.Sci.Technol.,2001,12:1709-1713.
    [9]Lee BH, Liu Y, Lee SB, Choi SS,Jang J N. Displacements of the resonant peaks of a long-period fibre grating induced by a change of ambient refractive index. [J]. Opt. Lett.,1997,22:1769-1771.
    [10]Nicholas D. Rees, Stephen W. James, Ralph P. Tatam, Geoffery J. Ashwell. Optical fiber long-period gratings with Langmuir–Blodgett thin-film overlays. [J]. Opt. lett., 2002,27(9):686-688.
    [11]Ignacio Del Villar, Ignacio R. Matías, Francisco J. Arregui, Philippe Lalanne.Optimization of sensitivity in Long Period Fiber Gratings with overlay deposition. [J]. Opt. Exp.,2005,13(1):56-69.
    [12]Ignacio Del Villar, Miguel Achaerandio, Ignacio R. Matías, Francisco J. Arregui. Deposition of overlays by electrostatic selfassembly in long-period fiber gratings. [J]. Opt. lett.,2005,30(7):720-722.
    [13]Shizhou Yin, Kun-Wook Chung, Xin Zhu. A novel all-optic tunable long-period grating using a unique double-cladding layer. [J]. Opt. Commun.,2001,196:181-186.
    [14]S. Yin, O. Leonov, K.W. Chung, P. Kurtz, K. Reichard, H. Liu, Q. Zhang. Wavelength tuning range enhanced single resonant band fiber filter using a long period grating(LPG) with ultrathin cladding layer, Opt. Fiber Comm. Conf. (OFC 2000), paper TuB-1, Baltimore, MD,2000.
    [15]Qiushun Li, Ying Qian, Yongsen Yu, Gang Wu, Zhenying Sui, Hongyan Wang. Actions of sodium nitrite on long period fiber grating with self-assembled polyelectrolyte films. [J]. Opt. Commun., 2009,282(12):2446-2450.
    [16]Jian Zhang, Xiling Tang, Junhang Dong, Tao Wei, Hai Xiao. Zeolite Thin Film-Coated Long Period Fiber Grating Sensor for Measuring Trace Chemical. [J]. Opt. Exp.,2008,16(11):8317-8323.
    [17]W. F. Dong, J. K. Ferri, T. Adalsteinsson, M. Schonhoff, G. B. Sukhorukov,H. Mohwald. Influence of shell structure on stability, integrity, and mesh size of polyelectrolyte capsules: Mechanism and strategy for improved preparation. [J].Chem Mater., 2005,17: 2603-2611.
    [18]C. Y. Gao, S. Leporatti, S. Moya, E. Donath, H. Mohwald. Swelling and shrinking of polyelectrolyte microcapsules in response to changes in temperature and ionic strength. [J]. J Chem-Eur,2003,9:915-920.
    [19]Joseph B. Schlenoff, Stephan T. Dubas. Mechanism of Polyelectrolyte Multilayer Growth Charge Overcompensation and Distribution. Macro- molecules,2001,34(3):592-598.