车载认知无线电中的信号检测与参数估计技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了使未来的无线通信系统能满足更多的商业和公共服务的需求,扩大系统容量已经成为当今无线通信领域最重要的研究课题。认知无线电技术是通过机会主义的频谱资源共享来提高整个系统的容量,所以近年来该技术作为最有竞争力的备选方案已经被广泛研究。认知无线电应用中第一步也是最重要的技术是在感兴趣的频段内检测频谱的使用情况,即判断原始用户是否存在。为保障原始用户不受到干扰并且为认知无线电用户争取到更多的可用时间,原始用户的检测工作必须在低信噪比和短时间内完成。所以,认知无线电中信号检测问题的最大挑战是寻找在低信噪比和小样本数情况下性能优良的检测算法和检测策略。本论文提出用多部车辆做为检测设备的载体,对原始用户进行快速检测。根据不同的检测要求和环境情况,研究了不同的检测策略和检测技术,包括时频技术、合作协作、空域技术等。主要工作和贡献如下:
     1.以已开放频段的原始用户信号——ATSC数字电视信号为例,提出了不同的时频信号检测算法。在完成ATSC数字电视信号建模的基础上,通过分析其频谱特性,提出了导频信号检测算法。根据ATSC数字电视信号的特殊编码结构,提出了数据域同步信号检测算法和数据段同步信号检测算法。通过分析ATSC数字电视信号的统计特性,提出了周期平稳信号检测算法。通过仿真实验,给出了这几种检测算法的性能分析,为工程实现提供了可靠的理论依据。
     2.对车载合作感知系统进行讨论并完成系统仿真。在该系统中,多部车载设备通过中心协调式合作策略对ATSC数字电视信号进行合作检测。整个仿真系统可以分为信号产生,信号检测以及数据融合三个部分。信号产生部分主要生成需要检测的原始用户信号,即将通过车载信道后的ATSC数字电视信号为接收数据。车载信道包括不同环境下的衰落、阴影效应和多径等。信号检测部分可以采用简单的盲检测算法也可以采用特征检测算法。数据融合部分主要使用了软判决和硬判决的数据融合策略。在仿真实验中,采用经典的环境参数并且对检测算法和数据融合算法进行不同的组合。仿真实验结果为不同情况下的策略选择提供了理论依据。
     3.通过多信号特征分析,提出了基于样本特征值的检测算法。在该算法中,首先将多部车辆接收到的样本组成数据矩阵,然后通过特征分解得到样本特征值并且利用样本特征值构造出检测统计量,最后通过和检测门限做比较获得判决结果。提出了两种适用于样本数较少情况下的检测统计量,并且根据样本特征值的波动特性给出相应的检测门限。通过仿真实验可以证明这两种算法能够有效地在短时间内完成对原始用户的检测。
     4.讨论了原始用户个数估计算法。分析了传统个数估计算法在样本数较少时性能下降的原因,给出了利用特征值完成信号检测时所需的极限能量。提出了利用样本特征值构造检测统计量的两种方法,并结合序列假设检验方法给出了原始用户个数估计算法。通过理论分析和仿真实验,证明了这两种估计算法在样本数较少的环境下,比传统信号源个数估计算法和许多近年来提出的改进算法具有更优的估计性能。
     5.讨论了原始用户的来波方向估计算法。首先,分析了短数据和低信噪比情况下,基于子空间的测向算法性能衰减的原因,然后,提出了一种计算简单的参数化IAA-APES算法。该算法一定程度上克服了由于子空间泄露所造成的测向性能下降。仿真实验结果表明所提算法在较少样本下测向精度优于MUSIC算法且具有很高的分辨率。另外,针对分布式接收机本振信号的同步问题,采用了一种利用指示信号双向传输的方式,使得各接收机在各自的时钟下产生同步的本振信号。
In order to enable future wireless communication systems for more commercial useor public services, the development of system capacity has been an important researcharea in wireless communications. In recent years, the cognitive radio technology hasbeen widely researched as the most competitive candidate since it utilizes theopportunistic spectrum sharing to increase system capacity. The first and foremost stepin cognitive radios is to detect the usage of spectra of interest, i.e., to decide whetherthere are primary users. In order to avoid interferences to primary users and to savemore available time for cognitive radio users, the primary signal detection should beconducted under the cases of low signal to noise radio (SNR) and/or small observationperiod. Therefore,the challenge of detection problem in cognitive radios is to design thenew algorithm and strategy which should keep good performances under the scenariosof low SNR and small samples. In this dissertation, multiple vehicles are used ascarriers of detection devices to detect primary users in a short time. To meet differentdetection requirements and various detection environments, some detection techniquesand strategies are explored, including time-frequency domain detection techniques,cooperative strategies and spatial processing technologies. The main work andcontributions are presented as follows.
     1.Taking the ATSC digital TV signal as an example which is the primary signal inan open frequency band for cognitive radio users, various time-frequency domaindetection algorithms are proposed. Based on the modeling of the ATSC digital TVsignal, the pilot tone detection algorithm is proposed by analyzing the characteristic ofspectrum. The data field synchronization signal detection algorithm and the datasegment synchronization signal detection algorithm are designed by utilizing thespecific coding scheme of the ATSC digital TV signal. The cyclostationary detectionalgorithm is explored based on statistical properties of the ATSC digital TV signal. Theperformances of these algorithms are analyzed by numerical simulations which providethe reliable theoretical basis for the engineering realization.
     2. The vehicular spectrum sensing system is discussed and modeled in which multiple vehicular sensors cooperatively detect the ATSC digital TV signal. This systemconsists of signal generation,signal detection and data fusion. The part of signalgeneration is to produce received ATSC digital signals which are transmitted viacomplicated vehicular channels. Path loss, shadowing and multipath in variousenvironments are considered. Simple blind detection algorithms and specific detectionalgorithms could be chosen in the part of signal detection. The options of data fusion aresoft decision and hard decision. The classical channel coefficients and signal parametersare used, and different combinations of detection algorithms and data fusion techniquesare adopted in numerical simulations. The best detection strategies in different scenarioscould be chosen on the basis of simulation results.
     3.The eigenvalue-based detection algorithms are proposed with the multi-signalcharacteristic analysis. In new detection algorithms, the data matrix consists ofobservation samples received by multiple vehicles. Then, sample eigenvalues obtainedby the eigen decomposition are used to construct new detection statistics. Comparingwith the detection threshold, the result could be decided lastly. Two new detectionstatistics are proposed which have good performances in the cases of low SNR andsmall samples. Taking into full account of the fluctuation of sample eigenvalues, thecorresponding detection thresholds are derived. Numerical simulations illustrate that thenew algorithms could figure out primary users in a short period.
     4.The estimation of the number of primary users is explored. The reason whyperformances of traditional estimation algorithms break down when observationsamples are in starvation is analyzed. The required energy of a signal detected fromnoise is derived under the limiting condition. Two new detection statistics are proposedby utilizing sample eignvalues. Combining the sequential hypothesis testing method,these two new statistics are used to estimate the number of primary users. According totheoretical analyses and simulation results, new estimation algorithms perform betterthan traditional algorithms and the improved algorithms proposed in recent years in thecase of small samples.
     5. The direction of arrival (DOA) estimation algorithm is discussed. The reasonwhy performances of the subspace-based DOA estimation algorithms deteriorate in thecases of low SNR and small samples is analyzed. Then, a parametric iterative adaptivealgorithm based on amplitude and phase estimation (PIAA-APES) with low computational complexity is proposed. The subspace swap phenomenon which is themain reason of the performance breakdown of the subspace-based algorithms is avoidedin the proposed algorithm. The simulation results illustrate that the accuracy andresolution of the orientation detection of the new algorithm are better than those ofMUSIC algorithm. Moreover, this dissertation proposes a new synchronization strategyby utilizing the two-way beacon signal in the distributed array system to generatesynchronous local oscillator signals under their local clocks.
引文
[1] N. S. Shankar, C. Cordeiro and K. Challapali. Spectrum Agile Radios: Utilization and SensingArchitectures[C]. First IEEE International Symposium on New Frontiers in Dynamic SpectrumAccess Networks,2005:160-169
    [2] NTIA. United States Frequency Allocation Chart[R]. Washington, D.C.: NationalTelecommunications and Information Administration,2011
    [3] FCC. First Report and Order, FCC Docket No.02-48[R], Washington, D.C.: FCC,2002
    [4] D. B. Cabric. Cognitive Radios: System Design Perspective[D]. Berkeley, California: Universityof California at Berkeley,2007
    [5] M. A. McHenry. NSF Spectrum Occupancy Measurements Project Summary[R]. Washington,D.C.: shared spectrum co.,2005
    [6] J. MitolaIII. Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio[D].Sweden: Royal Institute of Technology,2000
    [7] FCC. Facilitating Opportunities for Flexible, Efficient, and Reliable Spectrum Use EmployingCognitive Radio Technologies, Notice of Proposed Rule Making (NPRM), FCC Docket No.03-322[R]. Washington, D.C.: FCC, Dec.2003
    [8] FCC. Second Report and Order and Memorandum Opinion and Order, FCC Docket No.08-260[R]. Washington, D.C.: FCC,2008
    [9] IEEE Computer Society. IEEE Std802.22-2011. IEEE Standard for InformationTechnology--Telecommunications and Information Exchange Between Systems WirelessRegional Area Networks (WRAN)--Specific Requirements Part22: Cognitive Wireless RANMedium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies andProcedures for Operation in the TV Bands[S]. New York: IEEE Computer Society,2011
    [10] C. Cordeiro, K. Challapali, D. Birru, et al. IEEE802.22: An Introduction to the First WirelessStandard based on Cognitive Radios. Journal of Communications[J],2006,1(1):38-47
    [11] X. Wang and H. Pin-Han. A Novel Sensing Coordination Framework for CR-VANETs[J].IEEE Transactions on Vehicular Technology,2010,59(4):1936-1948
    [12] D. Jiang and L. Delgrossi. IEEE802.11p: Towards an International Standard for WirelessAccess in Vehicular Environments[C]. Proceeding of IEEE VTC Spring,2008:2036-2040
    [13] K. Fawaz, A. Ghandour, M. Olleik, et al. Improving Reliability of Safety Applications inVehicle Ad Hoc Networks through the Implementation of a Cognitive Network[C].2010IEEE17th International Conference on Telecommunications (ICT),2010:798-805
    [14] H. Li and D. K. Irick. Collaborative Spectrum Sensing in Cognitive Radio Vehicular Ad HocNetworks: Belief Propagation on Highway[C].2010IEEE71st Vehicular TechnologyConference (VTC2010-Spring),2010:1-5
    [15] C. Lee and W. Wolf. Multiple Access-Inspired Cooperative Spectrum Sensing for CognitiveRadio[C]. Proceeding of IEEE MILCOM,2007:1-6
    [16] H. Kim and K. G. Shin. In-Band Spectrum Sensing in Cognitive Radio Networks: EnergyDetection or Feature Detection[C]. Proceeding of ACM MobiCom,2008:14–25
    [17] P. Wang, J. Fang, N. Han, et al. Multiantenna-Assisted Spectrum Sensing for CognitiveRadio[J]. IEEE Transactions on Vehicular Technology,2010,59(4):1791-1800
    [18] P. Wang, J. Fang, N. Han, et al. Rapid Spectrum Sensing with Multiple Antennas for CognitiveRadio[C].2011IEEE Africon,2011:1-6
    [19] X. Y. Wang, A. Wong and P.-H. Ho. Prioritized Spectrum Sensing in Cognitive Radio based onSpatiotemporal Statistical Fusion[C]. Proceeding of IEEE WCNC,2009:1–6
    [20] H. Kim and K. G. Shin. Fast Discovery of Spectrum Opportunities in Cognitive RadioNetworks[C]. Proceeding of IEEE DySPAN,2008:1–12
    [21] S. M. Mishra, A. Sahai and R. W. Brodersen. Cooperative Sensing among Cognitive Radios[C].2006IEEE International Conference on Communications (ICC '06),2006:1658-1663
    [22] X. Y. Wang, A. Wong and P.-H. Ho. Stochastic Channel Prioritization for Spectrum Sensing inCooperative Cognitive Radio[C]. Proceeding of IEEE CCNC,2009:1–6
    [23] X. Y. Wang, A. Wong and P.-H. Ho. DOSP: Dynamically Optimized SpatiotemporalPrioritization for Spectrum Sensing in Cooperative Cognitive Radio[C]. ACM WirelessNetworks,2009:13-17
    [24] J. Bernhard, J. Reed, J.-M. Park, et al. Enhancing Access to the Radio Spectrum[R].Washington, D.C.: NSF, August,2010
    [25] A. Al-Habashna, O. A. Dobre, R. Venkatesan, et al. Second-Order Cyclostationarity of MobileWiMAX and LTE OFDM Signals and Application to Spectrum Awareness in Cognitive RadioSystems[J]. IEEE Journal of Selected Topics in Signal Processing,2012,6(1):26-42
    [26] C. Cordeiro, M. Ghosh, D. Cavalcanti, et al. Spectrum Sensing for Dynamic Spectrum Accessof TV Bands[C].2nd International Conference on Cognitive Radio Oriented Wireless Networksand Communications,2007:225-233
    [27] H.-S. Chen, W. Gao and D. G. Daut. Signature Based Spectrum Sensing Algorithms for IEEE802.22WRAN[C]. IEEE International Conference on Communications,2007:6487-6492
    [28] H.-S. Chen, W. Gao and D. G. Daut. Spectrum Sensing Using Cyclostationary Properties andApplication to IEEE802.22WRAN[C].'07IEEE Global Telecommunications Conference,2007:3133-3138
    [29] H.-S. Chen and W. Gao. Spectrum Sensing for TV White Space in North America[J]. IEEEJournal on Selected Areas in Communications,2011,29(2):316-326
    [30] J. Geng and L. Lai. Optimal Sequential Detection with Stochastic Energy Constraint[C].'11Seventh International Conference on Mobile Ad-hoc and Sensor Networks,2011:423-427
    [31] M. Derakhshani, T. Le-Ngoc and M. Nasiri-Kenari. Efficient Cooperative CyclostationarySpectrum Sensing in Cognitive Radios at Low SNR Regimes[J]. IEEE Transactions onWireless Communications,2011,10(11):3754-3764
    [32] J. Kim, C.-B. Chae and J. G. Andrews. Cooperative Spectral Covariance Sensing underCorrelated Shadowing[J]. IEEE Transactions on Wireless Communications,2011,10(11):3589-3593
    [33] A. W. Min and K. G. Shin. Impact of Mobility on Spectrum Sensing in Cognitive RadioNetworks[C]. Proceedings of the2009ACM workshop on Cognitive radio networks,2009:13-18
    [34] L. S. Cardoso, M. Debbah, P. Bianchi, et al. Cooperative Spectrum Sensing Using RandomMatrix Theory[C].3rd International Symposium on Wireless Pervasive Computing,2008:334-338
    [35] M. Yang, J. An, X. Bu, et al. An Improved Eigenvalue-Based Algorithm for CooperativeSpectrum Sensing[C].6th International Conference on Wireless Communications Networkingand Mobile Computing,2010:1-4
    [36] Y. Zeng and Y.-C. Liang. Maximum-Minimum Eigenvalue Detection for Cognitive Radio[C].2007IEEE18th International Symposium on Personal, Indoor and Mobile RadioCommunications,2007:1-5
    [37] K. Cao and Z. Yang. A Novel Cooperative Spectrum Sensing Algorithm Based on RandomMatrix Theory[C].6th International Conference on Wireless Communications Networking andMobile Computing,2010:1-4
    [38] S. Wang and N. Rahnavard. Eigenvalue-based Cooperative Spectrum Sensing with FiniteSamples/Sensors[C].2012Conference on Information Sciences and Systems,2012:1-5
    [39] P. Bianchi, J. Najim, G. Alfano, et al. Asymptotics of Eigenbased Collaborative Sensing[C].2009IEEE Information Theory Workshop,2009:515-519
    [40] F. Penna, R. Garello and M. A. Spirito. Probability of Missed Detection in Eigenvalue RatioSpectrum Sensing[C].2009IEEE International Conference on Wireless and Mobile Computing,Networking and Communications,2009:117-122
    [41] P. Bianchi, M. Debbah, M. Maida, et al. Performance of Statistical Tests for Single-SourceDetection Using Random Matrix Theory[J]. IEEE Transactions on Information Theory,2011,57(4):2400-2419
    [42] F. Penna, R. Garello and M. Spirito. Cooperative Spectrum Sensing Based on the LimitingEigenvalue Ratio Distribution in Wishart Matrices[J]. IEEE Communications Letters,2009,13(7):507-509
    [43] H. Akaike. A New Look at the Statistical Model Identification[J]. IEEE Transactions onAutomatic Control,1974,19(6):716-723
    [44] M. Wax and T. Kailath. Detection of Signals by Information Theoretic Criteria[J]. IEEETransactions on Acoustics, Speech, and Signal Processing,1985,33(2):387-392
    [45] P.-J. Chung, J. F. B hme, A. O. Hero, et al. Detection of the Number of Signals Using aMultiple Hypothesis Test[C].2004Sensor Array and Multichannel Signal ProcessingWorkshop, Barcelona, Spain,2004:221-224
    [46] H.-T. Wu, J.-F. Yang and F.-K. Chen. Source Number Estimator Using TransformedGerschgorin Radii[J]. IEEE Transactions on Signal Processing,1995,43(6):1325-1333
    [47] E. Fishler and H. Messer. Order Statistics Approach for Determining the Number of SourcesUsing an Array of Sensors[J]. IEEE Signal Processing Letters,1999,6(7):179-182
    [48] P. Stocia and Y. Selén. Model-Order Selection: A Review of Information Criterion Rules[J].IEEE Signal Processing Magazine,2004,21:36-47
    [49] Q. T. Zhang, K. M. Wong, P. C. Yip, et al. Statistical Analysis of the Performance ofInformation Theoretic Criteria in the Detection of the Number of Signals in Array Processing[J].IEEE Transactions on Acoustics, Speech, and Signal Processing,1989,37(10):1557-1567
    [50] R. R. Nadakuditi. Applied Stochastic Eigen-Analysis[D]. Cambridge, Massachusetts:Massachusetts Institute of Technology,2007
    [51] R. R. Nadakuditi and A. Edelman. Sample Eigenvalue Based Detection of High-DimensionalSignals in White Noise Using Relatively Few Samples[J]. IEEE Transactions on SignalProcessing,2008,56(7):2625-2638
    [52] E. Fishler and H. Messer. On the Use of Order Statistics for Improved Detection of Signals bythe MDL Criterion[J]. IEEE Transactions on Signal Processing,2000,48(8):2242-2247
    [53] J. R. Schott. A High-Dimensional Test for the Equality of the Smallest Eigenvalues of aCovariance matrix[J]. Journal of Multivariate Analysis,2006,97:827-843
    [54] S. Kritchman and B. Nadler. Non-Parametric Detection of the Number of Signals: HypothesisTesting and Random Matrix Theory[J]. IEEE Transactions on Signal Processing2009,57(10):3930-3941
    [55] S. M. Kay and S. L. Marple, Jr. Spectrum analysis-A modern perspective[J]. Proceedings of theIEEE,1981,69(11):1380-1419
    [56] J. P. Burg. Maximum Entropy Spectral Analysis[C]. Proceedings of the37th meeting of theAnnual International SEG Meeting, Oklahoma City, OK,1967:1-98
    [57] J. Capon. High-Resolution Frequency-Wavenumber Spectrum Analysis[J]. Proceedings of theIEEE,1969,57(8):1408-1418
    [58] R. O. Schmidt. Multiple Emitter Location and Signal Parameter Estimation[J]. IEEETransactions on Antennas and Propagation,1986,34(3):276-280
    [59] J. A. Cadzow, Y. S. Kim and D. C. Shiue. General Direction-of-Arrival Estimation: A SignalSubspace Approach[J]. IEEE Transactions on Aerospace and Electronic Systems,1989,25(1):31-47
    [60] S. Yongmei, K. Yuanyuan and Z. Wei. Robust DOA Estimation for Coherent Signals Based onModified MUSIC Algorithm.2012Third International Conference on Intelligent Control andInformation Processing,2012:31-35
    [61] B. D. Rao and K. V. S. Hari. Performance Analysis of Root-Music[J]. IEEE Transactions onAcoustics, Speech and Signal Processing,1989,37(12):1939-1949
    [62] R. Kumaresan and D. W. Tufts. Estimating the Angles of Arrival of Multiple Plane Waves[J].IEEE Transactions on Aerospace and Electronic Systems,1983,19(1):134-139
    [63] A. T. Y. Lok, P. Davoodian, R. C. Chin, et al. Sensitivity Analysis of DOA Estimation Usingthe ESPRIT Algorithm[C].2010IEEE Aerospace Conference,2010:1-7
    [64] R. Roy, A. Paulraj and T. Kailath. ESPRIT--A Subspace Rotation Approach to Estimation ofParameters of Cisoids in Noise[J]. IEEE Transactions on Acoustics, Speech and SignalProcessing,1986,34(5):1340-1342
    [65] S. Y. Kung, K. S. Arun and b. D. V. Rao. State space and SVD Based Approximation Methodsfor the Harmonic Retrieval Problem[J]. Journal of Optical Society,1983,73:1799-1811
    [66] R. Roy and K. T. ESPRIT-Estimation of Signal Parameters via Rotational InvarianceTechniques[J]. IEEE Transactions on Acoustics, Speech and Signal Processing,1989,37(7):984-995
    [67] X. Mestre and M. A. Lagunas. Modified Subspace Algorithms for DOA Estimation with LargeArrays[J]. IEEE Transactions on Signal Processing,2008,56(2):598-614
    [68] A. Barabell. Improving the Resolution Performance of Eigenstructure-Based Direction-FindingAlgorithms[C].1983IEEE International Conference on Acoustics, Speech, and SignalProcessing,1983:336-339
    [69] M. D. Zoltowski, G. M. Kautz and S. D. Silverstein. Simultaneous Sector Processing viaROOT-MUSIC for Large Sensor Arrays[C]. Fifth ASSP Workshop on Spectrum Estimationand Modeling,1990:372-376
    [70] B. D. Rao and K. V. S. Hari. Weighted Subspace Methods and Spatial Smoothing: Analysis andComparison[J]. IEEE Transactions on Signal Processing,1993,41(2):788-803
    [71] B. D. Rao and K. V. S. Hari. Effect of Spatial Smoothing on the Performance of MUSIC andthe Minimum-Norm Method[J]. IEE Proceedings F Radar and Signal Processing,1990,137(6):449-458
    [72] S. Kung, C. Lo and R. Foka. A Toeplitz Approximation Approach to Coherent Source DirectionFinding[C].1986IEEE International Conference on Acoustics, Speech, and Signal Processing,1986:193-196
    [73] D. Tufts, A. Kot and R. Vaccaro. The Threshold Analysis of SVD-Based Algorithms[C].1988Proceedings of IEEE International Conference Acoustics, Speech, Signal Processing,1988:2416-2419
    [74] D. Tufts, A. Kot and R.Vaccaro. The Threshold Effect in Signal Processing Algorithms WhichUse an Estimated Subspace, in SVD and Signal Processing, II: Algorithm, Analysis andApplications[B]. New York: Elsevier,1991
    [75] P. Stoica and A. Nehorai. MUSIC, Maximum Likelihood, and Cramer-Rao Bound[C].1988International Conference on Acoustics, Speech, and Signal Processing,1988:2296-2299
    [76] J. T. Kim, S. H. Moon, D. S. Han, et al. Fast DOA Estimation Algorithm UsingPseudocovariance Matrix[J]. IEEE Transactions on Antennas and Propagation,2005,53(4):1346-1351
    [77] Z. Wen, L. Li and P. Wei. Fast Direction Finding Using Modified Pseudocovariance Matrix[J].IEEE Transactions on Antennas and Propagation,2006,54(12):3914-3918
    [78] F. Rubio and X. Mestre. Consistent Reduced-Rank LMMSE Estimation With a LimitedNumber of Samples per Observation Dimension[J]. IEEE Tranctions on Signal Processing,2009,57(8):2889-2902
    [79] F. Rubio and X. Mestre. Generalized Consistent Estimation on Low-Rank Krylov Subspaces ofArbitrarily High Dimension[J]. IEEE Transactions on Signal Processing,2009,57(10):3787-3800
    [80] P. Vallet, P. Loubaton and X. Mestre. Improved Subspace DOA Estimation Methods withLarge Arrays: the Deterministic Signals Case[C].2009IEEE International Conference onAcoustics, Speech, and Signal Processing,2009:19-24
    [81] X. Mestre and F. Rubio. An Improved Subspace-Based Algorithm in the Small Sample SizeRegime[C].2006International Conference on Acoustics, Speech, and Signal Processing,2006:1072-1076
    [82] Y. I. Abramovich, B. A. Johnson and X. Mestre. Performance Breakdown in Music, G-Musicand Maximum Likelihood Estimation[C].2007International Conference on Acoustics,Speech, and Signal Processing,2007:1049-1052
    [83] X. Mestre. On the Asymptotic Behavior of the Sample Estimations of Eigenvalues andEigenvectors of Covariance Matrices[J]. IEEE Transactions on Signal Processing,2008,56(11):5353-5368
    [84] T. Yardibi, J. Li, P. Stoica, et al. Source Localization and Sensing: A Nonparametric IterativeAdaptive Approach Based on Weighted Least Squares[J]. IEEE Transactions on Aerospace andElectronic Systems,2010,46(1):425-443
    [85] A. J. Weiss and B. Friedlander. Effects of Modeling Errors on the Resolution Threshold of theMUSIC Algorithm[J]. IEEE Transactions on Signal Processing,1994,42(6):1519-1526
    [86] R. Hamza and K. Buckley. An Analysis of Weighted Eigenspace Methods in the Presence ofSensor Errors[J]. IEEE Transactions on Signal Processing,1995,43(5):1140-1150
    [87] F. Li and R. J. Vaccaro. Sensitivity Analysis of DOA Estimation Algorithms to Sensor Errors[J].IEEE Transactions on Aerospace and Electronic Systems,1992,28(3):708-717
    [88] A. L. Swindlehurst and T. Kailath. A Performance Analysis of Subspace-Based Methods in thePresence of Model Errors. I. The MUSIC algorithm[J]. IEEE Transactions on Signal Processing,1992,40(7):1758-1774
    [89]苏卫民,顾红,倪晋麟等.通道幅相误差条件下MUSIC空间谱估计的统计特性[J].电子学报,2001,28(6):105-107
    [90] A. L. Swindlehurst and T. Kailath. A Performance Analysis of Subspace-Based Methods in thePresence of Model error. II. Multidimensional Algorithms[J]. IEEE Transactions on SignalProcessing,1993,41(9):2882-2890
    [91] B. Friedlander. A Sensitivity Analysis of the MUSIC Algorithm[J]. IEEE Transactions onAcoustics, Speech and Signal Processing,1990,38(10):1740-1751
    [92] B. Friedlander. Sensitivity Analysis of the Maximum Likelihood Direction-FindingAlgorithm[J]. IEEE Transactions on Aerospace and Electronic Systems,1990,26(6):953-968
    [93] M. Zhang and Z.-D. Zhu. DOA Estimation with Sensor Gain, Phase and PositionPerturbations[C]. Proceedings of the IEEE1993National Aerospace and ElectronicsConference,1993:67-69
    [94] Y. Rockah and P. Schultheiss. Array Shape Calibration Using Sources in UnknownLocations--Part II: Near-field Sources and Estimator Implementation[J]. IEEE Transactions onAcoustics, Speech and Signal Processing,1987,35(6):724-735
    [95] B. C. Ng and S. Wee. Array Shape Calibration Using Sources in Known Locations[C].Singapore ICCS/ISITA '92. Communications on the Move,1992:836-840
    [96] B.-h. Wang, Y.-l. Wang and H. Chen. Array Shape Calibration Using Carry-on InstrumentalSensors[C].2003Proceedings of the International Radar Conference,2003:636-639
    [97] M. Willerton and A. Manikas. Array Shape Calibration Using a Single Multi-carrier Pilot[C].2011Sensor Signal Processing for Defence,2011:1-6
    [98] M. Jansson, B. Goransson and B. Ottersten. A Subspace Method for Direction of ArrivalEstimation of Uncorrelated Emitter Signals[J]. IEEE Transactions on Signal Processing,1999,47(4):945-956
    [99] B. Friedlander and A. J. Weiss. Eigenstructure Methods for Direction Finding with Sensor Gainand Phase Uncertainties[C].1988International Conference on Acoustics, Speech, and SignalProcessing,1988:2681-2684
    [100] M. Viberg and A. L. Swindlehurst. A Bayesian Approach to Auto-Calibration for ParametricArray Signal Processing[J]. IEEE Transactions on Signal Processing,1994,42(12):3495-3507
    [101] S. van der Tol, B. D. Jeffs and A. J. van der Veen. Self-Calibration for the LOFAR RadioAstronomical Array[J]. IEEE Transactions on Signal Processing,2007,55(9):4497-4510
    [102] X. Zhang and D. Xu. Antenna Array Self-Calibration Algorithm with Sensor LocationErrors[C]. Proceedings of36th International Symposium on Antennas, Propagation and EMTheory,2003:225-228
    [103] B. P. Flanagan and K. L. Bell. Improved Array Self Calibration with Large Sensor PositionErrors for Closely Spaced Sources[C]. Proceedings of the2000IEEE Sensor Array andMultichannel Signal Processing Workshop,2000:484-488
    [104] T. Wang, H. Liao, L. Li, et al. Fast DOA Estimation with ULA in the Presence of Sensor Gainand Phase Errors[C].2009International Conference on Communications, Circuits andSystems,2009:395-397
    [105] Q. Li, Z. Ye and L. Gan. DOA and Doppler Frequency Estimation with Sensor Gain and PhaseUncertainties[C]. Proceedings of the2003International Conference on Neural Networks andSignal Processing,2003:1314-1317
    [106] A. Liu, G. Liao, C. Zeng, et al. An Eigenstructure Method for Estimating DOA and SensorGain-Phase Errors[J]. IEEE Transactions on Signal Processing,2011,59(12):5944-5956
    [107] B.-h. Wang, Y.-l. Wang and H. Chen. A Robust DOA Estimation Algorithm for UniformLinear Array in the Presence of Mutual Coupling[C].2003IEEE Antennas and PropagationSociety International Symposium,2003:924-927
    [108] Y. Yu, H.-S. Lui, C. H. Niow, et al. Improved DOA Estimations Using the Receiving MutualImpedances for Mutual Coupling Compensation: An Experimental Study[J]. IEEETransactions on Wireless Communications,2011,10(7):2228-2233
    [109] B. Wu and H. Chen. DOA Estimation and Self-Calibration Algorithm for Y-Shaped Array inthe Presence of Mutual Coupling[C].2nd International Congress on Image and SignalProcessing,2009:1-5
    [110] M. Dehghanpour, V. T. Vakili and A. Farrokhi. DOA Estimation Using Multiple KernelLearning SVM Considering Mutual Coupling[C].20124th International Conference onIntelligent Networking and Collaborative Systems,2012:55-61
    [111] B. Liao, Z.-G. Zhang and S.-C. Chan. DOA Estimation and Tracking of ULAs with MutualCoupling[J]. IEEE Transactions on Aerospace and Electronic Systems,2012,48(1):891-905
    [112] J. Liu, M. Yan, Y. Peng, et al. DOA Estimation Based on Array Manifold Calibration andWeighted Subspace Fitting[J].3rd International Conference on Signal Processing,1996:489-492
    [113] A. Hirata, H. Yamada and T. Ohira. Reactance-Domain MUSIC DOA Estimation UsingCalibrated Equivalent Weight Matrix of ESPAR Antenna[C].2003IEEE Antennas andPropagation Society International Symposium,2003:252-255
    [114] B. D. Rao. Comparison of Spatially Smoothed Weighted Subspace methods[C].1991Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems andComputers,1991:903-907
    [115] B.-h. Wang, Y.-l. Wang and H. Chen. A New Criterion for DOA Estimation of CoherentSources Based on Weighted Spatial Smoothing[C].2003IEEE Antennas and PropagationSociety International Symposium,2003:276-279
    [116] O. Simeone, U. Spagnolini, Y. Bar-Ness, et al. Distributed Synchronization in WirelessNetworks[J]. IEEE Signal Processing Magazine,2008,25(5):81-97
    [117] T. G. Kim and D. H. Cho. Performance Analysis of Synchronization CommunicationProtocols for Real-Time Multimedia Services[C].1995IEEE International Conference onCommunications, Gateway to Globalization, Seattle,1995:256-260
    [118] M. Kandemir, A. Choudhary, P. Banerjee, et al. Minimizing Data and Synchronization Costsin One-Way Communication[J]. IEEE Transactions on Parallel and Distributed Systems,2000,11(12):1232-1251
    [119] Y. Rahamim, A. Freedman and A. Reichman. ML Iterative Soft-Decision-Directed(ML-ISDD): a Carrier Synchronization System for Short Packet Turbo CodedCommunication[J]. IEEE Transactions on Communications,2008,56(7):1169-1177
    [120] J.-H. Chen and W. C. Lindsey. Mutual Clock Synchronization in Global DigitalCommunication Networks[C]. IEEE46th Vehicular Technology Conference, MobileTechnology for the Human Race,1996:1244-1248
    [121] R. Mudumbai, J. Hespanha, U. Madhow, et al. Scalable Feedback Control for DistributedBeamforming in Sensor Networks[C].2005Proceedings of International Symposium onInformation Theory,2005:137-141
    [122] R. Mudumbai, G. Barriac and U. Madhow. On the Feasibility of Distributed Beamforming inWireless Networks[J]. IEEE Transactions on Wireless Communications2007,6(5):1754-1763
    [123] D. R. Brown and H. V. Poor. Time-Slotted Round-Trip Carrier Synchronization forDistributed Beamforming[J]. IEEE Transactions on Signal Processing,2008,56(11):5630-5643
    [124] R. Mudumbai, D. R. Brown, U. Madhow, et al. Distributed Transmit Beamforming:Challenges and Recent progress[J]. IEEE Communications Magazine2009,47(2):102-110
    [125] R. Mudumbai, J. Hespanha, U. Madhow, et al. Distributed Transmit Beamforming UsingFeedback Control[J]. IEEE Transactions on Information Theory,2010,56(1):411-426
    [126] J. Huang, P. Wang and Q. Wan. Collaborative Beamforming for Wireless Sensor Networkswith Arbitrary Distributed Sensors[J]. IEEE Communications Letters,2012,16(7):1118-1120
    [127] W. SeungHwan and L. Hanzo. Synchronization of Noncoherent MIMO Systems:Synchronization Issues[J]. IEEE Vehicular Technology Magazine,2012,7(4):95-103
    [128] T. Koivisto and V. Koivunen. Diversity Transmission of Synchronization Sequences in MIMOSystems[J]. IEEE Transactions on Wireless Communications,2012,11(11):4048-4057
    [129] A. D. Kora, A. Saemi, J. P. Cances, et al. New List Sphere Decoding (LSD) and IterativeSynchronization Algorithms for MIMO-OFDM Detection With LDPC FEC[J]. IEEETransactions on Vehicular Technology,2008,57(6):3510-3524
    [130] Y. Yang and R. S. Blum. Phase Synchronization for Coherent MIMO Radar: Algorithms andTheir Analysis[J]. IEEE Transactions on Signal Processing,2011,59(11):5538-5557
    [131] H. Godrich and A. M. Haimovich. Localization Performance of Coherent MIMO RadarSystems Subject to Phase Synchronization Errors[C].20104th International Symposium onCommunications, Control and Signal Processing,2010:1-5
    [132] H. Mercier, V. Tarokh and F. Labeau. Bounds on the Capacity of Discrete MemorylessChannels Corrupted by Synchronization and Substitution Errors[J]. IEEE Transactions onInformation Theory,2012,58(7):4306-4330
    [133] F.-C. Zheng and S. K. Barton. On the Performance of Near-Far Resistant CDMA Detectors inthe Presence of Synchronization Errors[J]. IEEE Transactions on Communications,1995,43(12):3037-3045
    [134] J.-H. Wen, C.-K. Wen and H.-T. Wu. Performance Analysis of O^3BPSK LDD forAsynchronous CDMA Systems in the Presence of Synchronization Errors[J]. IEEETransactions on Vehicular Technology,2003,52(4):958-969
    [135] Y. Mostofi and D. C. Cox. Mathematical Analysis of the Impact of Timing SynchronizationErrors on the Performance of an OFDM System[J]. IEEE Transactions on Communications,2006,54(2):226-230
    [136] J. Chen, Q. Yu, Y. Zhang, et al. Feedback-Based Clock Synchronization in Wireless SensorNetworks: A Control Theoretic Approach[J]. IEEE Transactions on Vehicular Technology,2010,59(6):2963-2973
    [137] K. Sun, P. Ning and C. Wang. Secure and Resilient Clock Synchronization in Wireless SensorNetworks[J]. IEEE Journal on Selected Areas in Communications,2006,24(2):395-408
    [138] Q. Chaudhari, E. Serpedin and K. Qaraqe. Some Improved and Generalized EstimationSchemes for Clock Synchronization of Listening Nodes in Wireless Sensor Networks[J].IEEE Transactions on Communications,2010,58(1):63-67
    [139] L. Qun and D. Rus. Global Clock Synchronization in Sensor Networks[J]. IEEE Transactionson Computers,2006,55(2):214-226
    [140] H. Wang, Q. Gao and L. Fei. Effects of Carrier Synchronization on Link Throughput ofDistributed Beamforming[C]. IEEE21st International Symposium on Personal Indoor andMobile Radio Communications,2010:2111-2116
    [141] M. K. Simon. On the Bit-error Probability of Differentially Encoded QPSK and Offset QPSKin the Presence of Carrier Synchronization[J]. IEEE Transactions on Communications2006,54(5):806-812
    [142] P. Pedrosa, R. Dinis and F. Nunes. Iterative Frequency Domain Equalization and CarrierSynchronization for Multi-Resolution Constellations[J]. IEEE Transactions on Broadcasting,2010,56(4):551-557
    [143] C.-F. Wu, M.-T. Shiue and C.-K. Wang. Joint Carrier Synchronization and EqualizationAlgorithm for Packet-Based OFDM Systems Over the Multipath Fading Channel[J]. IEEETransactions on Vehicular Technology,2010,59(1):248-260
    [144] I. Thibault, G. E. Corazza and L. Deambrogio. Phase Synchronization Algorithms forDistributed Beamforming with Time Varying Channels in Wireless Sensor Networks[C].20117th International Wireless Communications and Mobile Computing Conference,2011:77-82
    [145] P. Lopez-Dekker, J. J. Mallorqui, P. Serra-Morales, et al. Phase Synchronization and DopplerCentroid Estimation in Fixed Receiver Bistatic SAR Systems[J]. IEEE Transactions onGeoscience and Remote Sensing,2008,46(11):3459-3471
    [146] E. Gysels and P. Celka. Phase Synchronization for the Recognition of Mental Tasks in aBrain-Computer Interface[J]. IEEE Transactions on Neural Systems and RehabilitationEngineering,2004,12(4):406-415
    [147] H. Mathis. Blind Phase Synchronization for VSB Signals[J]. IEEE Transactions onBroadcasting,2001,47(4):340-347
    [148] S.-T. Huang, T.-J. Liu and S.-S. Hung. Asynchronous Phase Synchronization in UniformUnidirectional Rings[J]. IEEE Transactions on Parallel and Distributed Systems,2004,15(4):378-384
    [149] Y.-W. Hong and A. Scaglione. A Scalable Synchronization Protocol for Large Scale SensorNetworks and its Applications[J]. IEEE Journal on Selected Areas in Communications,2005,23(5):1085-1099
    [150] S. Abadal and I. F. Akyildiz. Bio-Inspired Synchronization for NanocommunicationNetworks[C].2011IEEE Global Telecommunications Conference,2011:1-5
    [151] A. Kailas, N. Pari and M. Nogueira. Bio-Inspired Time Synchronization for Cognitive RadioAd Hoc Networks[C].15th International Symposium on Wireless Personal MultimediaCommunications,2012:138-142
    [152] S. Barbarossa and G. Scutari. Bio-Inspired Sensor Network Design[J]. IEEE Signal ProcessingMagazine,2007,24(3):26-35
    [153] P. Sun and L. Zhang. Low Complexity Pilot Aided Frequency Synchronization for OFDMAUplink Transmission[J]. IEEE Transactions on Wireless Communications,2009,8(7):3758-3769
    [154] G. Caire, P. A. Humblet, G. Montalbano, et al. Initial Synchronization of DS-CDMA viaBursty Pilot Signals[J]. IEEE Transactions on Communications,2002,50(4):677-685
    [155] C. o.-M. Chang and K.-C. Chen. Reverse Link Pilot-tones Aided Synchronization inDS-CDMA Communication System[C].1998IEEE Global Telecommunications Conference,.The Bridge to Global Integration,1998:3408-3413
    [156] N. Levanon. Noncoherent Radar Pulse Compression Based on Complementary Sequences[J].IEEE Transactions on Aerospace and Electronic Systems,2009,45(2):742-747
    [157] N. Levanon. Mitigating Range Ambiguity in High PRF Radar using Inter-Pulse BinaryCoding[J]. IEEE Transactions on Aerospace and Electronic Systems,2009,45(2):687-697
    [158] E. Ben-Yaacov, D. Quartler and N. Levanon. Inter-Pulse Coding and Coherent-on-ReceiveModifications of Magnetron-Based Marine Radar-Experimental Results[C].2011IEEEInternational Conference on Microwaves, Communications, Antennas and ElectronicsSystems,2011:1-9
    [159] M. Rudolf and B. Jechoux. Design of Concatenated Extended Complementary Sequences forInter-Base Station Synchronization in WCDMA TDD Mode[C].2001IEEE GlobalTelecommunications Conference,2001:674-679
    [160] D.Banerjee. PLL Performance Simulation and Design[B]. Indianapolis, IN: Dog EarPublishing, LLC.,2006
    [161] D. Mitra. Network Synchronization: Analysis of a Hybrid of Master-Slave and MutualSynchronization[J]. IEEE Transactions on Communications,1980,28(8):1245-1259
    [162] Y.-S. Tu and G. J. Pottie. Coherent Cooperative Transmission from Multiple AdjacentAntennas to a Distant Stationary Antenna through AWGN Channels[C]. IEEE55th VehicularTechnology Conference,2002:130-134
    [163] K. Okimi and H. Fukinuki. Master-Slave Synchronization Techniques[J]. IEEECommunications Magazine,1981,19(3):12-21
    [164] J. A. K. Suykens, P. F. Curran and L. O. Chua. Robust Synthesis for Master-SlaveSynchronization of Lur'e Systems[J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,1999,46(7):841-850
    [165] E. Koyuncu, Y. Jing and H. Jafarkhani. Distributed Beamforming in Wireless Relay Networkswith Quantized Feedback[J]. IEEE Journal on Selected Areas in Communications,2008,26(8):1429-1439
    [166] H. Zhang, F. L. Lewis and A. Das. Optimal Design for Synchronization of CooperativeSystems: State Feedback, Observer and Output Feedback[J]. IEEE Transactions on AutomaticControl,2011,56(8):1948-1952
    [167] G. Lim and L. J. Cimini. Partitioned One-Bit Feedback for Cooperative Beamforming[C].44thAnnual Conference on Information Sciences and Systems,2010:1-5
    [168] S. Munkyo, M. Rodwell and U. Madhow. A Feedback-Based Distributed Phased ArrayTechnique and its Application to60-GHz Wireless Sensor Network[C].2008IEEE MTT-SInternational Microwave Symposium Digest,2008:683-686
    [169] F. D. Freijedo, J. Doval-Gandoy, O. Lopez, et al. A Generic Open-Loop Algorithm forThree-Phase Grid Voltage/Current Synchronization With Particular Reference to Phase,Frequency, and Amplitude Estimation[J]. IEEE Transactions on Power Electronics,2009,24(1):94-107
    [170] H. F. Chen and J. M. Liu. Open-Loop Chaotic Synchronization of Injection-LockedSemiconductor Lasers with Gigahertz Range Modulation[J]. IEEE Journal of QuantumElectronics,2000,36(1):27-34
    [171] G. Ferrari, A. Anastasopoulos, G. Colavolpe, et al. Adaptive Iterative Detection: aPerformance Comparison of Closed-Loop and Open-Loop Phase Synchronization[C].2002IEEE Global Telecommunications Conference,2002:1368-1372
    [172] R. D. Preuss and D. R. Brown. Retrodirective Distributed Transmit Beamforming withTwo-Way Source Synchronization[C].44th Annual Conference on Information Sciences andSystems,2010:1-6
    [173] S. Chang and B. Kelley. An Efficient Time Synchronization Scheme for Broadband Two-WayRelaying Networks Based on Physical-Layer Network Coding[J]. IEEE CommunicationsLetters,2012,16(9):1416-1419
    [174] I. Skog and P. Handel. Synchronization by Two-Way Message Exchanges: Cramer-RaoBounds, Approximate Maximum Likelihood, and Offshore Submarine Positioning[J]. IEEETransactions on Signal Processing,2010,58(4):2351-2362
    [175] R. D. Preuss and D. R. Brown. Two-Way Synchronization for Coordinated MulticellRetrodirective Downlink Beamforming[J]. IEEE Transactions on Signal Processing,2011,59(11):5415-5427
    [176] ATSC. Doc. A/53. ATSC Digital Television Standard, Part2:RF/Transmission SystemCharacteristics[S]. Washington, D.C.: ATSC,2011
    [177] B. Franca, A. Stillwell, R. Bromery, et al. DTV Report on COFDM and8-VSBPerformance[R]. Washington D.C.: FCC,1999
    [178] H. Urkowitz. Energy Detection of Unknown Deterministic Signals[J]. Proceedings of theIEEE,1967,55(4):523-531
    [179] W. Gardner. Spectral Correlation of Modulated Signals: Part I--Analog Modulation[J]. IEEETransactions on Communications,1987,35(6):584-594
    [180] W. Gardner, W. Brown and C. Chih-Kang. Spectral Correlation of Modulated Signals: PartII--Digital Modulation[J]. IEEE Transactions on Communications,1987,35(6):595-601
    [181] L. Thanayankizil and A. Kailas. Spectrum Sensing Techniques (II): Receiver Detection andInterference Management[J]. http://aravind.kailas. googlepages.com,2008
    [182] N. Ahmed, D. Hadaller and S. Keshav. GUESS: Gossiping Updates for Efficient SpectrumSensing[C].2006ACM MobiCom Workshop on Decentralized Resource Sharing in MobileComputing and Networking,2006:1-6
    [183] R. Brodersen, A. Wolisz, D. Cabric, et al. CORVUS: A Cognitive Radio Approach for Usageof Virtual Unlicensed Spectrum[R]. Berkeley California: Berkeley Wireless Research Center,White paper,2004
    [184] C. F. Mecklenbrauker, A. F. Molisch, J. Karedal, et al. Vehicular Channel Characterizationand Its Implications for Wireless System Design and Performance[J]. Proceedings of theIEEE,2011,99(7):1189-1212
    [185] M. Hata and T. Nagatsu. Mobile Location Using Signal Strength Measurements in a CellularSystem[J]. IEEE Transactions on Vehicular Technology,1980,29(2):245-252
    [186] D. Tse and P. Viswanath. Fundamentals of Wireless Communication[B]. Cambridge:Cambridge University Press,2005:290-330
    [187] A. Semmar, J.-Y. Chouinard, V. H. Pham, et al. Digital Broadcasting Television ChannelMeasurements and Characterization for SIMO Mobile Reception[J]. IEEE Transactions onBroadcasting,2006,52(4):450-463
    [188] K. Varshney. Distributed Detection and Data Fusion[B]. New York: Springer-Verlang NewYork Inc.,1996
    [189] T. W. Anderson. Asymptotic Theory of Principal Component Analysis[J]. Annals ofMathematical Statistics,1963,34:122-248
    [190] J. Wishart. The Generalized Product Moment Distribution in Samples from a NormalMultivariate Population[J]. Biometrika,1928,20(A):32-52
    [191] V. A. Mar enko and L. A. Pastur. Distribution of Eigenvalues in Certain Sets of RandomMatrices[J]. Matematicheskii Sbornik,1967,72(114):507-536
    [192] D. Jonsson. Some Limit Theorems for The Eigenvalues of a Sample Covariance Matrix[J].Journal of Multivariate Analysis,1982,12:1-38
    [193] M. Maida. Large Deviations for the Largest Eigenvalue of Rank one Deformations ofGaussian Ensembles[J]. Electronic Journal of Probability,2007,12:1131-1150
    [194] Y. Zeng and Y.-C. Liang. Eigenvalue-Based Spectrum Sensing Algorithms for CognitiveRadio[J]. IEEE Transactions on Communications,2009,57(6):1784-1793
    [195] I. M. Johnstone. On the Distribution of the Largest Eigenvalue in Principal ComponentsAnalysis[J]. The Annals of Statistics,2001,29(2):295-327
    [196] B. Nadler. On the Distribution of the Ratio of the Largest Eigenvalue to the Trace of a WishartMatrix[J]. Journal of Multivariate Analysis,2011,102(2):363-371
    [197] C. A. Tracy and H. Widom. Level-Spacing Distributions and the Airy Kernel[J].Communications in Mathematical Physics,1994,159(1):151-174
    [198] C. Tracy and H. Widom. On Orthogonal and Symplectic Matrix Ensembles[J].Communications in Mathematical Physics,1996,177(3):727-754
    [199] A. I. Bejan. Largest Eigenvalues and Sample Covariance Matrices Tracy–Widom and PainleveII Computational Aspects and Realization in S-Plus With Applications[J]. Available:http://www.vitrum.md/andrew/TWinSplus.pdf,2005:1-44
    [200] F. Bornemann. Asymptotic Independence of the Extreme Eigenvalues of Gaussian UnitaryEnsemble[J]. Journal of Mathematical Physics,2010,51(2):023514
    [201] P. Bianchi, M. Debbah and J. Najim. Asymptotic Independence of the Extreme Eigenvalues ofGaussian Unitary Ensemble[J]. Electronic Communications in Probability,2010,15:37-395
    [202] A. W. van der Vaart. Asymptotic statistics Cambridge Series in Statistical and ProbabilisticMathematics[B]. Cambridge, U.K.: Cambridge University Press,1998: Chapter3
    [203] D. Guo, L. K. Rasmussen and T. J. Lim. Linear Parallel Interference Cancellation inLong-Code CDMA Multiuser Detection[J]. IEEE Journal on Selected Areas inCommunications,1999,17(12):2074-2081
    [204] L. C. Zhao, P. R. Krishnaiah and Z. D. Bai. On Detection of Numbers of Signals in Prensenceof White Noise[J]. Journal of Multivariate Analysis,1986,20:1-25
    [205] B. Nadler. Nonparametric Detection of Signals by Information Theoretic Criteria:Performance Analysis and an Improved Estimator[J]. IEEE Transactions on Signal Processing,2010,58(5):2746-2756
    [206] B. A. Johnson, Y. I. Abramovich and X. Mestre. MUSIC, G-MUSIC, andMaximum-Likelihood Performance Breakdown[J]. IEEE Transactions on Signal Processing,2008,56(8):3944-3958
    [207] E. Fishler, M. Grosmann and H. Messer. Detection of Signals by Information TheoreticCriteria: General Asymptotic Performance Analysis[J]. IEEE Transactions on SignalProcessing2002,50(5):1027-1036
    [208] S. Kritman and B. Nadler. Determining the Number of Components in a Factor Model fromLimited Noisy Data[J]. Chemometrics and Intelligent Laboratory Systems,2008,94:19-32
    [209] A. I. Bejan. Tracy-Widom and Painleve II: Computational Aspects and Realization in S-Plus.Buletinul Academiei de Stiinte A Republicii Moldova[J]. Matematica,2004,1(44):1-18
    [210] F. Bornemann. On The Numerical Evaluation of Distributions in Radom Matrix Theory: AReview[J]. Markov Processing and Related Fields,2010,16:803-866
    [211] B. Porat and B. Friedlander. Analysis of the Asymptotic Relative Efficiency of the MUSICAlgorithm[J]. IEEE Transactions on Acoustics, Speech and Signal Processing,1988,36(4):532-544
    [212] P. Stoica and A. Nehorai. Performance Comparison of Subspace Rotation and MUSICMethods for Direction Estimation[J]. IEEE Transactions on Signal Processing,1991,39(2):446-453
    [213] P. Stoica and S. T. Statistical analysis of MUSIC and Subspace Rotation Estimates ofSinusoidal Frequencies[J]. IEEE Transactions on Signal Processing,1991,39(8):1836-1847
    [214] X. L. Xu and K. M. Buckley. Bias Analysis of the MUSIC Location Estimator[J]. IEEETransactions on Signal Processing,1992,40(10):2559-2569
    [215] C. Zhou, F. Haber and D. L. Jaggard. A Resolution Measure for the MUSIC Algorithm and itsApplication to Plane Wave Arrivals Contaminated by Coherent Interference[J]. IEEETransactions on Signal Processing,1991,39(2):454-463
    [216]王永良,陈辉,彭应宁等.空间谱估计理论与算法[B].北京:清华大学出版社,2004
    [217] C. R. Rao. Information and the Accuracy Attainable in the Estimation of StatisticalParameters[B]. Bulletin of Calcutta Mathematical Society,1945,37:81-89
    [218] H. Cramer. Mathematical Methods of Statistics[B]. Princeton, New Jersey: PrincetonUniversity Press,1946
    [219] L. Knockaert. The Barankin Bound and Threshold Behavior in Frequency Estimation[J]. IEEETransactions on Signal Processing,1997,45(9):2398-2401
    [220] R. McAulay and E. Hofstetter. Barankin Bounds on Parameter Estimation[J]. IEEETransactions on Information Theory,1971,17(6):669-676
    [221] B. G. Quinn and P. J. Kootsookos. Threshold Behavior of the Maximum Likelihood Estimatorof Frequency[J]. IEEE Transactions on Signal Processing,1994,42(11):3291-3294
    [222] R. Tausworthe. A Method for Calculating Phase-Locked Loop Performance Near Threshold[J].IEEE Transactions on Communication Technology,1967,15(4):502-506
    [223] W. Xu, A. B. Baggeroer and C. D. Richmond. Bayesian Bounds for Matched-Field ParameterEstimation[J]. IEEE Transactions on Signal Processing,2004,52(12):3293-3305
    [224] D. W. Tufts, A. C. Kot and R. J. Vaccaro. The Threshold Effect in Signal ProcessingAlgorithms which Use an Estimated Subspace, in SVD and Signal Processing, II: Algorithms,Analysis, and Applications[B]. New York: Elsevier Science Publishers,1991: chapter19
    [225] C. D. Richmond. Capon and Bartlett beamforming: Threshold Effect in Direction-of-ArrivalEstimation Error and on the Probability of Resolution[R]. Cambridge, Massachusetts: M.I.T.Lincoln Laboratory,2005
    [226] Q. T. Zhang. Probability of Resolution of the MUSIC Algorithm[J]. IEEE Transactions onSignal Processing,1995,43(4):978-987
    [227] M. Hawkes, A. Nehorai and P. Stoica. Performance Breakdown of Subspace-Based Methods:Prediction and Cure[C].2001Proceedings of IEEE International Conference on Acoustics,Speech, and Signal Processing,2001:4005-4008
    [228] J. K. Thomas, L. L. Scharf and D. W. Tufts. The Probability of a Subspace Swap in theSVD[J]. IEEE Transactions on Signal Processing,1995,43(3):730-736
    [229] D. Tufts, A. Kot and R. Vaccaro. The Threshold Effect in Signal Processing Algorithms whichUse an Estimated Subspace in SVD and Signal Processing II: Algorithms, Analysis andApplications[B]. New York: Elsevier,1991:301–320
    [230] H. Cox. Resolving Power and Sensitivity to Mismatch of Optimum Array Processors[J].Journal of the Acoustical Society of America,1973,54:771–785
    [231] P. Stoica, L. Hongbin and L. Jian. A New Derivation of the APES Filter[J]. IEEE SignalProcessing Letters,1999,6(8):205-206
    [232] A. L. Kraay and A. B. Baggeroer. A Physically Constrained Maximum-Likelihood Method forSnapshot-Deficient Adaptive Array Processing[J]. IEEE Transactions on Signal Processing,2007,55(8):4048-4063
    [233] A. Massoud and A. Noureldin. Angle of Arrival Estimation Based on Warped Delay-and-Sum(WDAS) Beamforming Technique[C].2011IEEE Oceans Conference,2011:1-4
    [234] D. Rife and R. Boorstyn. Single Tone Parameter Estimation from Discrete-TimeObservations[J]. IEEE Transactions on Information Theory,1974,20(5):591-598