股骨远端LISS钢板固定系统数字解剖、有限元分析及临床对照
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     随着我国交通运输及建筑业飞速发展,交通事故、高空跌落、重物砸伤等高能量暴力创伤导致的股骨远端骨折近年来骤增,该疾患下肢创伤较为严重、复杂,骨折复位、固定较为困难,通常还合并颅脑外伤、其他肢体和内脏器官损伤,所以临床处理较为棘手,临床疗效常不理想,甚至导致肢体缩短和膝关节功能障碍等。
     传统治疗观点认为股骨远端固定由于缺乏有效的固定内植物常行牵引和闭合整复等非手术治疗法,但由于非手术治疗不牢固、不能解剖或功能复位,常导致骨折断端畸形愈合或不愈合,严重影响患者下肢功能恢复,近年来逐渐被手术切开内固定所代替。
     普通钢板为最早采用的治疗股骨远端骨折固定的内植物,其治疗功能良好率虽远高于非手术治疗,但由于其钢板强度差、骨膜剥离范围广、需要预弯塑型和生物力学缺陷,逐渐被第二代内植物如角钢板和动力髁固定所取代。角钢板角度固定,定位后容易导致患者膝关节内、外翻畸形,而动力髁固定创伤面积大,对骨质疏松和冠状面粉碎性骨折手术效果不佳,许多学者在第二代的基础上开发了如LISS钢板等固定系统。该系统由于其内植物远端能与股骨侧方远端紧密贴合、在下肢正常运动状态下产生纵向挤压,并且钢板厚薄不均、分散集中的应力等特点,临床较多使用。
     但国内应用的LISS钢板固定系统多为进口,即便是国产内植物也较多为直接仿制,进口产品多参照欧美白种人的解剖学参数而设计,将其直接应用于国人其相关参数是否合适尚未定论,且国内尚缺乏系统的应用解剖学研究;由于下肢负重大、股骨远端骨折类型复杂和周围肌肉的牵拉,其固定内植物断钉、断板时有发生,虽有对其固定系统生物力学分析,但仅限于体外实验,其准确性较差。
     因此本课题拟将临床创伤骨科学、人体解剖学、现代影像学、计算机三维重建数字化技术应用于股骨远端LISS钢板固定系统的研究,针对螺钉、钢板固定相关径线、角度及应用解剖问题开展研究,以减少手术并发症的发生;通过对内固定植入系统计算机有限元模拟仿真,并与临床疗效对照分析为其固定器械的改良和国产化提供数字物理及临床模型参考并填补国内相关空白。
     目的:
     (1)建立股骨远端三维数字模型。
     (2)三维数字化测量股骨远端LISS钢板固定相关22组解剖学参数,为股骨远端骨折LISS钢板手术固定及器械改良提供参考。
     (3)三维数字化模拟股骨远端骨折LISS钢板手术固定以验证解剖参数可行性,制定手术参考方案。
     (4)对股骨远端固定固定系统分三类固定方式及两种运动状态进行有限元分析,比较同一固定方式下不同部位、不同固定方式及不同运动状态下相同固定部位间应力分布,为临床固定及内植物生物力学性能改良提供参考。
     (5)回顾性分析临床30例股骨远端骨折LISS钢板固定手术方式、治疗效果及远期疗效并与有限元分析结果对照,验证有限元分析结果的可靠性和提出临床手术改进建议。
     方法:
     (1)CT原始数据与股骨三维模型的建立:非膝关节疾患成人CT连续扫描数据30例,共60侧(股骨大转子下缘至胫骨上1/3,年龄18~41岁,平均32岁),扫描要求:电压120Kv,电流150mA,层厚1.0mm,512×512像素。在CT设备自带的工作站中,在骨窗下调节图像对比度,使图像能清晰显示研究结构,并保存为以Dicom为文件扩展名的文件。三位重建时将文件导入Mimicsl2.0(试用版,Materilise公司,比利时鲁汶大学),三维重建股骨中下段及胫骨上段模型,建立三维模型数据库。
     (2)股骨远端LISS钢板固定解剖学相关参数的测量:利用重建软件中的三维断面(水平、矢状、冠状位)配准测量结构,通过工具栏中距离测量模块测量以下几组参数:股骨远端左右侧宽;股骨外侧髁前后径;股骨外侧髁基底部宽;股骨外侧髁干角;自股骨大转子下缘至外上髁每隔5cm划分为一段,共分为5段,分别测量每段中部股骨内外两侧骨皮质厚度及髓腔的横径;并比较左右侧别差异。
     (3)在重建好的15套股骨远端三维图像上,将Pro-E4.0建好的股骨远端LISS钢板及螺钉模型导入,配准螺钉及钢板的位置,模拟螺钉及钢板的放置,在三维重建模型中测量钉道长及钢板下端与股骨远端侧面拟合贴附度。
     (4)选择1名(男性,34岁,68KG)股骨远端33-C1型骨折患者影像学数据,将CT扫描数据导入Mimics13.0利用软件自带的域值设定(Threshold)选择拟重建部分,参数化建立3种5条韧带数字模型。利用PRO-E软件建立股骨远端LISS解剖型钢板固定系统,并将其导入Mimics中重建好的股骨远端骨折模型中,依据LISS钢板固定原则在软件系统中进行配准,将其配准安装好的系统进行面网格和体网格划分,并以STL格式的文件导出并保存。将文件导入Ansys products11.0软件中,建立其有限元模型,模拟正常人体站立位固定系统应力分布情况。固定股骨远端表面,于股骨大转子水平断面上表面施加垂直加载340N载荷分析三组模型中各钢板各钉孔和螺钉尾部应力分布,并比较三类固定模式及两种运动状态前屈后伸下相同部位的应力。
     (5)回顾性分析我院自2009年以来采用LISS钢板固定系统内固定治疗股骨下端骨折15例患者的伤口及骨折愈合时间、解剖复位比例、膝关节功能评分、术后断钉断板情况等指标并将断钉断板情况与有限元分析结果对照。
     统计学处理(二级标题):
     左右侧别间比较采用配对t检验,比较同一固定方式下不同部位应力分析用重复测量方差分析、不同固定方式及不同运动状态下相同固定部位间应力分布,独立样本t检验。
     结果
     (1)股骨远端左右侧宽分别为(84.80±1.27)mm和(84.60±1.40)mm;股骨外侧髁前后径分别为(67.36±1.41)mm和(66.27±1.42)mm;股骨外侧髁基底部宽分别为(42.53±3.42)mm和(42.98±1.25)mm;股骨外侧髁干角分别为(7.58±0.69)mm和(7.66±0.79)mm;内外、侧皮质骨厚度均随序数增大数逐渐变薄,变化范围均较小,内侧变化范围更小[左侧(4.37±0.55~3.61±0.43)mm]。髓腔宽度随序数增大逐渐变宽,变化范围较大[左侧(15.61±0.83~21.77±1.31)mm];所有参数左右侧别间差异均无统计学意义。
     (2)由股骨中段到股骨远端,即随着序数的下降,螺钉钉道长度逐渐增大。左右侧别间比较,差异均无统计学意义;侧别间除B、C、E组外,其余差异均无统计学意义;远端A、B、C、G钉孔间钉道比较,除C-B组间差异无统计学意义外,其余差异均有统计学意义;远端D、E、F钉孔间钉道比较,除E组间差异无统计学意义外,其余差异均有统计学意义;重建15例股骨远端三维图形中,左侧完全贴合股骨表面的为10例,2例为钢板体不能贴附,3例为远端不能贴附股骨远端;右侧完全贴合股骨表面的为8例,4例为钢板体不能贴附,3例为远端不能贴附股骨远端。
     (3)利用三维重建软件Mimics13.0和有限元软件Ansys成功建立股骨远端骨折LISS钢板全部置钉固定有限元模型。共有43,536个单元,41,256个节点,建成后的三维有限元模型与实体组织有较好的几何相似性;随着钢板节段逐渐向下(Sl-S5),其应力逐渐增大,应力与节段序数Spearman相关系数为0.966,P<0.001;A1~A5随着螺钉序数增加,其应力逐渐增大,应力与节段序数Spearman相关系数为0.895,P<0.001,但A6却突然减小;由应力分布云图可见,除了A1钉孔螺钉应力分布不均外,其余均分布均匀,由螺钉远端到末端,其应力逐渐增大,应力与节段序数Spearman相关系数为0.913,P<0.001。相应节段间钉孔与钢板应力比较,钉孔周围应力与钢板节段应力间差异均有统计学意义,且钢板应力大于相应节段钉孔应力。
     (4)利用三维重建软件Mimics13.0和有限元软件Ansys成功建立股骨远端骨折LISS钢板部分螺钉固定有限元模型。共有41,245个单元,39,140个节点,建成后的三维有限元模型与实体组织有较好的几何相似性。随着钢板节段逐渐向下(S1~S5),其应力逐渐增大,应力与节段序数Spearman相关系数为0.988,P<0.001;A1~G随着螺钉序数增加,其应力逐渐增大,应力与节段序数Spearman相关系数为0.834,P<0.001,S1-S4与A1-A4对应节段间经配对资料t检验可知,差异均有统计学意义,且钢板节段应力大于对应钉孔应力;S5与A5、B、G钉孔间经重复测量方差分析比较,差异均有统计学意义,B>G>A5>S5;由应力分布云图可见,除了A1钉孔螺钉应力分布不均外,其余均分布均匀,由螺钉远端到末端,经重复测量方差分析可知,其螺钉中部和末端应力均大于螺钉尖端,应力与节段序数Spearman相关系数为0.499,P<0.001。
     (5)利用三维重建软件Mimics13.0和有限元软件Ansys成功建立股骨远端骨折LISS钢板螺帽封闭钉孔固定有限元模型。共有42,011个单元,40,010个节点,建成后的三维有限元模型与实体组织有较好的几何相似性。随着钢板节段逐渐向下(S1-S5),其应力逐渐增大,应力与节段序数Spearman相关系数为0.958,P<0.001;随着螺钉序数增加,其应力逐渐增大,应力与节段序数Spearman相关系数为0.903,P<0.001;由应力分布云图可见,除了A1钉孔螺钉应力分布不均外,其余均分布均匀,由螺钉远端到末端,其应力逐渐增大,应力与节段序数Spearman相关系数为0.943,P<0.001。从S1~S5与A1~A5节段间钉孔与钢板应力比较,钢板节段应力大于钉孔周围应力,且差异均有统计学意义。
     (6)建立股骨远端骨折LISS钢板全部置钉固定有限元模型随着钢板节段逐渐向上(A~D),其应力逐渐减小;由应力分布云图可见,两种运动状态下A段的应力最为集中,所有应力值均小于钛合金屈服强度894~1034兆帕。
     结论:
     (1)股骨远端所有测量的各项径线值均小于西方人。其中股骨远端宽、股骨外侧髁前后径及外侧髁基底部宽度测量结果提示:股骨侧方置入松质骨螺钉长度不应超过85mm,后方置入不能超过70mm。LISS解剖板固定外侧固定股骨远端骨折,固定板后方钉孔置钉长度不能超过45mm,以防止穿越髁间沟或穿至髌股关节面,左右侧膝关节置入螺钉长短无差异。股骨外侧髁干角测量结果提示,华裔患者LISS解剖板其钢板主体应与垂直轴呈8°左右内倾角,以便使内植物钢板与骨面贴合紧密,避免固定后膝关节成角畸形。自S1~S5断面,皮质骨的厚度通常是由薄变厚再由厚变最薄;相反,髓腔的内径宽变窄再由窄变宽,在股骨干拧入螺钉时,可参照本文测量数据表选择螺钉的长度和拧入螺钉的手法,以减少螺钉穿透对侧皮质等手术并发症的发生。
     (2)股骨中远端钉道,由上到下逐渐增长,以5孔LISS钢板为例,第5、4孔,应选择25mm~30mm长的螺钉,第3孔则选择30~35mm左右长的螺钉,而第2孔应选择40mm~45mm左右的螺钉,而第1孔应选择45mm~50mm左右的螺钉。左右侧别间螺钉长度选择无显著性差异。远端A、B、C、G四孔螺钉长度,除C-B间无显著性差异,其余两两间均有显著性差异,A、G大于C、B,C、B孔选择50mm~55mm左右的螺钉,A孔选择60mm~65mm左右的螺钉,G孔选择65mm~70mm左右的螺钉;远端D、E、F三孔螺钉长度,除E-F间无显著性差异,其余两两间均有显著性差异,E>D>F, E、D孔选择75mm~80mm左右的螺钉。现有产品规格与国人股骨远端解剖参数尚存在一定差异,需要按照大样本中心合作测量的国人解剖学数据进行改良。
     (3)股骨远端骨折LISS解剖锁定钢板固定系统,在各种固定方式和运动状态下,各部位应力均小于钛合金螺钉屈服强度894~1034兆帕,所以固定系统不会产生塑形变形或断裂;全部置钉组和螺帽封闭钉孔组钉孔间钢板节段比其他部位容易发生疲劳断裂;部分置钉组空缺钉孔周缘应力集中,较全部置钉组和螺帽封闭钉孔组相应部位容易发生疲劳断裂;建议临床在固定时对空缺钉孔要安装填塞螺帽进行钉孔封闭处理以降低该部位疲劳断裂的可能。
Background:With the rapid development of building industry and communication, Bursting fracture of distal femoral fracture took place usually,for example traffic accidents,high-altitude fallings,crashing wounds.and the state of an illness were serious and the mutilation rate was higher than others.These patients usually combine craniocerebral trauma,other limbs and internal organ injury.So, the clinical procedures was difficult, and curative effect was poor,and even lead to decurtation of limbs and the dysfunction of knee.
     Traditional treatment viewpoint of distal femoral fracture were traction and close restitution et al,but nonoperation treatment were unfirm, there were not reposition of anatomy and fuction, and lead to malunion and disunion,influented the functional rehabilitation.Recently, these methods were be replaced by discissiofixation.
     Ordinary plate was been first choosen for treatment of distal femoral fracture,and it function of healing was better than nonoperation,Because poor intension of fixation,wider dissection of periosteum,beforehand bending and defection of biomechanics,the ordinary plate was replaced by the second generation fixation for example angle steel and condyle fixation. The angle steel fixation,there were facility lead to intraoestrophy malformation of knee,and the condyle fixation were wider area of trauma than others,and its effection of treatments were not well.The fixation of LISS was be researched by many orthopedist based on the second generation fixation.This system was suitbable to laterofemur,created length wise extrusion and aniso thickness of stick,stress divergence,it was be choosen by orthopedist
     But the LISS steel of domestic were import production,also the fixation made in china that were be replicate, the import production were be designed according to anatomy of white people,if we would apply to Chinese,whether suitable or not were not be to final conclusion.There were short of clinical anatomical parameter;Because lower limbs were bigger weight loading,the classification of fracture were complex and be drug by amphomuscle,There were usually to take place of breaking of screw or steel,also many researcher were study biomechanical analysis, there all were experiment in vitro and theaccuratissime were poor.
     So we used clinical trauma orthopaedics, human anatomy, modern imageology,3-D reconstruction of computer technique to research of distal femoral LISS fixation on new screw position,how to orientate,and decrease complicatiom.With finite element analysis simulation technique,we supplied digital physical model to improve fixation,and also established a way on how to study with3-D digital,precise position and quantitative.
     Objective
     (1) To reconstructed distal femoral models
     (2) To provide a basis on fracture of distal femoral,22anatomical parameters of distal femoral fixation were be measured by digital3-D.
     (3) To3-D digital simulate of fracture of distal femoral LISS steel fixation and proof parameter feasibility,and apply operational reference plan.
     (4) we would analyze three types of fixation and two types of motion FEA models evaluated the stress of screw,stick stress and to compare with different types and motions.To supply the suggestion of fixation improvement and verificate the feasibility fixation application.
     (5)We retrospective analyzed15cases fracture of distal femoral modus operandi therapeutic efficacy and prostecdtive efficacy and compared with FEA results,verificated reliability of FEA results and applied suggestion of operation.
     Methods and materials:
     (1) To collect CT primary data and establish database of3-D reconstruction models:CT scanning images of health adult physical examination were collected.Scanning condition is that voltage is120kv,electric current is150mA, level thickness is1.25mm and512×512matrix.The data included30cases healthy adults (From the lower of greater torchanter of femur to upper of tibia1/3,18~41years old, average32years old)
     (2) The measurement of parameter on distal femoral fixation of LISS:With Mimics registry three plane(transverse plane,coronal plane,sagittal plane),active "Tool" toolbar,choose "Distance measure tool"to measure follow parameter on2-D imaging:The width of condylus medials femoris; The width of condylus lateralis femoris;The angles of condyles of femur and trunk; The length of cancellated bone on distal femur;We divided5segment from the lower of greater trochanter of femur to lateral epicondyle,and measured cortical thickness and transverse diameter of pulp cavity,and compared the difference of two sides.
     (3)We imported3-D models of LISS into15cases of3-D models of distal femur,and registrated and simulated of situation of screws and steels,read the coincidence.
     (4)A young man's distal femur was scanned by CT with lmm interval. Then, the jpg-format data of CT was input into computer. Used Mimicsl3.0"Threshold" to choose distal femur reconstuction segment,We constructed3species and5ligaments digital models. We import3-D models of LISS into3-D model of distal femur,and registrated,exported by "Stl" files. With Ansys productsll.0,We construced finite element model,fixed distal femurs,oaded340N on greater trochanter of femur,Analysised stress on middle/tail of screw and upper/middle/lower segment of steel.
     (5)We retrospective analyzed15cases fracture of distal femoral modus operandi, therapeutic efficacy and prostecdtive efficacy and compared with FEA results,verificated reliability of FEA results and applied suggestion of operation.
     Results:
     (1)The width of distal femur were (84.80±1.27) mm and (84.60±1.40) mm;
     The A-P of condylus lateralis femoris were (67.36±1.41) mm and (66.27±1.42) mm; The basic of condylus lateralis femoris were (42.53±3.42) mm and (42.98±1.25) mm; The angles of condylus lateralis femoris and trunk were (7.58±0.69) mm and (7.66±0.79) mm; the width of interior and laterioros integumentale were to increase,but the scope of change was small, the interior scope of change was [left (4.37±0.55~3.61±0.43) mm]。The width of medullary cavity were to increase, the scope of change was biger [left (15.61±0.83~21.77±1.31) mm]; There were no difference between two sides.
     (2) The canal of screws were increase from uper to lower of femur. There were no difference between two sides.beside for B,C,E and C,B; Among D、E、F, E was difference.On the left,completely suit case was10,5cases were not suitable; On the right completely suit case was8,7cases were not suitable.
     (3)We reconstructed3-D models of distal femur on LISS fixation system,43, 536units,41,256nodes,The shape of3-D models was similar with entity;(S1~S5),The stress of steel was to be increase,and the Spearman of stress and segment was0.966, P<0.001; A1~A5, The stress of steel was to be increase, and the Spearman of stress and segmentwas0.895, P<0.001, but A6was small; According to the cloud atlas of stress we could see that these were well distributed except A1,Form distal to extremity of screw,The stress of screws were to increase, the Spearman of stress and segment was0.913, P<0.001。The stress of countersinks were difference from steels,the stress of steel were bigger than countersinks.
     (4)We reconstructed3-D models of distal femur on LISS fixation system,41,245units,39,140nodes,The shape of3-D models was similar with entity;(S1~S5),The stress of steel were to be increase,and the Spearman.of stress and segment was0.988, P<0.001; Al~G, The stress of steel was to be increase, and the Spearman of stress and segmentwas0.834, P<0.001, B and G were bigger; According to the cloud atlas of stress we could see that these were well distributed except A1,Form distal to extremity of screw,The stress of screws were to increase, the Spearman of stress and segment was0.499, P<0.001。Among S1~S5, A1~A5,The stress of countersinks were difference from steels,the stress of steel were bigger than countersinks. B and G were bigger than S5,there were significance between each other.
     (5) We reconstructed3-D models of distal femur on LISS fixation system,42,011units,40,010nodes,The shape of3-D models was similar with entity;(S1~S5),The stress of steel was to be increase,and the Spearman of stress and segment was0.958, P<0.001; The stress of screws were to be increase, and the Spearman of stress and segmentwas0.903, P<0.001; According to the cloud atlas of stress we could see that these were well distributed except Al,Form distal to extremity of screw,The stress of screws were to increase, the Spearman of stress and segment was 0.943, P<0.001. Among S1~S5, A1~A5,The stress of countersinks were difference from steels,the stress of steel were bigger than countersinks.,there were significance between each other.
     (6) We reconstructed3-D models of distal femur on LISS fixation system From A to D, Stress of each segments were decrease. According to the cloud atlas of stress we could see that,the segment of A was concentrate,but the stress of all segments were smaller than894~1034MPa.
     Conclusion:
     (1) The diameters of distal femur were smaller than white people. According to the The width of distal femur, The A-P of condylus lateralis femoris and the basic of condylus lateralis femoris:The cancellated bone screws were not longer than85mm on laterior distal femur.From posterior to anterior, screws were not longer than70mm o The screw of posterior steel were not longer than45mm, and to prevent screw crossing condylointergroove,There were no difference between two sides.
     According to the angles of condylus lateralis femoris and trunk, the trunf of LISS was to be8°introversion angle,and made to suit to distal femur,and prevent angulation malformation.From Slto S5,the width of os integumental change from thinness to thicken and then from thicken to thinness,the width of cavitary was opposite.when twisted,we could referto our parameter and prevent to penetrate cortex and decrease compliation of operation.
     (2)The srew canal of diatal femur,we could choose25mm~30mm screw on NO.5,4hole,30-35mm screw on NO.3hole,40~45mm screw on NO.2hole,45mm~50mm screw on NO.1hole. There were no difference between two sides.A,B,C,D holes,the screws were difference between each others,except C-B, A and G were bigger than C and B,50mm~55mm screw on B hole,60mm~65mm screw on A hole;65mm~70mm screw on G hole;There were difference between two sides,D,E,F holes, except E-F, E and D were bigger than F,75mm~80mm screw on E,D hole,There were difference between specification and distal femur of Chines.
     (3) We reconstructed3-D models of distal femur on LISS fixation system,and the stress of all segments were smaller than894~1034MPa, The fixation system were not collapse;Whole putting screws group and nut blocking group were to be fatigue break.The stresses of part putting screws group were concentration, were to be fatigue break to compare with nut blocking group.
引文
[1]Muckley, Thomas,Wahnert Dirk,Hoffmeier Konrad L Dipl-Ing,et al. Internal Fixation of Type-C Distal Femoral Fractures in Osteoporotic Bone:Surgical Technique. Journal of Bone & Joint Surgery-American Volume.2011,93(Suppl 1):40-53.
    [2]Jahangir AA, Cross WW, Schmidt AH. Current management of distal femoral fractures. Current Orthopaedic Practice.2010,21(2):193-197.
    [3]Douglas L,Benson D, Seligson D, The incidence of nonunion after nailing of distal tibial and femoral fractures. Current Orthopaedic Practice. 2010,21(1):49-53.
    [4]Kao FC,Tu YK, Su JY, et al.Treatment of Distal Femoral Fracture by Minimally Invasive Percutaneous Plate Osteosynthesis:Comparison Between the Dynamic Condylar Screw and the Less Invasive Stabilization System. Journal of Trauma-Injury Infection & Critical Care.2009,67(4):719-726.
    [5]Kim YM,Yang JY, Kim KC, et al. Percutaneous Temporal Wiring Method for Minimally Invasive Plate Osteosynthesis of Distal Femoral Fractures. Journal of Trauma-Injury Infection & Critical Care.2009,66(3):938-941.
    [6]Huang SC,Lin CC, Lin J.Increasing Nail-Cortical Contact to Increase Fixation Stability and Decrease Implant Strain in Antegrade Locked Nailing of Distal Femoral Fractures:A Biomechanical Study. Journal of Trauma-Injury Infection & Critical Care.2009,66(2):436-442.
    [7]王光林,吴刚,杨天府,等.股骨远端复杂类型骨折微侵袭治疗的疗效分析.中华创伤杂志.2008,24(9):715-717.
    [8]肖奕增,庄瑞春,郑文忠,等.一期植骨解剖钢板固定治疗下端复杂骨折.临床军医杂志.2009,37(3):427-428.
    [9]张华,赵鹏,曾昭洋,等.成人股骨中下段的解剖学与扁弧形长针的设计应用.解剖学杂志.2009,32(6):806-808.
    [10]郭子学,侯丽丽,赵峰,等.不同截面股骨假体置换后假体与股骨应力的有限元分析.中华骨科杂志,2010,30(11):1167-1170.
    [11]彭亮,曾小丽,白净,等.基于cT数据的股骨三维有限元建模方法.清华大学学 报(自然科学版),2007,47(3):416-419.
    [12]张国栋,廖维靖,陶圣祥,等.股骨有限元分析赋材料属性的方法.中国组织工程研究与临床康复.2009,13(43):8436-8441.
    [13]Xiang R,Chong-qi T.Finite element analysis of custom endoprosthesis stem length in distal femur reconstruction. Journal of Clinical Rehabilitation Tissue Engineering Research.2009,13(9):1617-1620.
    [14]Pastrav LC,Devos J,Van der Perre G,et al.A finite element analysis of the vibrational behaviour of the intra-operatively manufactured prosthesis-femur system. Medical Engineering & Physics.2009,31(4):489-494.
    [15]Kluess D, Mittelmeier W,Bader R.Intraoperative impaction of total knee replacements:an explicit finite-element-analysis of principal stresses in ceramic vs. cobalt-chromium femoral components. Clinical Biomechanics.2010, 25(10):1018-1024.
    [16]Dopico-Gonzalez C,New AM, Browne M. Probabilistic finite element analysis of the uncemented hip replacement--effect of femur characteristics and implant design geometry. Journal of Biomechanics.2010,43(3):512-520.
    [17]Salas C, Mercer D,DeCoster TA,et al. Experimental and probabilistic analysis of distal femoral periprosthetic fracture:a comparison of locking plate and intramedullary nail fixation. Part B:probabilistic investigation. Computer Methods in Biomechanics & Biomedical Engineering.2011,14(2):175-182.
    [18]Sakai R,Sato K,Itoman M,et al.Finite element analysis of the effect of proximal interlocking on primary fixation of the Intra-Medullary Cruciate stem. Journal of Orthopaedic Science.2009,14(1):85-95.
    [19]Bougherara H, Nazgooei S, Sayyidmousavi A, et al.Computation of bone remodelling after Duracon knee arthroplasty using a thermodynamic-based model.Proc Inst Mech Eng H.2011,225(7):669-679.
    [20]Boyle C, Kim IY.Comparison of different hip prosthesis shapes considering micro-level bone remodeling and stress-shielding criteria using three-dimensional design space topology optimization.J Biomech.2011,44(9): 1722-1728.
    [1]Ellis HB, Ho CA, Podeszwa DA,et al.A comparison of locked versus nonlocked enders rods for length unstable pediatric femoral shaft fractures[J].J Pediatr Orthop.2011,31(8):825-833.
    [2]Shah S, Kim SY, Dubov A, et al. The biomechanics of plate fixation of periprosthetic femoral fractures near the tip of a total hip implant:cables-, screws, or both? [J].Proc Inst Mech Eng H.2011,225(9):845-856.
    [3]Li K, Langdale E, Tashman S, et al. Gender and condylar differences in distal femur morphometry clarified by automated computer analyses [J]. J Orthop Res. 2011, doi:10.1002/jor.21575.
    [4]Connelly CL, Archdeacon MT.The Lateral Decubitus Approach for Complex Proximal Femur Fractures:Anatomic Reduction and Locking Plate Neutralization:A Technical Trick[J].J Orthop Trauma.2011, [Epub ahead of print]PMID:22048187.
    [5]Beingessner D, Moon E, Barei D, et al. Biomechanical analysis of the less invasive stabilization system for mechanically unstable fractures of the distal femur:comparison of titanium versus stainless steel and bicortical versus unicortical fixation[J].J Trauma.2011,71(3):620-624.
    [6]盛器玉,邢光霞,潘感军,等.股骨干骨折髓内钉远端徒手锁钉技术及应用解剖学研究[J].中国骨伤.2007,20(9):605-607.
    [7]Han N, Sun GX, Li ZC, et al.Comparison of proximal femoral nail antirotation blade and reverse less invasive stabilization system-distal femur systems in the treatment of proximal femoral fractures [J]. Orthop Surg.2011,3(1):7-13.
    [8]Beingessner D, Moon E, Barei D, et al. Biomechanical analysis of the less invasive stabilization system for mechanically unstable fractures of the distal femur:comparison of titanium versus stainless steel and bicortical versus unicortical fixation[J].J Trauma.2011,71(3):620-624.
    [9]Hierholzer C, von Riiden C, Potzel T, et al. Outcome analysis of retrograde nailing and less invasive stabilization system in distal femoral fractures:A retrospective analysis[J].Indian J Orthop.2011,45(3):243-250.
    [10]Gao K, Gao W, Li F, et al. Treatment of ipsilateral concomitant fractures of proximal extra capsular and distal femur [J].Injury.2011,42(7):675-681.
    [11]Ma CH, Tu YK, Yu SW, et al.Reverse LISS plates for unstable proximal femoral fractures[J].Injury.2010 Aug;41(8):827-33.
    [12]Krbec M, Motycka J, Lunacek L, et al.Osteosynthesis for periprosthetic supracondylar fracture above a total knee arthroplasty using a locking compression plate[J].Acta Chir Orthop Traumatol Cech.2009,76(6):473-478.
    [1]Lohiya R, Bachhal V, Khan U,et al.Flexible intramedullary nailing in paediatric femoral fractures[J]. A report of 73 cases.J Orthop Surg Res.2011,6(1):64.
    [2]Vallier HA, Immler W. Comparison of the 95-Degree Angled Blade Plate and the Locking Condylar Plate for the Treatment of Distal Femoral Fractures[J]. J Orthop Trauma.2011,15. PMID:22183200.
    [3]Olkowski AA, Laarveld B, Wojnarowicz C,et al. Biochemical and physiological weaknesses associated with the pathogenesis of femoral bone degeneration in broiler chickens[J].Avian Pathol.2011,40(6):639-650.
    [4]Ellis HB, Ho CA, Podeszwa DA, et al. A comparison of locked versus nonlocked enders rods for length unstable pediatric femoral shaft fractures[J].J Pediatr Orthop.2011,31(8):825-833.
    [5]Rohilla R, Singh R, Rohilla S, et al. Locked intramedullary femoral nailing without fracture table or image intensifier[J].Strategies Trauma Limb Reconstr. 2011,6(3):127-135.
    [6]Dubov A, Kim SY, Shah S,et al.The biomechanics of plate repair of periprosthetic femur fractures near the tip of a total hip implant:the effect of cable-screw position[J].Proc Inst Mech Eng H.2011,225(9):857-865.
    [7]Shah S, Kim SY, Dubov A, et al.The biomechanics of plate fixation of periprosthetic femoral fractures near the tip of a total hip implant:cables, screws, or both? [J].Proc Inst Mech Eng H.2011,225(9):845-856.
    [8]Wilson LJ, Richards CJ, Irvine D, et al.Risk of periprosthetic femur fracture after anterior cortical bone windowing[J].Acta Orthop.2011,82(6):674-678.
    [9]Macovei L, Ancuta C, Belibou C, et al.Bone mineral density in patients with rheumatoid arthritis[J].Rev Med Chir Soc Med Nat Iasi.2011,115(3):723-730.
    [10]Chou DT, Taylor AM, Boulton C, et al.Reverse oblique intertrochanteric femoral fractures treated with the intramedullary hip screw (IMHS) [J].Injury. 2011,PMID:22040693
    [11]Demos HA, Briones MS, White PH, et al.A Biomechanical Comparison of Periprosthetic Femoral Fracture Fixation in Normal and Osteoporotic Cadaveric Bone[J].J Arthroplasty.2011, PMID:22014657.
    [12]Han N, Sun GX, Li ZC, et al. Comparison of proximal femoral nail antirotation blade and reverse less invasive stabilization system-distal femur systems in the treatment of proximal femoral fractures[J]. Orthop Surg.2011,3(1):7-13.
    [13]Ebraheim NA, Liu J, Hashmi SZ, et al. High Complication Rate in Locking Plate Fixation of Lower Periprosthetic Distal Femur Fractures in Patients With Total Knee Arthroplasties[J].J Arthroplasty.2011,PMID:21964235.
    [14]Perreira AC, Hunter JC, Laird T,et al. Multilevel measurement of acetabular version using 3-D CT-generated models:implications for hip preservation surgery[J].Clin Orthop Relat Res.2011,469(2):552-561.
    [15]Beingessner D, Moon E, Barei D, et al. Biomechanical analysis of the less invasive stabilization system for mechanically unstable fractures of the distal femur:comparison of titanium versus stainless steel and bicortical versus unicortical fixation. J Trauma.2011;71(3):620-624.
    [16]Hierholzer C, von Ruden C, Potzel T, et al. Outcome analysis of retrograde nailing and less invasive stabilization system in distal femoral fractures:A retrospective analysis. Indian J Orthop.2011;45(3):243-250.
    [17]孙月芳,莫展豪,陈凯亮,等.股骨远端及后髁曲率半径的性别差异及其意义[J].吉林大学学报(医学版).2010,36(1):159-162.
    [18]Gao K, Gao W, Li F, et al. Treatment of ipsilateral concomitant fractures of proximal extra capsular and distal femur. Injury.2011;42(7):675-681.
    [19]Ma CH, Tu YK, Yu SW, et al. Reverse LISS plates for unstable proximal femoral fractures. Injury.2010;41(8):827-833.
    [20]Krbec M, Motycka J, Lunacek L, et al. Osteosynthesis for periprosthetic supracondylar fracture above a total knee arthroplasty using a locking compression plate. Acta Chir Orthop Traumatol Cech.2009;76(6):473-478.
    [21]Narod SA.Personalized medicine:a personal view[J].Curr Oncol.2010,17(5):4-5.
    [1]Hontzsch D, Blauth M, Attal R,et al.Angle-stable fixation of intramedullary nails using the Angular Stable Locking System(?)(ASLS) [J].Oper Orthop Traumatol.2011,23(5):387-396.
    [2]Ehlinger M, Adam P, Arlettaz Y,et al. Minimally-invasive fixation of distal extra-articular femur fractures with locking plates:limitations and failures [J].Orthop Traumatol Surg Res.2011,97(6):668-674.
    [3]Nayak RM, Koichade MR, Umre AN,et al.Minimally invasive plate osteosynthesis using a locking compression plate for distal femoral fractures [J].J Orthop Surg (Hong Kong).2011,19(2):185-190.
    [4]Malviya A, Reed MR, Partington PF.Acute primary total knee arthroplasty for peri-articular knee fractures in patients over 65 years of age[J].Injury.2011,42(11):1368-1371.
    [5]Lopes JB, Figueiredo CP, Caparbo VF,et al. Osteoporotic fractures in the Brazilian community-dwelling elderly:prevalence and risk factors[J].J Clin Densitom.2011,14(3):359-366.
    [6]Weil YA, Rivkin G, Safran O,et al. The outcome of surgically treated femur fractures associated with long-term bisphosphonate use[J].J Trauma. 2011,71(1):186-190.
    [7]Hierholzer C, von Ruden C, Potzel T, et al. Outcome analysis of retrograde nailing and less invasive stabilization system in distal femoral fractures:A retrospective analysis[J].Indian J Orthop.2011,45(3):243-250.
    [8]Shih KS, Hsu CC, Hsu TP.A biomechanical investigation of the effects of static fixation and dynamization after interlocking femoral nailing:A finite element study[J]. J Trauma.2012,72(2):E46-E53.
    [9]Salas C, Mercer D, DeCoster TA, et al. Experimental and probabilistic analysis of distal femoral periprosthetic fracture:a comparison of locking plate and intramedullary nail fixation. Part A:experimental investigation[J].Comput Methods Biomech Biomed Engin.2011,14(2):157-164.
    [10]Han QT, Wang YJ, Tang HW.Biomechanical comparison of three methods of internal fixation for distal femoral fractures[J].Zhongguo Gu Shang. 2010,23(8):601-604.
    [11]Efstathopoulos N, Nikolaou VS, Xypnitos FN, et al.Investigation on the distal screw of a trochanteric intramedullary implant (Fi-nail) using a simplified finite element model [J].Injury.2010,41(3):259-265.
    [12]Chang CY, Rupp JD, Reed MP, et al.Predicting the effects of muscle activation on knee, thigh, and hip injuries in frontal crashes using a finite-element model with muscle forces from subject testing and musculoskeletal modeling[J].Stapp Car Crash J.2009,53:291-328.
    [13]Bougherara H, Zdero R, Miric M, et al.The biomechanics of the T2 femoral nailing system:a comparison of synthetic femurs withfinite element analysis[J].Proc Inst Mech Eng H.2009,223(3):303-314.
    [14]Chen SH, Yu TC, Chang CH, et al. Biomechanical analysis of retrograde intramedullary nail fixation in distal femoral fractures [J].Knee. 2008,15(5):384-389.
    [15]Mann KA, Lee J, Arrington SA, Damron TA, et al.Predicting distal femur bone strength in a murine model of tumor osteolysis[J].Clin Orthop Relat Res. 2008,466(6):1271-1278.
    [16]Shih KS, Tseng CS, Lee CC, et al.Influence of muscular contractions on the stress analysis of distal femoral interlocking nailing[J].Clin Biomech (Bristol, Avon).2008,23(1):38-44.
    [17]Mahaisavariya B, Sitthiseripratip K, Suwanprateeb J.Finite element study of the proximal femur with retained trochanteric gamma nail and after removal of nail.Injury[J].2006,37(8):778-785.
    [18]Cegonino J, Garcia Aznar JM, Doblare M, et al. A comparative analysis of different treatments for distal femur fractures using the finite element method[J].Comput Methods Biomech Biomed Engin.2004,7(5):245-256.
    [19]Dubov A, Kim SY, Shah S, et al.The biomechanics of plate repair of periprosthetic femur fractures near the tip of a total hip implant:the effect of cable-screw position[J].Proc Inst Mech Eng H.2011,225(9):857-865.
    [20]Shah S, Kim SY, Dubov A, et al.The biomechanics of plate fixation of periprosthetic femoral fractures near the tip of a total hip implant:cables, screws, or both? [J] Proc Inst Mech Eng H.2011,225(9):845-856.
    [21]Wilson LJ, Richards CJ, et al. Irvine D,Risk of periprosthetic femur fracture after anterior cortical bone windowing:a mechanical analysis of short versus long cemented stems in pigs[J].Acta Orthop.2011,82(6):674-678.
    [1]Jahangir AA, Cross WW, Schmidt AH. Current management of distal femoral fractures. Current Orthopaedic Practice.2010,21(2):193-197.
    [2]Douglas L,Benson D, Seligson D, The incidence of nonunion after nailing of distal tibial and femoral fractures. Current Orthopaedic Practice. 2010,21(1):49-53.
    [3]Kao FC,Tu YK, Su JY, et al.Treatment of Distal Femoral Fracture by Minimally Invasive Percutaneous Plate Osteosynthesis:Comparison Between the Dynamic Condylar Screw and the Less Invasive Stabilization System. Journal of Trauma-Injury Infection & Critical Care.2009,67(4):719-726.
    [4]Kim YM,Yang JY, Kim KC, et al. Percutaneous Temporal Wiring Method for Minimally Invasive Plate Osteosynthesis of Distal Femoral Fractures. Journal of Trauma-Injury Infection & Critical Care.2009,66(3):938-941.
    [5]Huang SC,Lin CC, Lin J.Increasing Nail-Cortical Contact to Increase Fixation Stability and Decrease Implant Strain in Antegrade Locked Nailing of Distal Femoral Fractures:A Biomechanical Study. Journal of Trauma-Injury Infection & Critical Care.2009,66(2):436-442.
    [6]王光林,吴刚,杨天府,等.股骨远端复杂类型骨折微侵袭治疗的疗效分析.中华创伤杂志.2008,24(9):715-717.
    [7]肖奕增,庄瑞春,郑文忠,等.一期植骨解剖钢板固定治疗下端复杂骨折.临床军医杂志.2009,37(3):427-428.
    [8]张华,赵鹏,曾昭洋,等.成人股骨中下段的解剖学与扁弧形长针的设计应用.解剖学杂志.2009,32(6):806-808.
    [9]Kluess D, Mittelmeier W,Bader R.Intraoperative impaction of total knee replacements:an explicit finite-element-analysis of principal stresses in ceramic vs. cobalt-chromium femoral components. Clinical Biomechanics.2010, 25(10):1018-1024.
    [10]Dopico-Gonzalez C,New AM, Browne M. Probabilistic finite element analysis of the uncemented hip replacement--effect of femur characteristics and implant design geometry. Journal of Biomechanics.2010,43(3):512-520.
    [11]Salas C, Mercer D,DeCoster TA,et al. Experimental and probabilistic analysis of distal femoral periprosthetic fracture:a comparison of locking plate and intramedullary nail fixation. Part B:probabilistic investigation. Computer Methods in Biomechanics & Biomedical Engineering.2011,14(2):175-182.
    [12]Sakai R,Sato K,Itoman M,et al.Finite element analysis of the effect of proximal interlocking on primary fixation of the Intra-Medullary Cruciate stem. Journal of Orthopaedic Science.2009,14(1):85-95.
    [13]Bougherara H, Nazgooei S, Sayyidmousavi A, et al.Computation of bone remodelling after Duracon knee arthroplasty using a thermodynamic-based model.Proc Inst Mech Eng H.2011,225(7):669-679.
    [14]Boyle C, Kim IY.Comparison of different hip prosthesis shapes considering micro-level bone remodeling and stress-shielding criteria using three-dimensional design space topology optimization.J Biomech. 2011,44(9):1722-1728
    [1]田勇,卡索.股骨远端骨折的研究进展[J].中国矫形外科杂志,2004,12(12):936-937。
    [2]黄长明,胡喜春,王剑敏,等.AO微创内固定系统治疗股骨远端骨折近期效果观察[J].中国矫形外科杂志,2005,13(18):1373-1375。
    [3]王满宜,杨庆铭,曾炳芳,等.骨折治疗的AO原则[M].北京:华夏出版社,2003:15
    [4]李强一,张秋琴,韩擎天,等.股骨远端骨折三种内固定方法生物力学比较研究与临床应用[J].骨与关节损伤杂志,2001,16(4):276-278.
    [5]赵汉平,王明飞,刘明,等.解剖型支持钢板治疗股骨踝严重粉碎骨折[J].中国矫形外科杂志,2002,10(11):1135-1136.
    [6]黄智,云维,邹重文,等·股骨髁部骨折的手术治疗[J].中华创伤骨科杂志,2009,7:640-641
    [7]Helfet DL, Lorich DG. Fractures of the distal femur[A].In:Browner BD, Jupiter JB, Levine AM:Trafton PG. Skeletal Trauma[M].2nded, Singaport:Harcourt Publishers Limited,1998,2033。
    [8]欧阳振华,刘先礼,黄斌·88例股骨髁骨折手术治疗的临床追踪研究[J]·中华创伤骨科杂志,2004,6:690-692.
    [9]郭仕方,薛文,苟海涛,等·AO限制接触股骨髁支撑钢板治疗复杂髁部骨折[J]·中国医师进修杂志,2007,5:50-51。
    [10]刘亚波,孙林,刘德全,等·股骨远端骨折的手术治疗[J]·中华创伤骨科杂志,2002,3:209-211。
    [11]陈学明,周忠,吕琦·解剖型钢板配合可吸收棒治疗股骨远端粉碎型骨折[J].·创伤外科杂志,2007,3:218-219。
    [12]李雄杰,蒋家正,李立东,等·32例股骨远端严重粉碎型骨折解剖钢板内固定的治疗探讨[J]·中国矫形外科杂志,2007,6:474-475·。
    [13]高道海,林昂如,翟文亮,等·双侧板联锁固定股骨远端粉碎型骨折[J]·临床骨科杂志,2003,2:102-105。
    [14]徐振文,张光明,刘恩志,等·股骨髁支撑钢板的临床应用体会[J]·骨与关节损伤杂志,2001,2:137-138。
    [15]李文俊·动力髁螺钉内固定治疗股骨远端骨折[J]·临床和实验医学杂志,2007,4:55-56。
    [16]ShewringDJ,MeggittBE-Fracture of the distal femur treatcd with the AO dynamic condylar screw[J]-JBone JointSurgBr,1992,1:122-125.
    [17]王志烈,范军胜,王军海,等.股骨远端骨折内固定临床应用评析[J].中国矫形外科杂志,2005,13(6):422-424。
    [18]周琦石,黄枫,黄学员,等.微创稳定系统治疗股骨远端C型骨折[J].中华创伤骨 科杂志,2007,9(2):114-117。
    [19]MuellerCA, EingartnerC, SchreitmuellerE,et al-Primary stability of varous forms ofosteosynthesis in the treatmentof fractures of the proxi-mal tibia[J].J Bone JointSurg Br,2005,87:426-432。
    [20]KregorPJ, Stannard J, ZlowodzkiM,et al·Distal femoral fracture fixa-tion utilizing the Less Invasive Stabilization System(LISS):the tech-nique and early results[J]·Injury,2001,1:32·
    [21]Cole PA, ZlowoddzkiM, Kregor PJ-Less invasive stabilization system (LISS) for fracture of the proximal tibia:indications, surgical tech-nique and preliminary results of the UMC Clinical Trial[J].Injury,2003,34:16.
    [22]柳昊,郭风劲,陈安民,等·股骨远端骨折不同内固定方法的疗效分析[J].中国骨与关节损伤杂志,2009,12:1059-1060。
    [23]蒋李青,赵冬梅,梁伟,等LISS钢板治疗老年股骨远端骨折初步报告[J].中医正骨,2007,19(5):31-33.
    [24]张景福,马殿忠,颜晓东.AO微创内固定系统在股骨远端粉碎型骨折的应用[J].中国矫形外科杂志,2007,15(6):加页3-4.
    [25]朱勇,王崇武.双扁形髓内钉系统内固定治疗股骨髁上及髁间骨折[J].湖南医科大学学报,1995,20(6):565-567.
    [26]王万垠,杨建强.顺行交锁髓内钉治疗股骨远中段骨折的解剖与临床[J].解剖与临床,2004,9(3):156-168
    [27]徐林,陈炎城,邓江.逆行带锁髓内钉治疗股骨髁上骨折58例临床探讨[J].创伤外科杂志,2005,7(2):139-140.
    [28]Henry.Supracondylar femur fractures treated percu-taneously[J].Clin Orthop,2000,28(375):51-59
    [29]邱永敏,尹伟忠,胡晓亮.逆行交锁髓内钉治疗股骨远端骨折[J].实用骨科杂志,2005,11(4):370-371
    [30]李文恒,李凯,陈敏,等.关节镜引导逆行交锁髓内钉加中药外洗治疗股骨远端骨折[J].中国骨伤,2007,20(2):122-123.
    [3l]王洪伟,阮美树,苏训同.联合应用带锁髓内钉及西脉TiNi记忆合金骨卡环治疗股骨干粉碎骨折[J].中华创伤骨科杂志,2004,6(8):924-925.
    [32]汪慈民,纪方,粟景峰,等.可膨胀髓内钉Fixon系统治疗四肢骨折[J].国外医学骨科分册,2005,26(4):253-255。