肝癌中具有转移特性肿瘤干细胞的鉴定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝癌是我国常见的恶性肿瘤之一,我国肝癌死亡率高居世界之首。虽然近半个世纪来肝癌的临床诊断和治疗取得了长足进步,但其远期疗效仍不满意,主要原因是术后肿瘤的复发和转移。肝癌根治性切除后其5年复发率高达61.5%。为此,肝癌转移复发的研究已引起广泛重视,成为目前肝癌防治工作中的重点。肝癌的转移是一个多环节,多阶段的过程。其过程包括:瘤细胞从原发灶脱落,降解基底膜,通过迁移进入血管、淋巴管,进而进入循环,瘤细胞黏着于远处毛细血管内皮细胞和暴露的基底膜,在远隔器官内侵袭、增殖,最终形成远处转移灶。通过对肝癌患者原发灶和转移灶的基因芯片研究发现,两者之间有着相似的基因表达,这提示我们,这部分引起转移的肿瘤细胞具有复制出和原发灶异质性相同的能力。
     目前对恶性肿瘤的研究发现,肿瘤组织或者肿瘤转移灶中存在极少的且具有无限自我更新能力并可导致肿瘤发生的细胞-肿瘤干细胞(cancer stem cells,CSCs)。在对乳腺癌和胰腺癌的研究中发现,CSC是引起肿瘤转移的重要原因。肝癌中肿瘤干细胞的研究才刚刚起步,目前认为,肝癌干细胞的来源可能为肝干细胞或肝祖细胞,即卵圆细胞。最近,一些研究人员利用肿瘤干细胞表面标志物CD133,从肝癌组织及肝癌细胞系中分离出具有干细胞特性的亚群,为肝癌干细胞的存在找到了新的证据。这些肝癌组织中CD133+细胞,不仅在体外具有很强的增殖和克隆形成能力,还在免疫缺陷鼠的体内具有明显的成瘤优势;同时,CD133+细胞具有较高的干细胞相关基因如catenin、Oct-3/4、Bmi、SMO、Notch-1的表达;在体外适当条件下培养,CD133+细胞能分化为血管内皮样,骨骼肌样或心肌样细胞。
     那么,CD133+肿瘤干细胞是不是导致肝癌转移的主要原因?是不是所有的CD133+肿瘤干细胞都可以引起肝癌转移呢?本实验研究CD133+肿瘤干细胞在肝癌转移中的作用。通过对肝癌组织的免疫组织学检查发现,肝癌中CD133的表达和肿瘤转移相关。在体外,CD133+肝癌细胞具有较强的增殖能力,但并未表现出明显的侵袭方面的优势。另外,我们发现,粘附分子CD44在有转移的肝癌组织和肿瘤侵袭边缘表达较高,而CD44+细胞具有较强的体外侵袭能力但并具有较强的增殖优势。结合上述两个分子,我们发现,肝癌中存在着CD133+CD44+的肿瘤细胞,并且其比例和肿瘤转移相关。并且,在体内只有CD133+CD44+肝癌细胞能引起肿瘤的肝内和肝外肺转移。综上,我们认为,肝癌中CD133+细胞具有肿瘤干细胞的特性,而其中一部分特殊的肿瘤干细胞群体,表达为CD133+CD44+,是引起肝癌转移的重要原因。这部分特殊的肿瘤干细胞群体可以作为临床抗肝癌复发和转移的新的靶点。全文分为三个部分。
     第一部分,肝癌中,CD133+肿瘤干细胞具有较强增殖和成瘤能力,但是并未表现出明显的侵袭和转移方面的优势。首先,用免疫组化的方法检测肝癌组织中存在少量CD133+的细胞,然后用流式细胞方法从肝癌细胞系中分离出CD133+细胞,观察其体外克隆形成能力以及抗化疗药物能力,并通过RNAi干扰证实,CD133具有一定的功能,并非是一个单纯的表面标志物。但在体外侵袭迁移实验中,CD133+细胞并未表现出这方面的优势,因此推断,CD133在肿瘤转移成瘤中起着一定作用,但并不代表肿瘤细胞侵袭方面的能力,可能还需要另外一个信号通路来协助肿瘤干细胞的向外侵袭和转移。
     第二部分,CD44在肝癌细胞的侵袭中起着重要作用。同样,这部分首先用组化的方法检测肝癌组织中CD44的表达,发现其主要在肿瘤侵袭边缘表达,并且和癌栓及肝内转移相关。肝癌细胞系中,CD44+细胞具有明显的体外侵袭优势,但体外克隆形成能力和CD44-组比较无明显差别。提示CD44的表达利于肿瘤的侵袭。
     第三部分,CD133+CD44+肿瘤细胞是肝癌侵袭和转移的主要来源。无论是免疫组化还是流式细胞技术,都检测到肝癌组织中存在着CD133+CD44+的肿瘤细胞,并且和肝癌癌栓形成及肿瘤分期相关。从肝癌细胞系中分离出的CD133+CD44+细胞,在裸鼠体内实验中较其他组分表现出更强的肝内和肝外转移能力,从而证明这部分细胞是负责肝癌侵袭和转移的重要因素。
     全文结论:肝癌组织中,CD133可以作为肿瘤干细胞标志物,在肝癌的成瘤、增殖及抗凋亡方面起着重要作用;CD44则是肝癌侵袭能力的标志,其表达有助于肝癌细胞向外侵袭和转移。而肝癌的肝内及肝外转移则需要上述两个信号通路的同时激活,即CD44的表达利于肿瘤细胞的向外运动和侵袭,CD133的表达则利于肿瘤细胞在肝内外的增殖和生长。
Liver cancer is one of the most common malignant tumor in our country ,and it’s mortality is the highst in the world.though the clinic diagnosis and treatment have made great improvement in last half century,the long term curative effect remain still unsatisfied .,the most important reason is tumor metastasis and relapse .the 5-year recurrent rate of liver cancer is as high as 61.5% after radical resection.so study on the recurrence and metastasis has brought about extensive attention in our country and become a emphasis in tumor prevention at present. The metastasis of liver cancer is a multi-step process including falling of tumor cells from the primary tumor, degradation of the base membrane,invasion into the circulation,anchoring on the target organ , proliferation and growth into metastasis tumor. Through gene microarray on primary tumor and accordance metastasis of liver cancer ,we find similar gene profile between the two samples. It’s suggest that the tumor cells formed metastasis have the ability to copy the heterogeneity of cells in primary tumor.
     In the study on malignant tumors ,a rare cell population defined as cancer stem cells(CSCs) in the primary and metastasis has been found which has the ability of unlimited selfrenew and tumorformation . moreover in the research on breast cancer and pancreatic cancer we found that the CSC could induce tumor metastasis. Research on CSC in liver cancer is just in a development stage. And the liver cancer stem cells are believed to origin from liver stem cells or liver progenitor cells at present . recently , by the cell surface marker CD133,some researchers separated a subpopulation possessed the character of cancer stem cells from liver cancer tissue and cell lines. It’s found a new proof of the presence of CSCs in liver cancer. These CD133+ tumor cells not only possess extensive capability of proliferation and clonformation in vitro,but appear advantages of tumorformation in immunodeficiency mice. And some stem cell-related genes such as catenin,oct-3/4.bmi,notch-1 could be found highly expressed in these cell proliferation .cultured in proper condition in vitro,these cells could differentiate into endothelia cells and skeletal muscle cells or myocardial cells.
     Whether these CD133+ tumor cells mediate liver cancer metastasis? And whether all the CD133+ cancer stem cells could induce metastasis? Our research lay emphasis on the role of CD133+ cancer stem cells in liver cancer metastasis. Through immuno-histological analysis of human HCC samples, we found the increased expression of CD133 correlated with HCC metastasis. Although CD133+ tumor cells displayed an increased proliferation rate, they were not advantageous in cell invasion in vitro. We then identified CD44+/high as a marker to isolate a high invasive population in HCC cells in vitro. CD44+ tumor cells were found more in metastatic HCC samples and enriched in the tumor boarder. We then combined CD133+ and CD44+/high to define a putative metastatic population in HCC cells. CD133+CD44+ tumor cells were found more abundant in metastatic HCC samples, compared with those in non-metastatic HCC samples. These cells were present in both primary tumor bulk and their derived tumor thrombus. Moreover only CD133+CD44high HCC cells could generate intrahepatic and lung metastasis in animal models. Down-regulating CD133 or CD44 led to inhibition of the liver cancer growth or invasion, respectively. Taken together, we here identified a subpopulation of liver cancer stem cells, characterized by the CD133+CD44+/high phenotype, which mediated the tumor metastasis and these cells might be a new target for treatment of HCC metastasis. This study is civided into 3 parts.
     Part one,the role CD133+ tumor cells in liver cancer. First ,by IHC we detected a rare population of CD133+ cells in liver cancer samples,and their proportions are corelatrd with tumor metastasis. then we separated CD133+ cells from HCC cell lines by flow cytometry. The CD133+ cancer cells appared stem cell characters in comparing their capability of cloneformation and drug-resistant. by RNAi,we found its functional role of CD133+ cells in HCC tumor formation. Whereas we do not find its invasion advantage through transwell in vitro. So we make a conclution that CD133+ tumor cells might be the cancer stem cells in HCC, but do not contribute to cancer cells invasion.
     Part two,CD44 play a important role in HCC metastasis. Also by IHC ,we found the expression of CD44 in HCC tissue mostly at the edge of invasion ,and had relations with tumor embolism and intrahepatic metastais. By clone formation and charmber invasion assay, we detected that CD44+ cancer cells had marked advantage of invasion but not proliferation. So we conclude that the expression of CD44 took advantage of tumor invasion and metasitasis.
     Part three ,CD133+CD44+ tumor cells mediate HCC invasion and metastasis. We could detect CD133+CD44+ tumor cells in primary tumor and metastasis with immunofluorescence or flow cytometry, and the percentage of these cells have relations with tumor embolism and tumor stage. Moreover only CD133+CD44+ tumor cells separated from HCC cell lines could mediate intrahepatic or lung metastasis in nude mice. Here we prove CD133+CD44+ cancer cells play an important role in HCC metastasis.
     Conclusion: in HCC, CD133 may be the cells surface marker of CSCs, and help tumor formation, proliferation and apoptosis-resistant. While CD44 can increase the invasive ability of tumor cells. It’s necessary for the cancer cells to combine these two molecules to mediate intrahepatic and lung metastasis in HCC.
引文
[1] Pisani P, Parkin DM, Bray F, Ferlay J. Estimates of the worldwide mortality from 25 cancers in 1990. Int J Cancer l1999;83: 18-29.
    [2] Jin F, Xiang YB, Gao YT. Cancer survival in Shanghai, People's Republic of China. IARC Sci Publ l1998: 37-50.
    [3] Tang ZY, Yu YQ,Zhou XD. An important approach to prolonging survival further after radical resection off AFP positive hepatocellular carcinoma. J Exp Clin Cancer Res l1984;3: 359-336.
    [4] Liang XH, Loncarevic IF, Tang ZY, Yu YQ, Zentgraf H, Schroder CH. Resection of hepatocellular carcinoma: oligocentric origin of recurrent and multinodular tumours. J Gastroenterol Hepatol l1991;6: 77-80.
    [5] Arii S, Yamaoka, Y., Futagawa, S., Inoue, K., Kobayashi, K., Kojiro, M., Makuuchi, M., Nakamura, Y., Okita, K., and Yamada, R. Results of surgical and nonsurgical treatment for small-sized hepatocellular carcinomas: a retrospective and nationwide survey in Japan. Hepatology l2000;32: 1224-1229.
    [6] Tanaka S, and Arii, S. Molecularly targeted therapy for hepatocellular carcinoma. Cancer Sci l2009;100: 1-8.
    [7] Fidler IJ, and Kripke, M.L. Metastasis results from preexisting variant cells within a malignant tumor. science l1977;197: 893-895.
    [8] Kripke ML, Gruys E, Fidler IJ. Metastatic heterogeneity of cells from an ultraviolet light-induced murine fibrosarcoma of recent origin. Cancer Res l1978;38: 2962-7.
    [9] Fidler IJ. Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Res l1978;38: 2651-60.
    [10] Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev l1989;8: 98-101.
    [11] Abraham BK, Fritz P, McClellan M, Hauptvogel P, Athelogou M, Brauch H. Prevalence of CD44+/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res l2005;11: 1154-9.
    [12] Haraguchi N, Ohkuma M, Sakashita H, Matsuzaki S, Tanaka F, Mimori K, Kamohara Y, Inoue H, Mori M. CD133+CD44+ population efficiently enriches colon cancer initiating cells. Ann Surg Oncol l2008;15: 2927-33.
    [13] Gotte M, Yip GW. Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective. Cancer Res l2006;66: 10233-7.
    [14] Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell l2003;3: 537-49.
    [15] Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL, Massague J. Genes that mediate breast cancer metastasis to lung. Nature l2005;436: 518-24.
    [16] Ye QH, Qin LX, Forgues M, He P, Kim JW, Peng AC, Simon R, Li Y, Robles AI, Chen Y, Ma ZC, Wu ZQ, Ye SL, Liu YK, Tang ZY, Wang XW. Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med l2003;9: 416-23.
    [17] Glinsky GV. "Stemness" genomics law governs clinical behavior of human cancer: implications for decision making in disease management. J Clin Oncol l2008;26: 2846-53.
    [18] Glinsky GV, Berezovska O, Glinskii AB. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest l2005;115: 1503-21.
    [19] Dalerba P, Cho RW, Clarke MF. Cancer stem cells: models and concepts. Annu Rev Med l2007;58: 267-84.
    [20] Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature l1994;367: 645-8.
    [21] Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med l1997;3: 730-7.
    [22] Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A l2003;100: 3983-8.
    [23] Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identification of human brain tumour initiating cells. Nature l2004;432: 396-401.
    [24] Croker AK, Goodale D, Chu J, Postenka C, Hedley BD, Hess DA, Allan AL. High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med l2008.
    [25] Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C. Distinct populations of cancer stem cells determine tumor growth andmetastatic activity in human pancreatic cancer. Cell Stem Cell l2007;1: 313-23.
    [26] Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH, Goulet R, Jr., Badve S, Nakshatri H. CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res l2006;8: R59.
    [27] Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO, Zheng BJ, Guan XY. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology l2007;132: 2542-56.
    [28] Yin S, Li J, Hu C, Chen X, Yao M, Yan M, Jiang G, Ge C, Xie H, Wan D, Yang S, Zheng S, Gu J. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer l2007;120: 1444-50.
    [29] Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer l2002;2: 563-72.
    [30] Fidler IJ. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer l2003;3: 453-8.
    [31] Gupta GP, Massague J. Cancer metastasis: building a framework. Cell l2006;127: 679-95.
    [1] Marx J. Cancer research. Mutant stem cells may seed cancer. Science l2003;301: 1308-10.
    [2] Milas L, Raju U, Liao Z, Ajani J. Targeting molecular determinants of tumor chemo-radioresistance. Semin Oncol l2005;32: S78-81.
    [3] Brawley OW, Kramer BS. Cancer screening in theory and in practice. J Clin Oncol l2005;23: 293-300.
    [4] Mimeault M, Hauke R, Batra SK. Recent advances on the molecular mechanisms involved in the drug resistance of cancer cells and novel targeting therapies. Clin Pharmacol Ther l2008;83: 673-91.
    [5] Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature l2001;414: 105-11.
    [6] Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer l2005;5: 275-84.
    [7] Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A l2003;100: 15178-83.
    [8] Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med l1997;3: 730-7.
    [9] Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A l2003;100: 3983-8.
    [10] Yin S, Li J, Hu C, Chen X, Yao M, Yan M, Jiang G, Ge C, Xie H, Wan D, Yang S, Zheng S, Gu J. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer l2007;120: 1444-50.
    [11] Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun l2006;351: 820-4.
    [12] shimosaka a. Clinical Application of CD133+Stem cells focused on the regenerative therapy.第八次中华血液学学会l2004.
    [13] Mizrak D, Brittan M, Alison MR. CD133: molecule of the moment. J Pathol l2008;214: 3-9.
    [14] Klein WM, Wu BP, Zhao S, Wu H, Klein-Szanto AJ, Tahan SR. Increased expression of stem cell markers in malignant melanoma. Mod Pathol l2007;20: 102-7.
    [15] Auberger J, Dlaska M, Auberger T, Gunsilius E, Woll E, Hilbe W. Increased CD133 expression in bone marrow of myelodysplastic syndromes. Leuk Res l2005;29: 995-1001.
    [16] Doyle LA, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene l2003;22: 7340-58.
    [17] Kim M, Turnquist H, Jackson J, Sgagias M, Yan Y, Gong M, Dean M, Sharp JG, Cowan K. The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin Cancer Res l2002;8: 22-8.
    [18] Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH, Goulet R, Jr., Badve S, Nakshatri H. CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res l2006;8: R59.
    [19] Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell l2007;1: 313-23.
    [1] Sun JJ, Zhou XD, Liu YK, Tang ZY, Feng JX, Zhou G, Xue Q, Chen J. Invasion and metastasis of liver cancer: expression of intercellular adhesion molecule 1. J Cancer Res Clin Oncol l1999;125: 28-34.
    [2] Skubitz AP. Adhesion molecules. Cancer Treat Res l2002;107: 305-29.
    [3] Dalchau R, Kirkley J, Fabre JW. Monoclonal antibody to a human brain-granulocyte-T lymphocyte antigen probably homologous to the W 3/13 antigen of the rat. Eur J Immunol l1980;10: 745-9.
    [4] Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH, Goulet R, Jr., Badve S, Nakshatri H. CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res l2006;8: R59.
    [5] Slevin M, Krupinski J, Gaffney J, Matou S, West D, Delisser H, Savani RC, Kumar S. Hyaluronan-mediated angiogenesis in vascular disease: uncovering RHAMM and CD44 receptor signaling pathways. Matrix Biol l2007;26: 58-68.
    [6]邵小华郜,李旭. CD44v6在原发性肝癌中的表达及其意义.安徽医学l2005;9(3): 187-188.
    [7]官小琴徐,李圆圆. CD44与肝细胞癌的分化和血管浸润.重庆医科大学学报l2002;27(3): 247-249.
    [8] Endo K, Terada T. Protein expression of CD44 (standard and variant isoforms) in hepatocellular carcinoma: relationships with tumor grade, clinicopathologic parameters, p53 expression, and patient survival. J Hepatol l2000;32: 78-84.
    [9] Hirohashi K, Yamamoto T, Uenishi T, Ogawa M, Sakabe K, Takemura S, Shuto T, Tanaka H, Kubo S, Kinoshita H. CD44 and VEGF expression in extrahepatic metastasis of human hepatocellular carcinoma. Hepatogastroenterology l2004;51: 1121-3.
    [10] Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P, Chu PW, Lam CT, Poon RT, Fan ST. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell l2008;13: 153-66.
    [1] Zijlstra A, Lewis J, Degryse B, Stuhlmann H, Quigley JP. The inhibition of tumor cell intravasation and subsequent metastasis via regulation of in vivo tumor cell motility by the tetraspanin CD151. Cancer Cell l2008;13: 221-34.
    [2] Ye QH, Qin LX, Forgues M, He P, Kim JW, Peng AC, Simon R, Li Y, Robles AI, Chen Y, Ma ZC, Wu ZQ, Ye SL, Liu YK, Tang ZY, Wang XW. Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat Med l2003;9: 416-23.
    [3] Wicha MS. Cancer stem cells and metastasis: lethal seeds. Clin Cancer Res l2006;12: 5606-7.
    [4] Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A l2003;100: 3983-8.
    [5] Liu R, Wang X, Chen GY, Dalerba P, Gurney A, Hoey T, Sherlock G, Lewicki J, Shedden K, Clarke MF. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med l2007;356: 217-26.
    [6] Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell l2007;1: 313-23.
    [7] Li F, Tiede B, Massague J, Kang Y. Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res l2007;17: 3-14.
    [8] Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P, Chu PW, Lam CT, Poon RT, Fan ST. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell l2008;13: 153-66.
    [9] Yang ZF, Ngai P, Ho DW, Yu WC, Ng MN, Lau CK, Li ML, Tam KH, Lam CT, Poon RT, Fan ST. Identification of local and circulating cancer stem cells in human liver cancer. Hepatology l2008;47: 919-28.
    [10] Shi GM, Xu Y, Fan J, Zhou J, Yang XR, Qiu SJ, Liao Y, Wu WZ, Ji Y, Ke AW, Ding ZB, He YZ, Wu B, Yang GH, Qin WZ, Zhang W, Zhu J, Min ZH, Wu ZQ. Identification of side population cells in human hepatocellular carcinoma cell lines with stepwise metastatic potentials. J Cancer Res Clin Oncol l2008;134: 1155-63.
    [11] Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev l1989;8: 98-101.
    [1] Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature l2001;414: 105-11.
    [2] Sell S. Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol l2004;51: 1-28.
    [3] Hope KJ, Jin L, Dick JE. Human acute myeloid leukemia stem cells. Arch Med Res l2003;34: 507-14.
    [4] Dick JE. Breast cancer stem cells revealed. Proc Natl Acad Sci U S A l2003;100: 3547-9.
    [5] Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A l2003;100: 3983-8.
    [6] Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS. Stem cells in normal breast development and breast cancer. Cell Prolif l2003;36 Suppl 1: 59-72.
    [7] Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identification of human brain tumour initiating cells. Nature l2004;432: 396-401.
    [8] Burger PE, Xiong X, Coetzee S, Salm SN, Moscatelli D, Goto K, Wilson EL. Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue. Proc Natl Acad Sci U S A l2005;102: 7180-5.
    [9] Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell l2005;121: 823-35.
    [10] Paul G, Li JY, Brundin P. Stem cells: hype or hope? Drug Discov Today l2002;7: 295-302.
    [11] Brennan KR, Brown AM. Wnt proteins in mammary development and cancer. J Mammary Gland Biol Neoplasia l2004;9: 119-31.
    [12] Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ, Clarke MF. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature l2003;423: 302-5.
    [13] Serakinci N, Guldberg P, Burns JS, Abdallah B, Schrodder H, Jensen T, Kassem M. Adult human mesenchymal stem cell as a target for neoplastic transformation. Oncogene l2004;23: 5095-8.
    [14] Tsai RY. A molecular view of stem cell and cancer cell self-renewal. Int J Biochem Cell Biol l2004;36: 684-94.
    [15] Kopper L, Hajdu M. Tumor stem cells. Pathol Oncol Res l2004;10: 69-73.
    [16] Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med l1997;3: 730-7.
    [17] Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol l2004;5: 738-43.
    [18] Cox CV, Evely RS, Oakhill A, Pamphilon DH, Goulden NJ, Blair A. Characterization of acute lymphoblastic leukemia progenitor cells. Blood l2004;104: 2919-25.
    [19]倪晓光赵.实体瘤肿瘤干细胞研究进展.癌症l2006;25(6): 775-778.
    [20] Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia l2002;39: 193-206.
    [21]姜晓兵.人脑胶质瘤肿瘤干细胞的培养及鉴定.脑与神经疾病杂志l2005;13(1): 6-8.
    [22]李茗初.悬浮法培养C6胶质瘤细胞系和该细胞系中脑肿瘤干细胞的分离.中国现代医学杂志l2004;14(24): 57.
    [23] Strick-Marchand H, Morosan S, Charneau P, Kremsdorf D, Weiss MC. Bipotential mouse embryonic liver stem cell lines contribute to liver regeneration and differentiate as bile ducts and hepatocytes. Proc Natl Acad Sci U S A l2004;101: 8360-5.
    [24] Paku S, Schnur J, Nagy P, Thorgeirsson SS. Origin and structural evolution of the early proliferating oval cells in rat liver. Am J Pathol l2001;158: 1313-23.
    [25] Lowes KN, Brennan BA, Yeoh GC, Olynyk JK. Oval cell numbers in human chronic liver diseases are directly related to disease severity. Am J Pathol l1999;154: 537-41.
    [26] Libbrecht L, Desmet V, Van Damme B, Roskams T. Deep intralobular extension of human hepatic 'progenitor cells' correlates with parenchymal inflammation in chronic viral hepatitis: can 'progenitor cells' migrate? J Pathol l2000;192: 373-8.
    [27] Crosby HA, Hubscher S, Fabris L, Joplin R, Sell S, Kelly D, Strain AJ. Immunolocalization of putative human liver progenitor cells in livers from patients with end-stage primary biliary cirrhosis and sclerosing cholangitis using the monoclonal antibody OV-6. Am J Pathol l1998;152: 771-9.
    [28] Libbrecht L, De Vos R, Cassiman D, Desmet V, Aerts R, Roskams T. Hepaticprogenitor cells in hepatocellular adenomas. Am J Surg Pathol l2001;25: 1388-96.
    [29]龚加庆方李.肝卵圆细胞在进行性肝损伤过程中分布及迁移的实验研究.中国普外基础与临床杂志l2004;11(5): 389.
    [30] Choudhury S, Zhang R, Frenkel K, Kawamori T, Chung FL, Roy R. Evidence of alterations in base excision repair of oxidative DNA damage during spontaneous hepatocarcinogenesis in Long Evans Cinnamon rats. Cancer Res l2003;63: 7704-7.
    [31] Takahashi H, et al. Elevation of serum alpha-fetoprotein and proliferation of oval cells in the livers of LEC rats. Jpn J Cancer Res l1988;79: 821-7.
    [32] Dumble ML, Croager EJ, Yeoh GC, Quail EA. Generation and characterization of p53 null transformed hepatic progenitor cells: oval cells give rise to hepatocellular carcinoma. Carcinogenesis l2002;23: 435-45.
    [33]朱海英谢张.人肝癌细胞系P2一HCC的建立及体外诱导.第二军医大学学报l2005;26(3): 247-250.
    [34] Yin S, Li J, Hu C, Chen X, Yao M, Yan M, Jiang G, Ge C, Xie H, Wan D, Yang S, Zheng S, Gu J. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer l2007;120: 1444-50.
    [35] Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO, Zheng BJ, Guan XY. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology l2007;132: 2542-56.