基于咀嚼模拟的食品质地评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食品质地评价是食品品质检验的一个重要方面,它对食品的研究开发、贮藏保鲜、商贸运输等方面都有重要的意义,对人们饮食健康、营养膳食等方面也有一定的指导作用。目前,对食品质地的评价主要采用感官评价法和仪器评价法,感官评价法的评价过程费时费力,评价结果主观性强、而且不稳定;常用的仪器评价法多属于半经验或模拟测定,评价结果与人类感知相差较大,而且不能对多种质地特性做出准确表达。随着食品工业的快速发展和人们对食品品质要求的日益提高,食品质地评价显得越来越重要,市场上急需快速、客观、准确、类人的食品质地评价方法。本文主要针对食品质地评价中存在的问题和评价方法的发展趋势,利用仿生技术、逆向工程、有限元分析等先进技术和理论研究开发咀嚼模拟系统,并使用该系统在多种评价模式下对食品的多个质地指标进行分析检测。
     1.设计开发了咀嚼模拟系统的硬件装置和测试软件。使用三维激光扫描仪和CT断层扫描仪等设备对人类咀嚼器官模型进行扫描,获取咀嚼系统的形态数据,利用Imageware12、Unigraphics6.0、SolidWorks2008、ANSYS10.0等软件进行咀嚼模拟系统结构设计和优化,然后使用CAD/CAM系统加工制作,主要设计制作了仿生牙齿、仿生牙周膜、仿生颌骨、仿生颞下颌关节、驱动机构、温湿环境部件、辅助机构、信号调理电路等。利用Visual C++6.0软件开发了咀嚼模拟系统测试程序,主要包括信号采集、数据处理、图形分析等模块。对咀嚼模拟系统进行了运动分析和咀嚼功能测试,结果表明咀嚼模拟系统可实现开闭、前后、侧向三维咀嚼运动,与人类咀嚼运动相似;系统的咬合力达到了咀嚼食物的力量,可以咀嚼破碎不同质地的食物;系统的咀嚼效率达到90%以上,和人类无显著差异,且稳定可靠。
     2.确定了咀嚼模拟系统的测试条件。以9种具有质地代表性的食物样品为试验材料,使用咀嚼模拟系统进行测试,分析了仿生牙周膜、仿咀嚼肌弹簧、电动机转速和温湿环境对咀嚼测试信号的影响,优选出最佳的食品质地测试条件。仿生牙周膜筛选结果表明:仿生下颌第一磨牙底部和周围的仿生牙周膜信号强、重复性好、分类程度高,可作为获取咀嚼模拟系统测试信号的传感器。对仿咀嚼肌弹簧影响分析表明,最佳的弹性系数范围为:测试胡萝卜时,仿咀嚼肌弹簧的弹性系数不小于30N/mm;测试面包时,弹性系数不小于5N/mm;测试糯玉米、豆干、火腿肠、饼干时,弹性系数不小于10N/mm;测试苹果、榨菜、花生时,弹性系数不小于20N/mm。电动机转速对测试信号有一定影响,在对食物质地测试时应保持一个恒定转速,在测试胡萝卜、花生、苹果、糯玉米时,转速范围取60~90r/min;在测试榨菜、豆干、火腿肠、面包、饼干时,转速范围取60~120r/min。温湿环境条件对测试信号影响显著,在对食物进行质地测试时,应该具有适宜温湿环境才能更接近人类的评价,温湿环境为温度37℃、人造唾液流量3mL/min。
     3.在质地剖面分析(TPA)模式下,对多种食品的多个质地特性进行了分析评价。对胡萝卜、苹果、榨菜、花生、糯玉米、豆干、火腿肠、面包、饼干共9种样品,分别使用咀嚼模拟系统、人类感官、通用食品质构仪进行了硬度、脆性、黏着性、内聚性、弹性、咀嚼性、回复性等质地特性测试。以人类感官评价为基准,通过相关性、多元回归、BP神经网络等分析,建立咀嚼模拟系统的质地剖面分析方法,并与通用食品质地测试仪器进行对比。皮尔逊(Pearson)相关性分析结果表明,各个样品的咀嚼模拟系统测试结果和感官评价结果相关性良好,可以使用咀嚼模拟系统测试代替人类感官评价;咀嚼模拟系统测试结果和感官评价结果的相关性系数均高于通用食品质构仪的测试结果,说明咀嚼模拟系统优于通用食品质构仪。多元回归分析表明,对各个样品建立的质地评价回归模型有效,模型测试和实验测试结果相差小,平均误差和标准残差都较小,差异性结果检验不显著,回归模型满足精度要求。BP神经网络分析表明,对各个样品建立的BP神经网络模型测试效果好,能够满足食品质地评价的要求。
     4.建立了基于脆裂力学模型的食品脆性评价方法。在咀嚼模拟系统的“杵-臼”咀嚼结构的基础上,通过食品物料在咀嚼破碎过程中的受力分析,建立了脆裂力学模型,并对物料块形状、仿生磨牙形态、咀嚼速度对脆裂力学模型的影响进行了分析,选取胡萝卜、苹果、榨菜三种脆性材料进行了试验验证。结果表明:脆裂方程能正确反映出脆裂力和失效应力之间的关系,可以利用咀嚼模拟系统测得的脆裂力来反映物料的断裂失效情形,可以用来反映物料的脆性。以胡萝卜、苹果、榨菜为试验材料,使用咀嚼模拟系统测试的脆裂信号评价了食物的脆性,并使用感官评价方法进行验证,三点梁弯曲试验进行对比。结果表明:咀嚼模拟系统、三点弯曲试验的测试结果与脆性感官评价都达到了极显著的相关性;咀嚼模拟系统的测试结果与脆性感官评价的相关系数均大于三点弯曲试验;基于咀嚼脆裂信号和感官评分建立的回归方程,满足精度要求,可以测试硬脆性果蔬的脆性。
     5.在多次咀嚼模式下,利用咀嚼模拟系统对食品所做的咀嚼功,建立了食品咀嚼性评价方法。首先以花生为试验材料,利用多因素方差分析法分析了电动机转速、仿咀嚼肌弹簧弹性系数、咀嚼循环次数对多次咀嚼破碎效果的影响,并将咀嚼模拟系统的咀嚼破碎效果和人类咀嚼效果进行对比分析。结果表明:电动机转速对咀嚼破碎效果影响不显著,仿咀嚼肌弹簧弹性系数对咀嚼破碎效果影响显著,两者交互作用对咀嚼效果影响不显著;咀嚼模拟系统的咀嚼效果和人类咀嚼效果无显著差异,可以通过调整仿咀嚼肌弹簧弹性系数使咀嚼模拟系统达到和人类相似的咀嚼效果;重复性检验差异不显著,咀嚼模拟系统咀嚼效果稳定。然后对人类咀嚼吞咽时食物团粒度进行分析,确定了花生被咀嚼至吞咽时的破碎率。结果表明:不同组花生样品在吞咽时的破碎率差异不显著,花生被咀嚼至吞咽时的颗粒大小较稳定;当花生颗粒破碎率的平均值达到91.67%时,就可认为花生颗粒团可吞咽。最后,提取达到可吞咽程度时的多次咀嚼信号曲线,计算出咀嚼信号曲线与时间轴围成的面积,将它作为咀嚼破碎食物的咀嚼做功;对花生样品进行多次咀嚼模拟测试和咀嚼性感官评价,对咀嚼功和咀嚼性感官评价结果进行相关性分析和回归分析。结果表明:咀嚼模拟系统的咀嚼功和咀嚼性感官评价结果达到了极显著的相关性;咀嚼功和感官评分建立的回归模型,满足精度要求,可以利用多次咀嚼测试的咀嚼功来测试食品的咀嚼性。
     综上所述,本文所研制的咀嚼模拟系统在结构上与人类咀嚼模拟系统相近,在功能上可以咀嚼破碎食物,可以用于食品质地评价;在多种咀嚼模式下建立的食品质地评价方法可以对食物的多种质地特性进行准确评价。经过与其它食品质地评价仪器对比,本文的咀嚼模拟系统不仅客观、准确,而且接近人类感官评价。
Evaluation of food texture is an important aspect of food detection, has greatsignificance to food development, preservation and keeping, trade and transport, and hassome effects on human health and taking nutrition. Presently, there are two methods aboutevaluation of food texture, which are sensory assessment and instrument measurement.Sensory assessment is subjective, instabile, time consuming and laborious, while instrumentmeasurement mostly belongs to half-experience and simulation test, has much differencewith sensory assessment, and cann’t determine multiple texture characters furthermore. Withthe rapid development of food industry and increasing request of high quality food,evaluation of food texture becomes more and more important, and it needs a rapid, objective,accurate and hominine assessment method. So chewing simulation system was developed bythe technology of bionic, reverse engineering and analysis of finite element in the paper,aiming at the issue and actuality of evaluation of food texture, and multiple food texturecharacters were detected by the system under lots of evaluation patterns.
     1. Chewing simulation system was designed and developed including hardwareequipment and testing software. Configuration data of human chewing system was acquiredby scanning human chewing organs using Three-dimensional Laser Scanner and ComputedTomography Scanner. Chewing simulation system was developed and optimized byengineering softwares such as Imageware12, Unigraphics6.0, SolidWorks2008, Ansys10.0and so on, then was made by CAD/CAM system, including bionic teeth, bionicparodontiums, bionic jaws, bionic temporomandibular joints, driving mechanism,temperature and humidity conditions, ancillary mechanisms, signal disposing circuit etc.Testing software was designed by Visual C++6.0, including signal gathering, texture dataprocessing and figure analyzing module. After movement and chewing function of chewingsimulation system were analyzed and tested, the results show that chewing simulationsystem can realize up, down, forward, back and offset three dimensional motion alike humanchewing system, and chewing force achieve the power chewing kinds of texture foods, andmasticatory efficiency is up to90%, stable, and no significant difference with subjects’.
     2.Experiment conditions of the chewing simulation system were ascertained by testingnine representative texture foods. Influence that bionic parodontiums, spring imitatingchewing muscle, motor speed and temperature and humidity conditions to chewing signalwas analyzed by difference, repetition and category analysis, and the optimal experimentconditions were obtained. The suitable sensors receiving testing signal are the bionicparodontiums under and around the first bionic molar on the bionic mandible. The optimalranges of elastic coefficient to kinds of samples are different, and carrot’s is no less than30N/mm, bread’s no less than5N/mm, waxy corn, bean curd, ham sausage and crackers’ noless than10N/mm, and apple, pickle and peanut s’ no less than20N/mm. Motor speed has alittle effect on testing signal, so it should keep invariable. While carrot, peanut, apple andwaxy corn are tested, range of motor speed is60~90r/min, and while pickle, bean curd, hamsausage, bread and cracker tested, it is60~120r/min. Temperature and humidity conditions have notable influence on testing signal, so the suitable temperature is37℃, and the flow ofartificial saliva is3mL/min when the chewing simulation system chewing samples.
     3.Under the texture profiling analysis mode, lots of texture parameters of kinds offoods were analyzed and evaluated by chewing simulation system, sensory assessment anduniversal food texture analyzer. These foods are carrot, apple, pickle, peanut, waxy corn,bean curd, ham sausage, bread and cracker. These texture parameters are hardness,brittleness, adhesiveness, cohesiveness, springiness, chewiness and recovery property. Basedon human sensory assessment, texture profiling analysis of chewing simulation system wasset up by correlation, multivariate regression, BP network analysis, compared with universalinstrument measurement. Pearson coefficients show that the correlation is good betweenmeasurement of chewing simulation system and sensory assessment to every food samples,the chewing simulation system can replace human sense, and the correlation of chewingsimulation system testing is better than universal instrument measurement with sensoryassessment. Multivariate regression analysis shows that texture regression models on thesamples are in effect and accurate, the average error and standard residual is little and thedifference is not significant between predictive and measured value. BP network analysisshows that every BP models on the samples are effective and can satisfy with food textureevaluation.
     4.Food fracture mechanical model was set up based on chewing simulation. On basis ofthe “pestle and mortar” chewing model of chewing simulation system, force of materielblock was analyzed during being crushed, and fracture mechanical model was set up. Effectsof materiel block, bionic molar shape and chewing speed on the model were analyzed andcarrot, apple, pickle samples were measured to validate the model. Experiment results showthat fracture mechanical equations are correct and can express the relations between fractureforce and failure stress accurately, the fracture force of chewing simulation system canreflect the situation of materiel fracture and brittleness during being crushed. Chewingfracture force was validated and compared by sensory assessment of brittleness and threepoint bend test. Experiment results show that relations between chewing fracture force, valueof three point bend test and sensory assessment of brittleness are very marked, and thecoefficients of chewing fracture force are bigger than value of three point bend test tobrittleness sensory assessment of three samples. Regression models between chewingfracture force and sensory assessment are accurate and can predict the brittleness of crispfruits and vegetables.
     5.Evaluation method of food chewiness was established using the chewing work ofchewing simulation system to food, under the time after time chewing mode. Effects ofspring imitating chewing muscle and motor speed on the masticatory efficiency wereanalyzed by multiple factors variance analysis, masticatory efficiency of chewing simulationsystem was compared with conner when peanuts were chewed. Experiment results show thatmotor speed has no notable effect on masticatory efficiency, while elastic coefficient ofbionic spring has great effect, and the interaction of two factors is not effective. Masticatoryefficiency of chewing simulation system has no difference with human’s, and is stable after duplicated examination, and it can reach human’s by adjusting elastic coefficient of bionicspring. Crushing efficiency was ascertained while swallowing after analyzed granularity ofpeanut draff during human chewing. Results show that difference of crushing efficiencybetween every group is not remarkable while swallowing and granule size is stable, peanutbolus can consider to be swallowed when crushing efficiency reaches91.67%. Area thatchewing signal curves enclose time axis is as chewing work while crushing food, byextracting chewing signal curves while swallowing. After chewing simulation system testingand sensory assessment of chewiness to peanut samples, chewing work and sensorychewiness were analyzed by relation and regression. Results show that the correlation isgood between chewing work and sensory assessment and the regression model betweenchewing work and sensory assessment is accurate and can predict the food chewiness underthe time after time chewing mode.
     In conclusion, chewing simulation system is as human chewing system from structureto function, can chew food and evaluate food texture. Food texture evaluation method setunder lots of patterns can measure kinds of texture characters. Chewing simulation system isobjective, accurate and close to human, better than other Food Texture Analyzer aftercomparative test on food texture evaluation.
引文
[1]张佳程,刘爱萍,晋艳曦.食品质地学[M].北京:中国轻工业出版社,2010.
    [2]HOLT S H,JENNIE C B,STITT P A.The effects of equal-energy portions of differentbreads on blood glucose levels, feelings of fullness and subsequent foodintake[J].Journal of the American Dietetic Association,2001,101(7):767-773.
    [3]郑期彤.五感传感器令电子设备更接近人类[J].电子设计应用,2008,7(5):54-74.
    [4]PERES A M,DIAS L G,BARCELOS T P,et al.An electronic tongue for juice levelevaluation in non-alcoholic beverages[J].Procedia Chemistry,2009,1(1):1023-1026.
    [5]CHEN K,SUN X,QIN C H,et al.Color grading of beef fat by using computer visionand support vector machine[J].Computers and Electronics in Agriculture,2010,70(1):27-32.
    [6]MANUELA O,GABRIELA V.A practical approach for fish freshness determinationsusing a portable electronic nose[J].Sensors and Actuators B,2001,80(2):149-154.
    [7]DAVIS J G.The rheology of cheese,butter and other milk products[J].Journal of DairyResearch,1937,8(6):245-264.
    [8]SZCZESNIAK A S.Texture: is it still an overlooked food attribute[J].Food Technology,1990,44(9):86-95.
    [9]李里特.食品物性学[M].北京:中国农业出版社,2001.
    [10]JOWITT R.The terminology of food texture[J].Journal of Texture Studies,1974,5(8):351-358.
    [11]BOURNE M C.Food texture and viscosity:concept and measurement[M].New York:Academic Press,2002.
    [12]张晓鸣.食品感官评定[M].北京:中国轻工业工业出版社,2006.
    [13]马永强,韩春然,刘静波.食品感官检验[M].北京:化学工业出版社,2005.
    [14]MIOCHE L,BOURDIOL P,MONIER S,et al.The relationship between chewingactivity and food bolus properties obtained from different meat textures[J].Food Qualityand Preference,2002,13(8):583-588.
    [15]CHEONG M L.Objective characterization of food firmness and cohesiveness duringchewing using the electronic sensing system[D].Kansas:University of Kansas State,2002.
    [16]吴洪华,姜松.食品质地及其TPA测试[J].食品研究与开发,2005,26(5):128-131.
    [17]BOURNE M C.Measurement of shear and compression components of puncturetests[J].Journal of Food Science,1966,31(6):282-291.
    [18]张红霞,马小愚,雷得天.大米籽粒压缩特性的试验研究[J].黑龙江八一农垦大学学报,2004,16(1):42-45.
    [19]ALVAREZ M,SAUNDERS D E,VINCENT J F,et al.An engineering method toevaluate the crisp texture of fruit and vegetables[J].Journal of Texture Studies,2000,31(5),457-473.
    [20]李小昱,汪小芳,王为,等.基于机械特性BP神经网络的苹果贮藏品质预测[J].农业工程学报,2007,23(5):150-153.
    [21]郝红涛,赵改名,柳艳霞,等.利用内聚性和咀嚼性对火腿肠等级的判别分析研究[J].食品工业科技,2010,31(8):95-98.
    [22]蒙名燕,李汴生,阮征,等.食品质构的仪器测量和感官测试之间的相关性[J].食品工业科技,2006,27(9):198-206.
    [23]PHAN V A,YVEN C,LAWRENCE G,et al.In vivo sodium release related to saltyperception during eating model cheeses of different textures[J].International DairyJournal,2008,18(9),956-963.
    [24]MOJET J,KOSTER E P.Sensory memory and food texture[J].Food Quality andPreference,2005,16(3),251-266.
    [25]BOOTH D A,EARL T,MOBINI S.Perceptual channels for the texture of afood[J].Appetite,2003,40(1),69-76.
    [26]姜松,孟庆君,赵杰文.腌渍菊芋的质地分析与感官评价研究[J].食品科学,2007,28(12):78-81.
    [27]王春叶.豆干感官品质研究[D].重庆:西南大学,2008.
    [28]FOEGEDING E A,BROWN J,DRAKE M A,et al.Sensory and mechanical aspectsof cheese texture[J].International Dairy Journal,2003,13(8),585-591.
    [29]郭文斌.马铃薯压缩-应力松弛特性与淀粉含量相关性的研究[D].呼和浩特:内蒙古农业大学,2009.
    [30]吴洪华.梨的流变特性及其质地评价研究[D].镇江:江苏大学,2005.
    [31]张红霞,马小愚,雷得天.谷物及种子的力学-流变学特性的研究进展[J].农机化研究,2004,26(3):177-178.
    [32]ANAND A.A fundamental approach using theories of elasticity to study texture-relatedmechanical properties of foods[D].Winnipeg:University of Manitoba,2001.
    [33]BHATTACHARYA S,NARASIMHA H V,BHATTACHARYA S.Rheology of corndough with gum arabic: Stress relaxation and two-cycle compression testing and theirrelationship with sensory attributes[J].Journal of Food Engineering,2006,74(1):89-95.
    [34]JULIAN F V.Application of fracture mechanics to the texture of food[J].EngineeringFailure Analysis,2004,11(5):695-704.
    [35]马小愚,雷得天,赵淑红,等.东北地区大豆与小麦籽粒的力学-流变学性质研究[J].农业工程学报,1999,15(3):70-75.
    [36]姜松,冯峰,赵杰文.胡萝卜流变特性测试的差异性研究[J].食品工业科技,2006,27(7):55-58.
    [37]屠康,赵艺泽,洪莹,等.利用质构仪对不同类型干酪质地品质的研究[J].中国乳品工业,2004,32(12):16-18.
    [38]孟陆丽,张谦益,吴洪华,等.TPA试验测试梨果肉质地研究[J].食品科技,2006,31(10):283-286.
    [39]夏建新,王海滨,徐群英.肌肉嫩度仪与质构仪对燕麦复合火腿肠测定的比较研究[J].食品科学,2010,31(3):145-149.
    [40]李博,雷激,徐坤,等.芽菜的质构分析与感官评价研究[J].食品科技,2010,35(8):307-311.
    [41]MICHELE M,CUIREN R,ALI T.Kinetic modeling of texture properties of bolognasausage during cooking[C]. ASAE/CSAE Annual International Meeting,Ottawa.Ontario,Canada,2004.
    [42]SUSANA R S,LUCA R,VINCENZO G,et al.Phenolic ripeness assessment of grapeskin by texture analysis[J].Journal of Food Composition and Analysis,2008,21(8):644-649.
    [43]王海鸥,姜松.质构分析(TPA)及测试条件对面包品质的影响[J].粮油食品科技,2004,12(3):1-4.
    [44]战旭梅,郑铁松,陶锦鸿.质构仪在大米品质评价中的应用研究[J].食品科学,2007,28(9):62-65.
    [45]姜松,岳淼,陈章耀.巧克力质地的感官评定和仪器测定之间的相关性研究[J].食品工业科技,2009,30(8):123-126.
    [46]MITSURU T,TAKANORI H,NAOKI S.Device for acoustic measurement of foodtexture using a piezoelectric sensor[J].Food Research International,2006,39(10),1099-1105.
    [47]GRAZINA J,LORETA B.Non-destructive texture analysis of cereal products[J].FoodResearch International,2004,37(6),603-610.
    [48]PAUL W,PAUL G,GLEN F,et al.Maize kernel hardness classification by nearinfrared (NIR) hyperspectral imaging and multivariate data analysis[J]. AnalyticaChimica Acta,2009,653(2):121-130.
    [49]BOURDIOL P,MIOCHE L.Correlations between functional and occlusal tooth-surfaceareas and food texture during natural chewing sequences in humans[J].Archives of OralBiology,2000,45(8):691-699.
    [50]PENG Y K,SUN X Z.Electronic sensing measurement of texture characteristics offood[C].ASAE Annual International Meeting/CIGR XVth World Congress,Chicago.IIIinois,USA,2002.
    [51]皮昕,李春芳.口腔解剖生理学[M].北京:人民卫生出版社,2007.
    [52]SPIRIDON O K,MATTHIAS K,FRANCO F,et al.Influence of design and mode ofloading on the fracture strength of all ceramic resin-bonded fixed partial dentures: An invitro study in a dual-axis chewing simulator[J].Journal of Prosthetic Dentistry,2000,83(5):540-547.
    [53]TANG G T,YIP H K,TERRY W C,et al.Artificial mouth model systems and theircontribution to caries research: a review[J].Journal of Dentistry,2003,31(3):161-171.
    [54]WANG L Q.An investigation of dental implant biomechanical behavior using a robotsimulation system[D].Kentucky:University of Kentucky,1996.
    [55]苌占波.咀嚼机器人建模与控制研究[D].大连:大连理工大学,2010.
    [56]CHRISTIAN M,SOEREN S,KLAUS L,et al.Wear of composite resin veneeringmaterials and enamel in a chewing simulator[J].Dental Materials,2007,23(11):1382-1389.
    [57]MARTIN S,MILTIADIS E M,KLAUS L,et al.In vitro evaluation of a mechanicaltesting chewing simulator[J].Dental Materials,2009,25(4):494-499.
    [58]陈强,魏素华,邹波,等.咀嚼模拟疲劳力学测试机的研制及标定[J].医学工程,2007,15(9):41-43.
    [59]林宝山,姜婷,孔宁华.冷热循环机械载荷咀嚼模拟疲劳试验机的研制及标定[J].北京口腔医学,2006,14(2):132-134.
    [60]肖悦.人工口腔模拟的口腔环境条件[J].国外医学口腔医学分册,2001,28(3):146-148.
    [61]范震.人工口腔装置的组成及应用[J].国外医学口腔医学分册,2003,30(5):381-383.
    [62]侯晓薇,杨更森,刘春梅,等.在模拟口腔条件下对蜂胶防龋作用的研究[J].中国生物医学工程学报,2003,22(2):188-190.
    [63]SISSONS C,CUTRESS T W,HOFFMAN M P,et al.A multistation dental plaquemicrocosm (artificial mouth) for the study of plaque growth, metabolism,pH,andmineralization[J].Journal of Dental Research,1991,70(2):1409-1416.
    [64]朱敏,刘正,李鸣宇,等.简易人工口腔的建立[J].中华口腔医学杂志,1996,31(2):110-112.
    [65]丛明,苌占波,杜宇,等.咀嚼机器人的研究现状与发展[J].机器人技术与应用,2009,8(6):21-24.
    [66]XU W L,BRONLUND J E,POGIETR J,et al.Review of the human masticatory systemand masticator robotics[J].Mechanism and Machine Theory,2008,43(11):1353-1375.
    [67]XU W L,FANG C F,BRONLUND J E,et al.Generation of rhythmic and voluntarypatterns of mastication using Matsuoka oscillator for a humanoid chewingrobot[J].Mechatronics,2009,19(2):205-217.
    [68]丛明,苌占波,杜宇,等.一种柔索驱动的冗余并联咀嚼机器人:中国,201010115381.X[P].2010-03-01
    [69]PAULINE P,GAELE A,JOELE G P,et al.Use of an artificial mouth to study breadaroma[J].Food Research International,2009,42(6):717-726.
    [70]SALLES C,TARREGA A,MIELLE P,et al.Development of a chewing simulator forfood breakdown and the analysis of in vitro flavor compound release in a mouthenvironment[J].Journal of Food Engineering,2007,82(2):189-198.
    [71]WODA A,DUTOUR A M,BATIER O,et al.Development and validation of amastication simulator[J].Journal of Biomechanics,2010,43(9):1667-1673.
    [72]韩科,王毓英,谭京,等.对咀嚼压力的模拟以及对食物粉碎力的测定[J].口腔医学,1993,4(13):169-170.
    [73]谢秋菲.牙体解剖与口腔生理学[M].北京:北京大学医学出版社,2009.
    [74]金涛,童水光.逆向工程技术[M].北京:机械工业出版社,2003.
    [75]于冬梅.基于逆向工程义齿冠桥设计方法的研究[D].天津:天津大学,2006.
    [76]吴大雷.应用逆向工程建立下颌牙列及方丝弓矫治器的三维有限元模型[D].大连:大连医科大学,2007.
    [77]隋桂芝.基于逆向工程的口腔修复CAD/CAM系统相关技术的研究[D].青岛:中国海洋大学,2006.
    [78]吴娜.面向仿生应用的金龟子外型测量及量化分析[D].长春:吉林大学,2006.
    [79]李勇,吴金强,谢元媛.基于ImageWare的逆向工程技术[J].机械工程与自动化,2008,24(2):78-80.
    [80]单岩,谢斌飞.Imageware逆向造型技术基础[M].北京:清华大学出版社,2006.
    [81]张波,盛和太.ANSYS有限元数值分析原理与工程应用[M].北京:清华大学出版社,2005.
    [82]傅永华.有限元分析基础[M].武汉:武汉大学出版社,2005.
    [83]黄晶晶,丁皓,沈力行,等.Ansys有限元分析在假脚设计中的应用[J].中国组织工程研究与临床康复,2008,12(39):7627-7630.
    [84]曾庆良,孙国顺,韩虎,等.基于ANSYS有限元分析的杆端关节轴承的结构优化设计[J].机械制造,2006,44(12):15-17.
    [85]高吭.东方蝼蛄特征、功能、力学及其仿生分析[D].长春:吉林大学,2009.
    [86]韦亮,汤文成.基于逆向工程的牙周膜建模及有限元计算方法[J].机械制造与研究,2008,37(3):17-20.
    [87]吴艳玲,鲁成林,张东升,等.下颌第一磨牙全瓷冠三维有限元建模及力学分析[J].口腔颌面修复学杂志,2009,10(2):98-100.
    [88]赵东升.PVDF压电传感器的设计及其试验研究[D].镇江:江苏大学,2005.
    [89]王彬,肖昭然.压敏导电橡胶的压敏性测试[J].科学技术与工程,2008,8(13):3689-3691.
    [90]DARGAHI J,SEDAGHATI R,SINGH H,et al.Modeling and testing of an endoscopicpiezoelectric-based tactile sensor[J].Mechatronics,2007,17(8):462-467.
    [91]王海涛,罗秋凤,周必方,等.人体牙齿咀嚼状况的实时测量方法[J].传感器技术,2001,20(10):41-44.
    [92]刘雅言,于家艳,董向明.压电薄膜型心音传感器[J].传感器技术,1998,17(2):36-37.
    [93]李鸿波.PVDF咀嚼力测试仪的研制及松动牙咀嚼生理功能的研究[D].西安:第四军医大学,2002.
    [94]孙钟雷,孙永海,李宇,等.仿生食品质构仪设计与试验[J].农业机械学报,2012,43(1):230-234.
    [95]王国力,赵子婴,白金星.PVDF压电薄膜脉搏传感器的研制[J].传感技术学报,2004,12(4):688-692.
    [96]张钰.Spee曲线改变对颞下颌关节应力分布影响的三维有限元分析[D].长春:吉林大学,2009.
    [97]向喜林,陈仪,戴其昌,等.颞下颌关节结构形态的测量分析[J].上海口腔医学,2001,10(2):142-144.
    [98]俞琼,瞿元赏.SolidWorks基础与实例教程[M].北京:清华大学出版社,2011.
    [99]刘昌祺,牧野洋,曹西京.凸轮机构设计[M].北京:机械工业出版社,2005.
    [100]成大先.机械设计手册[M].北京:化学工业出版社,2010.
    [101]陶丹英,冯希平,束陈斌.咀嚼绿茶多酚胶姆糖对唾液流率及pH值的影响[J].上海口腔医学,2006,15(4):360-362.
    [102]任小红.唾液的分泌及影响因素[J].中国实用医药,2009,4(20):252-254.
    [103]葛林.生理性唾液研究及对人工唾液的评价[J].临床口腔医学杂志,2008,24(3):181-183.
    [104]孙钟雷.基于遗传组合网络的猪肉新鲜度人工嗅觉系统研究[D].长春:吉林大学,2006.
    [105]孙钟雷,孙永海,万鹏,等.仿生咀嚼装置设计与试验[J].农业机械学报,2011,42(8):214-218.
    [106]王嘉德,梁傥.口腔医学实验教程[M].北京:人民卫生出版社,2000.
    [107]TAKAHASHI T,HAYAKAWA F,KUMAGAI M,et al.Relations among mechanicalproperties, human bite parameters, and ease of chewing of solid foods with varioustextures[J].Journal of Food Engineering,2009,95(3):400-409.
    [108]孙彩玲,田纪春,张永祥.TPA质构分析模式在食品研究中的应用[J].实验科学与技术,2007,5(2):1-4.
    [109]边肇祺,张学工.模式识别[M].北京:清华大学出版社,2000.
    [110]樊明文.口腔生物学[M].北京:人民卫生出版社,2004.
    [111]张力.SPSS13.0在生物统计中的应用[M].厦门:厦门大学出版社,2006.
    [112]袁志发,周静芋.多元统计分析[M].北京:科学出版社,2002.
    [113]董庆利,罗欣.熏煮香肠质构的感官评定与机械测定之间的相关分析研究[J].食品科学,2004,25(9):49-55.
    [114]武晓娟,薛文通,王小东,等.豆沙质地特性的感官评定与仪器分析[J].食品科学,2011,32(9):87-90.
    [115]谢宇.回归分析[M].北京:社会科学文献出版社,2010.
    [116]丁士圻,郭丽华.人工神经网络基础[M].哈尔滨:哈尔滨工程大学出版社,2008.
    [117]金建刚,陈亚军,孙士宝.学习向量量化神经网络在模式分类中的应用[J].乐山师范学院学报,2004,19(5):98-100.
    [118]王伟.人工神经网络原理-入门与应用[M].北京:北京航空航天大学出版社,1995.
    [119]马莉.牙齿齿面模拟及磨损分析[D].南京:南京理工大学,2003.
    [120]XU W L, BRONLUND J E. Mastication robots-biological inspiration toimplementation[J].Studies in Computational Intelligence,2010,290(2):58-59.
    [121]孙钟雷,孙永海,李宇,等.基于仿齿压头的物料脆裂力学模型的建立和验证[J].吉林大学学报(工学版),2012,42(2):510-514.
    [122]徐可卿,王毓英,韩科,等.正常颌牙尖高度的测量研究[J].实用口腔医学杂志,1992,3(8):167-169.
    [123]吴德光,蒋小明.农产品压缩试验研究及其应用(Ⅰ)-压缩试验方法[J].云南农业大学学报,1990,5(3):171-176.
    [124]孟庆君.菊芋及其腌渍品的流变特性和质地评价研究[D].镇江:江苏大学,2007.