新型功能化四苯基卟啉衍生物的设计与合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机发光材料具有种类繁多、色彩丰富、色纯度高、可调性好等特点,在有机电致发光器件、有机激光器、太阳能电池及光学传感器等诸多领域中有广泛的应用前景。其中,有机电致发光器件自发光、亮度高、视角宽、对比度高、超薄、能耗低、响应速度快,满足了人们对高品质平板显示器的需求。卟啉是饱和的红色发光材料,色纯度高,近年来在电致发光领域倍受人们的瞩目。本论文在充分调研卟啉作为电致发光材料的研究历史和现状的基础上,设计合成了多种以卟啉为母体的新型有机电致发光材料,并初步研究了它们的性质,为红色发光材料的应用研究提供了实验和理论上的依据。主要研究内容如下:
     (1)调研、总结了大量有关卟啉的文献,简要地描述了卟啉的结构特征,较详细地综述了卟啉在有机发光材料中的应用,着重地阐述了卟啉作为红光电致发光材料的研究现状,在此基础上提出了本论文的设计思想。
     (2)通过Adler缩合、Vilsmeier甲酰化、Williamson取代反应、Wittig反应合成了基于多枝咔唑的卟啉衍生物G1、G2和G3。采用核磁共振氢谱、基质辅助激光解吸电离质谱(MALDI-TOF)对其结构进行了表征。研究了它们的紫外、荧光、热稳定性及电化学性质。研究结果表明:它们的主要吸收峰在420nm左右,且随着枝数的增加,吸收强度呈现1:2:3的关系;发射峰在660nm,属于饱和的红光材料,而且具有较好的热稳定性。这些化合物具有制备红光电致发光器件的潜能。根据紫外吸收尾带和氧化起始电位得到了HOMO和LUMO能级值,为制备电致发光器件提供了参考。
     (3)利用水相和无溶剂的Aldol缩合、Michael加成反应等反应合成了环金属化配体,再通过Knoevenagel反应合成了一系列光功能的卟啉类化合物Y1、Y2、Y3、Y4、Y5、Y6、Y7、Y8和Y9。采用核磁共振氢谱、核磁共振碳谱和电喷雾质谱对其结构进行了表征。系统的研究了它们的线性光学性质,它们的紫外吸收位于350-700nm之间,最大吸收峰在410nm左右,吸收峰随着溶剂极性的变化没有明显的变化规律;它们的发射峰在650nm左右,属于饱和的红光材料。结合电化学测试,得到了它们的HOMO和LUMO能级值。同时还对它们进行了热重分析,热分解温度高达200℃,热稳定性良好。这些研究结果为下一步制备电致发光器件提供了实验依据。
     (4)以对苯二乙腈为原料,通过Knoevenagel反应合成了一系列具有聚集态荧光增强效应(AIEE)的化合物,采用核磁对其结构进行了初步的表征。对该类化合物的合成探索,为类似的合成工作提供了参考。
With various kinds, rich color, high color purity and good adjustability, organic optoelectronic materials have a broad prospect of applications in organic light-emiting diodes (OLEDs), organic laser diode, organic solar cells, chemical sensors, and so on. Among them, organic light emitting diodes satisfy the people's eagerness to high quality flat-panel display owing to self-luminous, high-brightness, wide viewing angle, high eontrast, thinness, low power consumption and fast response time. As one of saturated red luminescence materials, porphyrins greatly atrracted people's attentions recently. On the basis of a large amount of literatures investigation, we have designed and synthesised several new-type porphyrin derivatives. And the properties were also studied preliminarily which provided an experimental and theoretical referrence to application research of red luminescence materials. The main research contents are elaborated as follows:
     (1) We briefly described the structure characteristics of porphyrin, detailedly reviewed the applications of porphyrin in organic light-emitting materials, and discussed current research state of porphyrin as red light electroluminescent materials according to the literatures. Based on these, new concepts and design ideas for the dissertation hatched.
     (2) Through Adler condensation, Vilsmeier, Williamson substitution reaction Witting reaction, porphyrin derivatives G1, G2, G3 containing multi-carbazoles were obtained based TPPps. All the complexes were characterized by 1H-NMR and matrix assisted laser dissorption ironization time of flight mass spectrometry (MALDI-TOF MS). The UV-Vis, fluorescence, TGA, CV properties were investigated. The major absorption peaks of these compouds were at around 420 nm. And the absorbtion intensity present 1:2:3 with the increase of branch number. Their emission peaks were at around 660 nm, which demonstrates they were saturated red materials. They also have good thermal stability. Therefore, They have a potential of preparing electroluminescent device. The HOMO and LUMO energy levels, which can provide reference for OLEDs, were obtained from electrochemical and UV-Vis spectrum.
     (3) Cyclometalation organic ligands were synthesized by the solvent-free or an aqueous phase Aldol condensation and Michael addition. Through Knoevenagel reaction a series of compounds Y1、Y2、Y3、Y4、Y5、Y6、Y7、Y8、Y9 were obtained. And their structures were characterized using NMR and ESI-MS. Their optical properties were also investigated systematically. The absorptions of the compounds lie in 350-750 nm and the peaks of them are ca.410 nm. Their emission peaks were around 650nm. The absorption peaks have no apparent laws with the changes of polarity of the solvents as well as the emission peaks. The HOMO and LUMO energy levels were obtained from electrochemical and UV-Vis spectrum. Their thermal stabilities were also studied and the results showed they had good thermal stability.These results provid an experimental referrence to preparing of electroluminescent device..
     (4) Through Knoevenagel reaction a series of compounds with aggregation induced fluorescence enhancement effect (AIEE) were synthesized based on p-Phenylenediacetonitrile. And their structures were characterized preliminarily by NMR. The synthesis exploration to this kind of compounds provides reference for similar work.
引文
[1]李丽,郑世均,孟令鹏,等.四苯基卟啉及其系列衍生物电子光谱的INDO/CI研究[J].光谱学与光谱分析,1999,19(3):297-301.
    [2]Marina K K, Stanley W B, Anthony W P, Milan B, Hazel A C, Harry L A, Klaus S and Peter R O. Imaging intracellular viscosity of a single cell during photoinduced cell death [J]. Nature Chemistry,2009,1:69-73.
    [3]张汉华,于东防.光动力学疗法中血卟啉衍生物的研究进展[J].中国药学杂志,1993,28(4):208-212.
    [4]Mohamed A E, Neville R, Pinsrone F. Selective in viro tumor localization of uroporphyrin isomer I in mouse mammary carcinoma:superiority over other porphyrins in acomparative study [J]. Cancer Research,1986,46 (9):4390-4394.
    [5]许德余.肿瘤光化学诊治药物研究的进展[J].医药工业,1987,18(1):31-36.
    [6]Meunier, B.; de Visser, S. P.; Shaik, S. Mechanism of Oxidation Reactions Catalyzed by Cytochrome P450 Enzymes [J]. Chem. Rev.,2004,104 (9):3947-3980.
    [7]Li Z, Jing Z Q, Xia C G. Review on Application of Metalloporphyrins in Catalytic Oxidation Reactions [J]. Chin. J. Org. Chem.,2007,27(1):34-44(李臻景震强夏春谷.金属卟啉配合物的催化氧化应用研究进展[J].有机化学,2007,27(1):34-44.)
    [8]Poltowicz J, Tabor E, Pamin K, Haber. Effect of substituents in the manganese 1-oxo porphyrins catalyzed oxidation of cyclooctane with molecular oxygen [J]. Inorg. Chem. Commun., 2005,8:1125-1127.
    [9]Rosenthal J, Luckett T D, Hodgkiss J M, Nocera D G. Photocatalytic Oxidation of Hydrocarbons by a Bis-iron(Ⅲ)-μ-oxo Pacman Porphyrin Using 02 and Visible Light [J]. J. Am. Chem. Soc.,2006,128 (20):6546-6547.
    [10]Rosenthal J, Pistorio B J, Chng L L, Nocera D G. Aerobic Catalytic Photooxidation of Olefins by an Electron-Deficient Pacman Bisiron(Ⅲ)μ-Oxo Porphyrin [J]. J.Org. Chem.,2005, 70(5):1885-1888.
    [11]Tsutomu S, Matsumoto J, Haruo I, Masahide Y. Antimony porphyrin complexes as visible-light driven photocatalyst. [J]. J. Photochem. Photobiol. C,2005,6 (4):227-248.
    [12]Zhang P, Wang M, Li C X, Li X Q, Dong J F, Sun L C. Photochemical H2 production with noble-metal-free molecular devicescomprising a porphyrin photosensitizer and a cobaloxime catalyst [J]. Chem. Commun.,2010,46 (46):8806-8808.
    [13]Chang M Y, Hsieh Y H, Cheng T C, Yao K S, Wei M C, Chang C Y. Photocatalytic degradation of 2,4-dichlorophenol wastewater using porphyrin/TiO2 complexes activated by visible light [J]. Thin Solid Films,2009,517(14):3888-3891.
    [14]Ismaill A A, Bahnemann D W. Metal-Free Porphyrin-Sensitized Mesoporous Titania Films For Visible-Light Indoor Air Oxidation [J]. ChemSusChem 2010,3 (9):1057-1062.
    [15]Itoh J, Liu J H, Komata M. Novel analytical applications of porphyrin to HPLC post-column flow injection system for determination of the lanthanides [J]. Talanta,2006,69(1):61-67.
    [16]李雅,成瑜,宋松娜,赵玉立.卟啉类化合物在分析化学中的应用[J].河北化工,2008,31(1):13-15.
    [17]Park H, Bae E, Lee J J, et al. Effect of the anchoring group in Ru-bipyridyl sensitizers on the photoelectrochemical behavior of dye-sensitized TiO2 electrodes:Carboxylate versus phosphonate linkages [J]. J. Phys. Chem. B,2006,110 (17):8740-8749.
    [18]Fattori A, Peter L M, Belding S R, et al. Cis-bis(isothiocyanato)-bis(2,2 '-bipyridyl-4,4'dicarboxylato)-Ru(Ⅱ) (N719) dark-reactivity when bound to fluorine-doped tin oxide (FTO) or titanium dioxide (TiO2) surfaces [J]. J. Phys. Chem. B,2010,640 (1-2):61-67.
    [19]Wilson G J, Will G D. Density-functional analysis of the electronic structure of tris-bipyridyl Ru(II) sensitisers [J]. Inorg. Chim. Acta,2010,363 (8):1627-1638.
    [20]Hiromitsu I, Kinugawa G.. Photoinduced alteration of the inner electric field in a Zn-phthalocyanine/C-60 heterojunction solar cell [J]. Synth. Met.,2005,153(1-3):73-76.
    [21]Salzman R F, Xue J G, Rand B P, et al. The effects of copper phthalocyanine purity on organic solar cell performance [J]. Org. Electron.,2005,6:242-246.
    [22]Spanig F, Duarte I, Fischer M R, et al. Charge and energy transfer processes in ruthenium(Ⅱ) phthalocyanine based electron donor-acceptor materials-implications for solar cell performance [J]. J. Mater. Chem.,2011,21 (5):1395-1403.
    [23]Chunder A, Pal T, Khondaker S I, et al. Reduced Graphene Oxide/Copper Phthalocyanine Composite and Its Optoelectrical Properties [J]. J. Phys. Chem. C,2010,114 (35):15129-15135.
    [24]Luong T T T, Chen Z X, Zhu H W. Flexible solar cells based on copper phthalocyanine and buckminsterfullerene [J]. Sol. Energy Mater. Sol. Cells,2010,94 (6):1059-1063.
    [25]Wang W N, Placencia D, Armstrong N R. Planar and textured heterojunction organic photovoltaics based on chloroindium phthalocyanine (ClInPc) versus titanyl phthalocyanine (TiOPc) donor layers [J]. Org. Electron.,2011,12 (2):383-393.
    [26]Pal S K, Sundstrom V, Galoppini E, et al. Calculations of interfacial interactions in pyrene-Ipa rod sensitized nanostructured TiO2 [J]. Dalton Trans.,2009,45:10021-10031.
    [27]Teranishi M, Toyooka T, Ohura T, et al. Benzo[a]pyrene exposed to solar-simulated light inhibits apoptosis and augments carcinogenicity [J]. Chem. Biol. Interact.,2010,185(1):4-11.
    [28]Kwon J, Hong J P, Lee W, et al. Naphtho[2,3,a]pyrene as an efficient multifunctional organic semiconductor for organic solar cells, organic light-emitting diodes, and organic thin-film transistors [J]. Org. Electron.,2010,11 (6):1103-1110.
    [29]Nazeeruddin K, Zakeeruddin S M, Baker R, Jirousek M, Liska P, Vlachopoulos N, Shklover V, Fischer H, Graltzel M. Acid-Base Equilibria of (2,2-Bipyridyl-4,4-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania [J]. Inorg. Chem.,1999,38 (26):6298-6305.
    [30]Mohammad K, Peter P, Renouard T, Shaik M Z, Robin H B, Pascal C, Paul L, Cevey L, Emiliana C, Valery S, Leone S, Glen B D, Carlo A B, Graltzel M. Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells [J]. J. Am. Chem. Soc.,2001, 123 (8):613-1624.
    [31]Liu C Y, Pan H L, Fox M A, Bard A J. High-density nanosecond charge trapping in thin films of the photoconductor ZnODEP [J]. Science,1993,261:897-899.
    [32]Wayne M C, Kenneth W J, Pawel W, Klaudia W, Penny J W, Keith C G, Lukas S M, Mohammad K N, Wang Q, Graltzel M, David L O. Highly Efficient Porphyrin Sensitizers for Dye-Sensitized Solar Cells [J]. J. Phys. Chem. C,2007,111 (32):11760-11762.
    [33]Liu Y J, Xiang N, Feng X M, Shen P, Zhou W P, Weng C, Zhao B, Tan S T. Thiophene-linked porphyrin derivatives for dye-sensitized solar cells [J]. Chem. Commun.,2009, 18:2499-2501.
    [34]Attila J M, Matthew J G, George T, Pawel W, Gordon G W, Shogo M, Sunahara K, Miyashita M, John C E, Keith C G, Du L C, Ryuzi K, Akihiro F, David L O. Zn-Zn Porphyrin Dimer-Sensitized Solar Cells:Toward 3-D Light Harvesting [J]. J. Am. Chem. Soc.,2009,131 (43):15621-15623.
    [35]凡素华,张文保.共价键连卟啉-富勒烯化合物的研究进展[J].化学通报2010,9798-803.
    [36]Pope, Kallmann M, Magnate H. Electroluminescence in organic crystals [J]. J. Chem. Phys., 1963,38 (8):2042-2043.
    [37]Tang C W, VanSlyke S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett.,1987,51 (12):913-915.
    [38]Gu G, Shen Z, Burrows P E, Forrest S R. Transparent flexible organic light-emitting devices [J].Adv Mater,1997,9(9):725-728.
    [39]Huang J H, Xu B, Lam M K, Kok W C, Chen C H., Su J H. Unsymmetrically amorphous 9,10-disubstituted anthracene derivatives for high-efficiency blue organic electroluminescence devices [J]. Dyes and Pigments,2011,89:155-161.
    [40]Abhishek P K, Samson A J. Blue-Green, Orange, and White Organic Light-Emitting Diodes Based on Exciplex Electroluminescence of an Oligoquinoline Acceptor and Different Hole-Transport Materials [J]. J. Phys. Chem. C,2008,112(13):5174-5184.
    [41]Kinoshita M, Shirota Y. 1,3-Bis[5-(dimesitylboryl)thiophen-2-yl]benzene and 1,3,5-tris[5-(dimesitylboryl)thiophen-2-yl]benzene as a novel family of electron-transporting hole blockers for organic electroluminescent devices [J]. Chem. Lett.,2001,7:614-615.
    [42]Chen H Y, Lam W Y, Luo J D, Ho Y L, Tang B Z, Zhu D B, Wong M, Kwok H S. Highly efficient organic light-emitting diodes with a silole-based compound [J]. Appl. Phys. Lett.,2002, 81 (4):574-576.
    [43]Chen C H, Shi J. Metal chelates as emitting materials for organic electroluminescence [J]. Coord. Chem. Rev.,1998,171:161-174.
    [44]Sally A S, Greg M W, Chen J P, Zhang W J, Luisa D B, Carter K R, Salem J R. Villa Ro, Scott J C. Stable and Efficient Fluorescent Red and Green Dyes for External and Internal Conversion of Blue OLED Emission [J]. Chem. Mater.,2003,15 (12):2305-2312.
    [45]Wakimoto T, Funaki Y, Funaki J. Stability Characteristics of Quinacridone and Coumarin Molecules as Guest Dopants in the Organic LEDs [J]. Synth. Met.,1997,91:15-19.
    [46]Changa Y J, Chow J T. Highly efficient red fluorescent dyes for organic light-emitting diodes [J]. J. Mater. Chem.,2011,21(9):3091-3099.
    [47]Odom S A, Parkin S R, Anthony J E. Tetracene Derivatives as Potential Red Emitters for Organic LEDs [J]. Org. Lett.,2003,5 (23):4245-4248.
    [48]Zhou Y, Kim J W, Kim M J, Son W J, Han S J, Kim H N, Han S W, Kim Y M, Lee C M, Kim S J, Kim D H, Kim J J, Yoon J Y. Novel Bi-Nuclear Boron Complex with Pyrene Ligand: Red-Light Emitting as well as Electron Transporting Material in Organic Light-Emitting Diodes [J]. Org. Lett.,2010,12(6):1272-1275.
    [49]Lin Z H, Wen Y S, Chow T J. White light-emitting devices with a single emitting layer based on bisindolylmaleimide fluorophores [J]. J. Mater. Chem.,2009,19 (29):5141-5148.
    [50]Zhang X H, Xie Z Y, Wu F P, Zhou L L, Wong O Y, Lee C S, Kwong H L, Lee S T, Wu S K. Red electroluminescence and photoluminescence properties of new porphyrin compounds [J]. Chem. Phys. Lett.,2003,382 (5-6):561-566.
    [51]Burrows P E, Forrest S R, Sibly S P,et al. Color-tunable organic light-emitting devices [J]. Appl.Phys.Lett.,1996,69 (20):2959-2961.
    [52]Baldo M A, O'Brien D F, Forrest S R et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature,1998,395 (10):151-154.
    [53]Sakakibara Y, Okutsu S, Enokida T et al. Red electroluminescence and photoluminescence properties of a reduced porphyrin compound, tetraphenylchlorin, [J]. Thin Solid Films,2000,363 (1):29-32.
    [1]Yang C L, Zhang X W, You H, Zhu L Y, Chen L Q, Zhu N, Tao Y T, Ma D G, Shuai Z G, Qin J G. Tuning the Energy Level and Photophysical and Electroluminescent Properties of Heavy Metal Complexes by Controlling the Ligation of the Metal with the Carbon of the Carbazole Unit [J]. Adv. Funct. Mater.,2007,17:651-661.
    [2]Tao S L, Zhou Y C, Lee C S, Zhang X H, Lee S T. High-Efficiency Nondoped Deep-Blue-Emitting Organic Electroluminescent Device [J]. Chem. Mater.,2010,22:2138-2141.
    [3]Peng Q, Xu J, Li M J, Zheng W X. Blue Emitting Polyfluorenes Containing Dendronized Carbazole and Oxadiazole Pendants:Synthesis, Optical Properties, and Electroluminescent Properties [J]. Macromolecules,2009,42:5478-5485.
    [4]杨家祥,赵小璐,姚元山,许献云,孔林.1,3,5-三(N-止辛基-3-咔唑基)苯的合成及光学性质研究[J].安徽大学学报(自然科学版),2007,31(4):61-63.
    [5]Liu, Y; Nishiura, M.; Wang, Y; Hou, Z. M. π-Conjugated aromatic enynes as a single-emitting component for white electroluminescence [J]. J. Am. Chem. Soc.2006,128(17): 5592-5593.
    [6]Anderson, H. L. Building molecular wires from the colours of life:conjugated porphyrin oligomers [J]. Chem. Commun.,1999 (23):2323-2330.
    [7]Dolphin, D.; Hiom, J.; Paine, J. B. Ⅲ. Covalently linked dimeric porphyrins [J]. Heterocycles., 1981,16:417.
    [8]Vicente, M. G. H.; Jaquinod, L.; Smith, K. M. Oligomeric porphyrin arrays [J]. Chem. Commun.,1999(18):1771-1782.
    [9]Arnold, D. P. Two rings are better than one:adventures in porphyrin chemistry [J]. Synlett., 2000,3:296.
    [10]Shinmori, H.; Osuka, A. J. Recent progress in multiporphyrin synthesis [J]. Synth. Org. Chem. Jpn.,1999,57:749.
    [11]Blanco, M. J.; Jimenez, M. C.; Chambron, J. C.; Heitz, V.; Linke, M.; Sauvage, J. P. Rotaxanes as new architectures for photoinduced electron transfer and molecular motions [J]. Chem. Soc. Rev.,1999,28:293.
    [12]Burrell, A. K.; Officer, D. L.; Plieger, P. G.; Reid, D. C. W. Synthetic routes to multi- porphyrin arrays [J]. Chem. Rev.,2001,101:2751-2796.
    [13]Edia E. Bonfantini, Maxwell J. Crossley, David L. Officer, et. al. Efficient synthesis of free-base 2-formyl-5,10,15,20-tetraarylporphyrins their reduction and conversion to [(porphyrin-2-yl)methyl]phosphonium salts [J]. J. porphyr phthalocya.,2002,6(11):708-719.
    [14]Yang J X, Tao X T, Yuan C X, YanY X, Wang Li, Liu Z, Ren Y, Jiang M H. A Facile Synthesis and Properties of Multicarbazole Molecules Containing Multiple Vinylene Bridges [J]. J. Am. Chem. Soc.,2005,127:3278-3279.
    [15]Zhou X H, Yan J C, Jian Pei. Synthesis and Relationships between the Structures and Properties of Monodisperse Star-Shaped Oligofluorenes [J]. Org. Lett.,2003,5(19):3543-3546.
    [16]Jutand A, Negri S. Activation of aryl and vinyl triflates by Palladium and electron transfer. Electrosynthesis of aromatic and α,β-unsaturated carboxylic acids from carbon dioxide [J]. Eur. J. Org. Chem.,1998,9:1811-1821.
    [17]Stiel H, Teuchner K, Paul A, Freyer W, Leupold D. Two-photon excitation of alkyl substituted magnesium phthalocyanine:radical formation via higher excited states [J]. J. Photochem. Photobiol. A:Chem.,1994,80:289-298.
    [18]Quimby D J, Longo F R. Luminescence Studies on Several Tetraarylporphins and Their Zinc Derivatives [J]. J. Am. Chem. Soc.,1975,79 (18):5111-5117.
    [19]Liu, M. S.; Luo, J.; Jen, A. K. Y. Efficient green-light-emitting diodes from silole-containing copolymers [J]. Chem. Mater.,2003,15(18):3496-3500.
    [1]Lu W, Mi B X, Che C M, et al. Light-Emitting Tridentate Cyclometalated Platinum(II) Complexes Containing σ-Alkynyl Auxiliaries:Tuning of Photo- and Electrophosphorescence [J]. J Am Chem Soc.,2004,126 (15):4958-4971.
    [2]Zuo J L, Yang J X, Wang F Z, Dang X N, Sun J L, Zou D C, Tian Y P, Lin N, Tao X T, Jiang M H.2,6-Diphenylpyridine-based organic emitter for electroluminescent device [J]. J Photochem Photobiol., A:Chemistry,2008,199:322-329.
    [3]Zhang J P, Xia B H, Jin L, Zhang H X. Electronic structures and spectroscopic properties of promising highly efficient red phosphorescent Os(II)(LR)2(PH3)2 complexes:a theoretical exploration [J]. Theor Chem Acc,2010,127:467-474.
    [4]Palmer J H, Durrell A C, Gross Z, Winkler J R, and Gray H B. Near-IR Phosphorescence of Iridium(III) Corroles at Ambient Temperature [J]. J Am Chem Soc.,2010,132 (27):9230-9231.
    [5]Wu S H, Ling J W, Lai S H, Huang M J, Cheng C H, Chen I C. Dynamics of the Excited States of [Ir(ppy)2bpy]+ with Triple Phosphorescence [J]. J Phys Chem A,2010,114 (38) 10339-10344.
    [6]Blanco-Rodriguez A M, Ronayne K L, Zalis S, Sykora J, Hof M, Vlcek A J. Solvation-Driven Excited-State Dynamics of [Re(4-Et-Pyridine)(CO)3(2,2'-bipyridine)]+ in Imidazolium Ionic Liquids. A Time-Resolved Infrared and Phosphorescence Study [J]. J Phys Chem A,2008,112 (16):3506-3514.
    [7]Kathleen E M, Wang Z C, Busani T, Robert M. G, Chen Z, Jiang Y B, Song Y J, Jacobsen J L, Tony T. Vu, Schore N E, Brian S S, Craig J M, Shelnutt J A. Donor-Acceptor Biomorphs from the Ionic Self-Assembly of Porphyrins [J]. J. Am. Chem. Soc.,2010,132 (23):8194-8201.
    [8]Shikhova, E.; Danilov, E. O.; Ziessel, R.; et al. Excited-state absorption properties of platinum(II) terpyridyl acetylides [J]. Inorg. Chem.,2007,46 (8):3038-3048.
    [9]Wong, K. M. C.; Hung, L. L.; Yam, V. W. W.; et al. A class of luminescent cyclometalated alkynylgold(III) complexes:synthesis, characterization, and electrochemical, photophysical, and computational studies of [Au(^N^C) (C≡C-R)] (C^N^C=κ3C,N,C bis-cyclometalated 2,6-diphenylpyridyl) [J]. J. Am. Chem. Soc.,2007,129(14):4350-4365.
    [10]Scaffidi-Domianello, Y. Y.; Nazarov, A. A.; Haukka, M.; et al. First example of the solid-state thermal cyclometalation of ligated benzophenone imine giving novel luminescent platinum(II) species [J]. Inorg. Chem.,2007,46 (11):4469-4482.
    [11]Che, C. M.; Fu, W. F.; Lai, S. W.; et al. Solvatochromic response imposed by environmental changes in matrix/chromophore entities:luminescent cyclometal- ated platinum(II) complex in nafion and silica materials [J]. Chem. Commun.,2003,118-119.
    [12]Tomoya I, Louise E S, Song K, Hung S T, Nayak A, Koen C, Therien J M. The Roles of Molecular Structure and Effective Optical Symmetry in Evolving Dipolar Chromophoric Building Blocks to Potent Octopolar Nonlinear Optical Chromophores [J]. J. Am. Chem. Soc.,2011,133 (9):2884-2896.
    [13]周永红.稀士配合物型激光材料的设计、合成及结构[D].安徽大学硕士论文,2004.
    [14]左金林.基于苯基吡啶的环金属化配体的设计、合成与性质研究[D].安徽大学硕士论文,2008.
    [15]Liu, M. S.; Luo, J.; Jen, A. K. Y. Efficient green-light-emitting diodes from silole-containing copolymers [J]. Chem. Mater.,2003,15(18):3496-3500.
    [1]Abhishek P K, Kong X X, Samson A J. Fluorenone-Containing Polyfluorenes and Oligofluorenes:Photophysics, Origin of the Green Emission and Efficient Green Electroluminescence [J]. J. Phys. Chem. B.,2004,108:8689-8701.
    [2]Liu Y, Tao X T, Wang F Z, Shi J H, Sun J L, Yu W T, Ren Y, Zou D C, Jiang M H. Intermolecular Hydrogen Bonds Induce Highly Emissive Excimers:Enhancement of Solid-State Luminescence [J]. J. Phys. Chem. C.,2007,111:6544-6549.
    [3]Liu Y, Tao X T, Wang F Z, Yu W T, Ren Y, Zou D C, Jiang M H. Aggregation-Induced Emissions of Fluorenonearylamine Derivatives:A New Kind of Materials for Nondoped Red Organic Light-Emitting Diodes [J]. J. Phys. Chem. C.,2008,112:3975-3981.
    [4]Liu J Z, Jacky W. Y, Tang B Z. Aggregation-induced Emission of Silole Molecules and Polymers:Fundamental and Applications [J]. J Inorg Organomet Polym,2009,19:249-285.
    [5]Qian Y, Li S Y, Zhang G Q, Wang Q, Wang S Q, Xu H J, Li C Z, Li Y, Yang G Q. Aggregation-Induced Emission Enhancement of 2-(2(?)-Hydroxyphenyl)benzothiazole-Based Excited-State Intramolecular Proton-Transfer Compounds [J]. J. Phys. Chem. B.,2007,111 5861-5868.
    [6]Byeong K A, Soon K K, Sang D J, Park S Y. Enhanced Emission and Its Switching in Fluorescent Organic Nanoparticles [J]. J. Am. Chem. Soc.,2002,124:14410-14415.
    [7]Hong Y N, Jacky W. Y, Ben Zhong Tang. Aggregation-induced emission:phenomenon, mechanism and applications [J]. Chem. Commun.,2009,4332-4353.
    [8]Yuan C X, Tao X T, Wang L, Yang J X, Jiang M H. Fluorescent Turn-On Detection and Assay of Protein Based on Lambda (A)-Shaped Pyridinium Salts with Aggregation-Induced Emission Characteristics [J]. J. Phys. Chem. C.,2009,113:6809-6814.
    [9]胡张军.光功能含N、O、S杂原子有机配体及其配合物材料的设计、合成与性质研究[D].安徽大学博士论文,2008.
    [10]汪少敏.N,N-双-(2-硝基苯酚乙基)苯胺类衍生物的设计、合成及与金属离子作用行为研究[D].安徽大学硕士论文,2009.
    [1]Ma Z H, Ding J Q, Cheng Y X, Xie Z Y, Wang L X, Jing X B, Wang F S. Synthesis and characterization of red light-emitting electrophosphorescent polymers with different triplet energy main chain [J]. Polymer,2011,52 (10):2189-2197.
    [2]Zuo J L, Yang J X, Wang F Z, Dang X N, Sun J L, Zou D C, Tian Y P, Lin N, Tao X T, Jiang M H.2,6-Diphenylpyridine-based organic emitter for electroluminescent device [J]. J Photochem Photobiol., A:Chemistry,2008,199:322-329.
    [3]Chien C H, Liao S F, Wu C H, Shu C F, Chang S Y, Chi Y, Chou P T, Lai C H. Electrophosphorescent polyfluorenes containing osmium complexes in the conjugated backbone [J]. Adv Funct Mater,2008,18 (9):1430-1439.
    [4]Wu F I, Shih P I, Tseng Y H, Shu C F, Tung Y L, Chi Y. Highly efficient white-electrophosphorescent devices based on polyfluorene copolymers containing charge-transporting pendent units [J]. J Mater Chem,207,17 (2):167-173.
    [5]Wu S H, Ling J W, Lai S H, Huang M J, Cheng C H, Chen I C. Dynamics of the Excited States of [Ir(ppy)2bpy]+ with Triple Phosphorescence [J]. J Phys Chem A,2010,114 (38) 10339-10344.
    [6]Seo J H, Lee S C, Kim Y K, Kim Y S. Efficient red electrophosphorescent organic light-emitting diodes based on the new sensitized heteroleptic tris-cyclometalated Ir(III) complexes [J]. Thin Solid Films,2009,517 (4):4119-4121.
    [7]Bianco-Rodriguez A M, Ronayne K L, Zalis S, Sykora J, Hof M, Vlcek A J. Solvation-Driven Excited-State Dynamics of [Re(4-Et-Pyridine)(CO)3(2,2'-bipyridine)]+ in Imidazolium Ionic Liquids. A Time-Resolved Infrared and Phosphorescence Study [J]. J Phys Chem A,2008,112 (16):3506-3514.