基于SOI的级联双环谐振腔光波导传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息技术与生物工程技术的发展,生物传感器自20世纪70年代问世以来得到了迅猛发展。生物传感器不仅广泛用于传统医学领域,推动医学发展,而且还在生命科学、食品工业、环境监测等领域广泛应用。如今,人们对生活质量(如医疗卫生、环境质量、食品安全等)的要求越来越高,这推动了新探测技术的发展。结合化学表面处理技术的平面光波导倏逝波传感器就是一种新兴的技术,具有满足未来需求的潜力。本文在平面光波导平台上提出并研究了创新型的结构及新型探测技术,主要分以下几个方面:
     (1)提出了并分析了基于级联双环谐振腔的传感器结构,包括一个参考环形谐振腔和一个传感环形谐振腔。第一种探测方式为基于波长探测,与传统单个环形谐振腔传感器相比,透射谱移动因为游标效应而放大,增加了灵敏度,与此同时对可调谐激光器光源的分辨率或光谱仪的分辨率要求大大降低。更进一步的,可以将透射谱的移动转换为透射谱中心双峰强度比的变化,获得更低的探测极限。将透射谱移动探测与透射谱中心双峰强度探测相结合,可以同时实现大探测范围和低探测极限。因为引入了参考环形谐振腔,温度的影响可以自动抵消,所以此传感器具有温度不敏感的优点。另外,级联双环谐振腔的传感器适合进行波分复用,满足多通道多参量探测的需求。
     (2)提出并研究了基于强度探测的第二种探测方式。此种方式以低成本宽带光源作为输入光源,对光源波长及功率稳定度容差大,并且无需探测任何波长信息,仅需一个光功率计探测输出功率,与此同时仍保持很低的探测极限。此探测方式结构简单,方便易行,适合将光源和探测器集成在同一芯片上,进一步降低了成本,具有很好的实用化前景。
     (3)在SOI平台上对级联双环传感器的制作工艺进行了研究。针对不同的传感探测方式制作了不同的级联双环谐振腔传感器芯片,在实验上实现了基于波长探测和基于能量探测的传感方式,验证了级联双环形谐振腔传感器的可行性。
     (4)对影响级联双环谐振腔传感器基于波长或基于强度的多种探测方式工作性能的参数进行了细致的分析,全面比较了各种不同探测方式的适用原则,及各自优缺点,为级联双环传感器探测方式选择与设计给出了指导性建议。
With the development of information technology and bio-engineering techniques, the biosensor has been developing rapidly since its inception in the1970s. The biosensors are not only widely used for medical applications, but also in the field of life science, food industry, environmental monitoring and so on. Nowadays, the demand for high quality life (such as health care, environmental quality, food safety, etc.) is increasing all the time, which has driven the development of new sensing technologies. Planar waveguide evanescent field sensors combined with state-of-the-art surface modification chemistries is one such emerging technology; which has the potential to meet future demand. This thesis is mainly devoted to the study of innovative structure and new detection schemes based on planar waveguides.
     We proposed and analyzed an optical waveguide sensor based on two cascaded ring resonators including a reference ring resonator and a sensing ring resonator. The first detection scheme is wavelength interrogation. The sensitivity is increased compared with a single ring resonator sensor because the transmission spectrum shift is amplified by emplying the vernier effect. At the same time the requirement for high resolution tunable laser or optical spectrummeter is decreased. Furthermore, the wavelength shift can be converted into a relative intensity variation between two cetral adjacent resonant peaks to achieve a lower detection limit. By combining the central peak wavelength interrogation with the intensity ratio detection of two central peaks, the sensor can have a large measurement range and also a very low detection limit. Since the temperature effect is automatically compensated by the reference ring, the sensor is temperature insensitive. Besides, the sensor can be operated in array format using wavelength division multiplexing as the addressing scheme.
     We also studied a second detection scheme based on intensity interrogation using a low cost broadband light source. The refractive index change of an analyte can be derived from simple relative intensity measurement using a powermeter without requiring any spectral measurement. It has a large tolerance to the wavelength and power stability of the light source while the detection limit is still very low. This detection scheme is simple and easy, suitable for integration of the light sourse and photodetector in one chip with a low cost. It therefore has great potential for many practical applications.
     The fabrication process of the sensor in silicon-on-insulator platform is studied and different designs of the cascaded micro-ring resonator sensors are fabricated for different detection schemes. Experimental results are demonstrated for both wavelength interrogation and intensity interrogation, confirming the superior performances of the cascaded-double-ring sensor.
     The design parameters influencing the performance of the cascaded-double-ring sensor under both wavelength interrogation and intensity interrogation have been analyzed in detail. The detection limits and the optimum operation conditions of the sensors for the different interrogation schemes are analyzed and compared, providing very useful guidelines for the device design as well as for choosing the appropriate detection schemes based on application requirements.
引文
[1]R. Narayanaswamy, O.S. Wolfbeis, Optical Sensors,Springer, New York,2004
    [2]Frost&Sullivan. Analytical Review of World Biosensors Market. http://www.the-infoshop.com/press/fs121525.shtml.2010.
    [3]W.E. Moerner, "New directions in single-molecule imaging and analysis," Proc. Natl. Acad. Sci.,2007,104(31):12596-12602.
    [4]W.G. Cox, V.L. Singer, "Fluorescent DNA hybridization probe preparation using amine modification and reactive dye coupling Biotechniques," 2004,36 (1):114-122.
    [5]X. Fan,1. M. White, S.1. Shopova, H. Zhu, J. D. Suter, Y. Sun, "Sensitive optical biosensors for unlabeled targets:A review," Anal. Chim. Acta.,2008,620 (1-2):8-26.
    [6]J Homola, "Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species," Chem. Rev.,2008.108 (2):462-493
    [7]Kretschmann E. and Raether H., "Radiative decay of nonradiative surface plasmons excited by light," Z Natureforsch,1968,23A:2135-2136.
    [8]Koji Matsubara, Satoshi Kawata, and Shigeo Minami, "Optical chemical sensor based on surface plasmon measurement," Appl. Opt.,1998,27(6):1160-1163.
    [9]B. Liedberga, I. Lundstroma and E. Stenbergb, "Principles of biosensing with an extended coupling matrix and surface plasmon resonance," Sensors and Actuators B:Chemical,1993, 11 (1-3):63-72.
    [10]Ritchie. Rh, etc. "Surface-plasmon resonance effect in grating diffraction," Phys. Rev. Lett, 1968,21 (22):1530-1533.
    [11]Fang Yu, Shengjun Tian, Danfeng Yao, and Wolfgang Knoll, "Surface Plasmon Enhanced Diffraction for Label-Free Biosensing," Anal. Chem.,2004,76 (13):3530-3535.
    [12]R.C. Jorgenson, S.S. Yee, "A fiber-optic chemical sensor based on surface plasmon resonance, Sensors and Actuators B," 1993,12 (3):213-220.
    [13]B. Liedberg. C. Nylander, I. Lundstro, "Surface plasmonsresonance for gas detection and biosensing," Sensors and Actuators,1983,4:299-304.
    [14]K. Matsubara, S. Kawata, S. Minami, "Optical chemical sensor based on surface plasmon measurement," Appl. Opt.,1988,27 (6):1160-1163.
    [15]C. R. Giles, "Lightwave applications of fiber Bragg gratings." JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL.,1997,15 (8):1391-1404.
    [16]W. Liang, Y. Huang, Y. Xu, R.K. Lee, A. Yariv, "Highly sensitive fiber Bragg grating refractive index sensors," Appl. Phys. Lett.,2005,86 (15):151122-151122-3.
    [17]X. Fang,C. R. Liao, and D. N. Wang, "Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing," Opt. Lett.,2010,35 (7):1007-1009.
    [18]N. Chen, B. Yun, Y. Cui, "Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing," Appl. Phys. Lett.,2006,88 (13):133902-133902-3.
    [19]L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature,2003, 426(12):816-819
    [20]X. Guo and L. M. Tong, "Supported microfiber loops for optical sensing," Opt. Express, 2008,16(19):14429-14434.
    [21]H. Tazawa, T. Kanie, M. Katayama, "Fiber-optic coupler based refractive index sensor and its application to biosensing," Appl. Phys. Lett.,2007,91 (11):113901-113901-3.
    [22]C. R. Liao, D.N.Wang, Xiaoying He, and M. W. Yang, "Twisted optical micro fibers for refractive index sensing," IEEE Photon. Technol. Lett.,2011,23 (13):848-850.
    [23]初凤红,韩秀友,庞拂飞,蔡海文,瞿荣辉,方祖捷,集成光波导传感器的研究进展.激光与光电子学进展,2006,43(3):21-27.
    [24]F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology,2003,14 (8):907-912.
    [25]R. G. Heideman, P. V. Lambeck, "Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system," Sensors and Actuators B:Chemical,1999,61 (1-3): 100-127.
    [26]B. J. Luff, J. S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingen-hoff, and N. Fabricius, "Integrated optical Mach-Zehnder biosensor," Journal of Lightwave Technology,1998,16 (4):583-592.
    [27]B. Y. Shew, C. H. Kuo, Y. C. Huang, and Y. H. Tsai, "UV-LIGA interferometer biosensor based on the SU-8 optical waveguide," Sensors and Actuators A,2005,120 (2):383-389.
    [28]A. Ymeti, J.S. Kanger, J. Greve, P.V. Lambeck, R. Wijn, R.G.Heideman, "Realization of a multichannel integrated Young interferometer chemical sensor," Appl. Opt.,2003,42 (28): 5649-5660.
    [29]A. Densmore, M. Vachon, D.-X. Xu, S. Janz, R. Ma, Y.-H. Li,G. Lopinski, A. Delage, J. Lapointe, C. C. Luebbert, Q. Y. Liu,P. Cheben and J. H. Schmid, "Silicon photonic wire biosensor array formultiplexed real-time and label-free molecular detection," Opt. Lett.. 2009,34 (23),3598-3600.
    [30]Xudong Fan, Ian M. White, Siyka I. Shopova, Hongying Zhu, Jonathan D. Suter, and Yuze Sun, "Sensitive optical biosensors for unlabeled targets:A review," Analytica Chimica Acta, 2008,620(1-2):8-26.
    [31]Katrien De Vos. Irene Bartolozzi, Etienne Schacht, Peter Bienstman, Roel Baets, "Silicon-on-Insulator microring resonator for sensitive and label-free biosensing," Optics Express,2007,15 (2007):7610-7615.
    [32]S.-Y. Cho, and N. M. Jokerst, "A polymer microdisk photonic sensor integrated onto silicon," IEEE Photon. Technol. Lett.,2006,18(20):2096-2098.
    [33]Q. F. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material," Opt. Lett., 2004,29(14):1626-1628.
    [34]A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science,2007,317(5839):783-787.
    [35]A. Ksendzov and Y. Lin, "Integrated optics ring-resonator sensors for protein detection,' Optics Letters,2005,30 (24):3344-3346.
    [36]M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko., "Ultimate Q of optical microsphere resonators," Opt. Lett.,1996,21 (7):453-455.
    [37]K. Vahala, Optical Microcavities, World Scientific, Singapore,2005.
    [38]D.-X. Xu, M. Vachon, A. Densmore. R. Ma, A. Delage, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, "Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach," Opt. Lett., 2010,35 (16):2771-2773.
    [39]I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, "Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides," Appl. Phys. Lett.,2006,89(19):191106-191106-3.
    [40]J. P. Landers, Handbook of Capillary Electrophoresis, CRC Press,1996.
    [41]M. Y. Balakirev, S. Porte, M. Vernaz-Gris, M. Berger, J.-P. Arie, B. Fouque, and F. Chatelain, "Photochemical Patterning of Biological Molecules Inside a Glass Capillary," Anal. Chem..2005,77 (17):5474-5479.
    [42]S. Pal, E. Guillermain, R. Sriram, B. Miller and P. M. Fauchet, "Frontiers in Pathogen Detection:From Nanosensors to Systems," SPIE, San Francisco, CA, USA,2010.
    [43]M. Lee and P. M. Fauchet, "Two-dimensional silicon photonic crystal based biosensing platform for protein detection," Opt. Express,2007,15 (8):4530-4535.
    [44]S. C. Buswell, V. A. Wright. J. M. Buriak, V. Van and S. Evoy. "Specific detection of proteins using photonic crystal waveguides," Opt.Express,2008.16 (20):15949-15957.
    [45]S. Mandal and D. Erickson, "Nanoscale optofluidic sensor arrays," Opt. Express,2008,16 (3):1623-1631.
    [46]S.Mandal, J.M. Goddard and D. Erickson, "A multiplexed optofluidic biomolecular sensor for low mass detection", Lab Chip,2009,9 (20):2924-2932.
    [47]B.J. Luff J.S. Wilkinson. J. Piehler, U. Hollenback, J. Ingenhoff and N. Fabricius. "Integrated optical Mach-Zehnder biosensor," J. Lightwave Technol.,1998,16 (4): 583-591.
    [48]F. Prieto, B. Sepulveda, A. Calle, A Llobera, C. Dominguez, A. Abad, A. Montoya and L.M. Lechuga, "An integrated optical interferometric nanodevice based on silicon technology for biosensor applications," Nanotechnology,2003,14 (8):907-912.
    [49]C. Chao and L.J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Applied Phys. Lett.,2003.83 (8):1527-1529.
    [50]Densmore Adam, Xu D.X., Waldron Philip, Janz Siegfried, Cheben Pavel, "Silicon Microphotonic Waveguides for Biological Sensing." International Symposium on Biophotonics, Nanophotonics and Metamaterials:Hangzhou, PR China, Oct 16-18.2006: 15-18.
    [51]D. X. Xu, A. Densmore, A. Delage, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, "Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding," Opt. Express,2008,16 (19):15137-15148.
    [52]K. Okamoto. Fundamentals of optical waveguides. New York. Academic Press,30-38.
    [53]陈军.《光学电磁理论》,科学出版社,2005:138-170.
    [54]马春生,刘式墉,《光波导模式理论》.吉林大学出版社.2007:172-203.
    [55]曹庄琪,《导波光学的转移矩阵方法》,上海交通大学出版社,2000:30-66.
    [56]K.S. Chiang, "Analysis of the effective-index method for the vector modes of rectangular-core dielectric waveguides," IEEE Transactions on Microwave Theory and Techniques,1996,44 (5):692-700.
    [57]van de Velde K., Thienpont H., van Geen R., "Extending the effective index method for arbitrarily shaped inhomogeneous optical waveguides," J. Lightwave Technol.,1988,6 (6): 1153-1159.
    [58]J. J. G. M. Vander Tol and N.H.G. Baken, "Correction to effective index method for rectangular dielectric waveguides," Electron.Lett.,1988,24 (4):207-208
    [59]M. Munowitz and D. J. Vezzetti., "Numerical procedures for constructing equivalent slab waveguides. An alternative approach to effective-index theory," J. Lightwave Technol.,1991, 9(9):1068-1073.
    [60]M.S.Stern, "Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles," IEE Proceedings Pt. J.,1988,135 (1):56-63.
    [61]B. M. A. Rahman and J. B. Davies, "Finite-element solution of integrated optical waveguides," IEEE J. Lightwave Technol.,1984,2 (5):682-687.
    [62]Stern M S. "Semivectorial polarized finite difference method for optical waveguides with arbitrary index profile," Proc. Inst. Elect. Eng. J.,1988,135 (1):56-63
    [63]Yamauchi J, Uchiyama O, Shibayama J, and Nakano H., "Modified finite-difference formulas for the analysis of semivectorial modes in step-index optical waveguides,"'IEEE. Photon. Tech. Lett.,1997,9 (7):961-963.
    [64]P. Liisse, P. Stuwe, J. Schiile, H.-G. Unger, "Analysis of Vectorial Mode Fields in Optical Waveguides by a New Finite Difference Method," JOURNAL OF LIGHTWAVE TECHNOLOGY.1994,12 (3):487-494.
    [65][1]陈方荣刘书哲何赛灵,基于插值的全矢量有限差分法求解阶跃光波导本征模式,光子学报,2003,32(7):777-781.
    [66]R. Scarmozzino, A.Gopinath,R.pregla and S.Helfert, "Numerical techniques for modeling guided-wave photonic devices," IEEE J. Sel. Top. Quantum Electron.,1996,6 (1):150-162.
    [67]朗婷婷,博士学位论文,杭州浙江大学,2009.
    [68]G. R. Hadley, "Wide-angle beam propagation using Pade approximant operators," Opt. Lett., 1992,17 (20):1426-1428.
    [69]林青春,肖悦娱,何赛灵,基于广角FD-BPM的PML边界处理方法.光子学报,2002,31(3):349-353.
    [70]G. R. Hadley, "Transparent boudary condition for beam propagation method," Opt. Lett. 1991,16(9):624-626.
    [71]W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, "The Perfectly Matched Layer (PML) Boundary Condition for the Beam Propagation Method," IEEE Photon. Tech. Lett.,1996,8 (5):649-651
    [72]M. A. Webster. R. M. Pafchek, A. Mitchell, and T. L. Koch, "Width Dependence of Inherent TM-Mode Lateral Leakage Loss in Silicon-On-Insulator Ridge Waveguide," IEEE Photonics Technol. Lett,2007,19 (6):429-431.
    [73]K. Ogusu, "Optical strip waveguide:a detailed analysis including leakymodes,"J. Opt. Soc. Amer.,1983,73 (3):353-357.
    [74]V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion.'" Optics Letters,2003,28 (15):1302-1304.
    [75]F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, "Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides," J.Lightwave Technol.,2007.25 (1):151-156.
    [76]Michael Wood, Peng Sun, and Ronald M. Reano, "Compact cantilever couplers for low-loss fiber coupling to silicon photonic integrated circuits" Opt. Express.,2012,20 (1):164-172.
    [77]P. Cheben. J. H. Schmid, A. Delage, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, "A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides," Opt. Express,2007. 15 (5):2299-2306.
    [78]J. Mohr. B. Anderer, and W. Ehrfeld, "Fabrication of a planar grating spectrograph by deep-etch lithography with synchrotron radiation," Sens. Actuators A.,1991.27 (1-3): 571-575.
    [79]Lei Jin, Mingyu Li and J.-J. He, "Highly-sensitive optical sensor using two cascaded-microring resonators with Vernier effect," Asia Communications and Photonics Conference (ACP2009), Paper TuM4. Shanghai, November 2-6,2009.
    [80]Lei Jin, Mingyu Li and J.-J. He, "Experimental Investigation of Waveguide Sensor Based on Cascaded-Microring Resonators with Vernier Effect," Conference on Lasers and Electro-Optics (CLEO2010). Paper JWA84, San Jose, CA, May 16-21,2010.
    [81]Lei Jin. Mingyu Li and J.-J. He, "Highly-sensitive silicon-on-insulator sensor based on two cascaded micro-ring resonators with vernier effect." Optics Communications,2011.284 (1): 156-159.
    [82]Lei Jin, Mingyu Li and J.-J. He, "Optical waveguide double-ring sensor using intensity interrogation with low-cost broadband source", OPTICS LETTERS,2011,36 (7): 1128-1130.
    [83]L. Jin, M. Li and J.-J. He, "Analysis of Wavelength and Intensity Interrogation Methods in Cascaded Double-Ring Sensors", Journal of Lightwave Technology,2012.30 (12): 1994-2002.
    [84]C.K.Madsen and J.H. Zhao, Optical Filter Design and Analysis, Wiley,1999.
    [85]Scheilb and Frigyes, "Vernier operation of series-coupled optical microring resonator filters," Microwave and Optical Technology Letters,2003,39 (4):257-261.
    [86]L. A. Coldren, "Monolithic Tunable Diode Lasers," IEEE J. Sel. Top. Quantum Electron., 2000,6 (6):988-999.
    [87]J.-J. He and D. Liu, "Wavelength switchable semiconductor laser using half-wave V-coupled cavities," Optics Express,2008,16 (6):3896-3911.
    [88]Tom Claes, Wim Bogaerts, and Peter Bienstman, "Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit," Opt. Express, 2010,18 (22):22747-22761.
    [89]Shijun Xiao, Maroof H. Khan, Hao Shen, and Minghao Qi, "Multiple-channel silicon micro-resonator based filters for WDM applications," Opt. Express,2007,15 (12):7489-7498.
    [90]S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, "An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid," IEEE Photon. Technol. Lett.,1999,11 (6):691-693.
    [91]王磊,博士学位论文,杭州浙江大学,2010.
    [92]P. Rai-Choudhury, Handbook of microlithography, micromachining and microfabricatin, SPIE Optcial engineering Press,2000.
    [93]W.Bogaerts, R.Baets, P.Dumon, V.Wiaux, S.Beckx, D.Taillaert, B.Luyssaert, J.Van Campenhout, EBienstman, D.Van Thourhout, "Nanophotonic Waveguides in Silicon-on-Insulator Fabricated with CMOS Technology," Journal of Lightwave Technology, 2005,23(1):401-412.
    [94]M. A. Webster, R. M. Pafchek, G. Sukumaran, and T. L. Koch, "Low-loss quasi-planar ridge waveguides formed on thin silicon-on-in-sulator," Appl. Phys. Lett.,2005,87 (23): 231108-231108-3.
    [95]W, Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert,J. Van Campenhout, P. Bienstman, D. Van Thourhout, "Nanophotonic Waveguides in Silicon-on-Insulator Fabricated with CMOS Technology," J. Lightwave Technol.,2005,23 (1):401-412.
    [96]J. H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post, and D.-X. Xu, "Gradient-index antireflective subwavelength structures for planar waveguide facets," Opt. Lett.,2007,32 (13):1794-1796.
    [97]CRC Handbook of Chemistry and Physics, edited by David R. Lide, (90th Edition CD-ROM Version 2010).
    [98]D. Dai, "Highly sensitive digital optical sensor based on cascaded high-q ring-resonators,' Opt. Express,2009,17 (26):23817-23822.
    [99]Jing Hu, Daoxin Dai, "Cascaded-Ring Optical Sensor With Enhanced Sensitivity by Using Suspended Si-Nano wires," IEEE Photonics Technology Letters,2011,23 (13):842-844.
    [100]Tom Claes, Wim Bogaerts, and Peter Bienstman, "Vernier-cascade label-free biosensor with integrated arrayed waveguide grating for wavelength interrogation with low-cost broadband source," Opt. Lett.,2011,36 (17):3320-3322.