扩张型心肌病心律失常分析及钠离子通道SCN5A基因单核苷酸多态性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:扩张型心肌病合并心律失常分析及机制的探讨
     目的:了解扩张型心肌病(DCM)伴随心律失常的情况,探讨其相互关系及发生机制。研究背景:DCM可伴发多种心律失常,目前研究发现心律失常与DCM的关系非常密切,但国内尚无大样本分析扩心病伴发各种心律失常的具体分析。方法:649例DCM患者均行常规心电图、24h动态心电图检查及心脏超声检查,对DCM患者进行心律失常分析。结果:DCM伴随心律失常的发生率分别为:伴随一度房室阻滞54例(8.3%),高度房室阻滞21例(3.2%),左束支阻滞124例(19.1%),右束支阻滞48例(7.4%),除外束支阻滞的室内传导延迟或阻滞11例(1.6%),心房颤动188例(28.9%),不典型房扑28例(4.3%),房速与窦速36例(5.5%),病态窦房结综合征7例(1%),室早与室速419例(64.5%),预激综合征4例(0.6%)。房颤与不典型房扑组(共188例)左房左右横径(LA)为44.1±10.6mm,同无房颤、房扑组(37.5±10.8)比较有明显差异(P<0.05),室早与室速组LVED69.7±11.2mm,同无室早和室速组相比(LVED66.9±13mm)无明显差异(P>0.5)。高度房室阻滞、左束支与右束支阻滞及室内阻滞组LVED为70.3±14.3mm,与无房室阻滞和束支阻滞及室内阻滞组(LVED65.8±10.2mm)相比有明显差异,P<0.05。结论:多数DCM患者同时伴随明显心律失常,其中以室早与室速最常见,可能与DCM猝死相关密切;房颤、房扑组与不伴房颤和房扑组心房左右径相比有显著差异,房室阻滞、束支阻滞组与无此种心律失常的DCM组LVED有明显差异。考虑房颤、不典型房扑及房室阻滞和束支阻滞与心脏结构明显改变有关。
     第二部分:扩张性心肌病患者钠离子通道SCN5A基因单核苷酸多态性研究
     近期研究新发现了钠离子通道基因SCN5A突变是扩张型心肌病(DCM)的一种分子机制,进一步揭示心力衰竭的病因机制中,离子失平衡为一种重要的发病机制,但对于SCN5A的单核苷酸多态性(single nucleotide polymorphism,SNP)与扩张型心肌病的相关性未见报道,鉴于SNP存在种族上的差异,我们对5个已发现的多态位点在中国汉族人群分布及与DCM之间的相关性进行研究。选择对基因的表达具有重要功能的外显子1和其上游的调控区及下游外显子内含子交界区序列通过直接测序法进行SNP筛查,并进一步分析多态位点与扩张型心肌病的关联性。
     材料和方法:连续选取2003年10月至2006年12月在北京阜外心血管病医院心内科住院及部分急诊的汉族患者,排除合并肥厚性心肌病、先天性心脏病、瓣膜性心脏病、甲状腺功能亢进或减低,确诊为DCM的患者共计362例,男性276例,女性86例。选取自2003-2006年在北京市石景山区某社区体检人群18岁以上并且高血压及糖尿病的比例与病例组相匹配者634例作为正常对照组。对于SCN5A基因的H558R、P1090L、4299+53T>C、C 5457T(D1819D)及V1950L多态位点的基因型鉴定采用限制性片段长度多态性分析(RFLP)。并随机选取病例及对照组中的各30例,采用直接测序的方法进行SNP筛查,并选择等位基因频率较高的-941G/A、-509A/C多态位点进行病例对照分析,基因型鉴定方法同上。x~2检验用于单因素分析时检验多态与DCM间的关联,多元非条件Logistic回归模型用于检验多态位点与疾病的独立关联及与环境因素的交互作用。
     SCN5A基因多态性研究结果:1)SCN5A H558R、P1090L、4299+53T>C、C5457T(D1819D)及V1950L在中国汉族人群中的少见等位基因频率分别为11.1%、5.2%、28.2%、31.8%及0.4%。此研究中的前4个位点多态性频率均>1%,可归为多态位点,V1950L的多态性频率<1%,不能归为多态位点。2)对5个SNP位点在病例组与对照组间出现频率进行单变量分析,P1090L等位基因频率两组间差别显著,P=0.008,显示与DCM的相关性明显。4299+53T>C基因型频率两组间差别显著,P=0.037,可能与DCM易感性相关。
     结论:中国汉族人群中SCN5A基因中,P1090L等位基因频率及4299+53T>C的多态性与DCM易感性可能有关,其在DCM发病机制中的作用有待进一步进行功能研究。
Objective: The purpose of this work is to analyze the types of arrhythmia and the relationship with the cardiac structure in patients with idiopathic dilated cardiomyopathy (DCM). Background: DCM has a close relationship with arrhythmia. Arrhythmia in patients with DCM is still an open issue in large sample. Method: The data of electrocardiogram, Holter, and Ultrasonic Cardiogram (UCG) of 649 patients with DCM was studied. Results: The types of arrhythmia accompany with DCM include: 54 (8.3%) patients sufferring from I°atria-ventricular block(AVB) , 21(3.2%) cases with severe AVB, 124(19.1%) cases with left branch block(LBBB), 48(7.4%) with right branch block(RBBB), 11(1.6%) with intraventricular block, 188(28.9%) with atrial fibrillation(Af), 28(4.3%) with untypical atrial flutter, and 36(5.5%)with paroxysm atrial tarchycardia(AT) or sinus tarchycardia, 7(1%) with sick sinus node syndrome, 419(64.5%) with preventricular contracts (PVc) and ventricular tarchycardia(VT), 4(0.6%) with W-P-W syndrome. The left atria diameter of the group with Af (28.9%) is 44.1±10.6mm, and is different from the group without Af (P<0.05). Left ventricular end diastolic diameter (LVED) of the cases with severe AVB, LBBB, RBBB, and intraventricular block is 70.3±14.3mm, and is different obviously from the LVED in the opposie group (65.8±10.2mm, P<0.05). Conclusions: In groups of patients with DCM, occurrence of major arrhythmic events is very often, especially ventricular arrhythmia. The ventricular arrhythmia might improve the risk of sudden arrest in these patients. Occurrence of Af and myocyte conduct block is related with the structure of the heart.
     Abjective: The mutation of SCN5A gene which encodes I_(Na) might lead to Dialated Cardiomyopathy (DCM) according to some studies, but the relationship of SCN5A single nucleotide polymorphism (SNP) and DCM has not been reported. As the difference of SNP exists in different population, the association of five SCN5A polymorphisms and DCM in Adult Chinese Han population will be studied and analyze the association between SNPs discovered and DCM. Methods: A case-control design was applied in this study. A total of 362 unrelated hospitalized patients (Male:276 cases, Female: 86 cases) diagnosed DCM were enrolled from Fuwai Hospital between Oct 2003 and Dec 2004. At the same time, control subjects of total 634 cases (Male: 510 cases, Female: 124) were recruited from individuals participating in a community-based survey. First, five SNPs of SCN5A gene H558R, P1090L, 4299+53T>C, C 5457T (D1819D) and V1950L were genotyped by restriction fragment length polymorphism (RFLP) in all subjects. Multivariate analysis was performed to investigate the independent effect or interaction between the polymorphisms and DCM. Statistical analysis was conducted using the SSPS 11.5 version for Windows. Result: 1) Minor allele frequencies of H558R, P1090L, 4299+53T>C, C5457T (D1819D) and V1950L were 11.1%, 5.2%, 28.2%, 31.8% and 0.4%. V1950L was not considered as polymorphism because of frequency less than 1%. 2) The frequency of the allele P1090L (P=0.008) and the polymorphism of 4299+53T>C between the DCM group and the control one is different obviously (P=0.0373). Conclusion: The study suggested the allele of P1090L and 4299+53T>C polymorphisms of SCN5A gene might be related to DCM.
引文
1.Mairon BJ,Towbin JA,Thiene G,et al.Contemporary definitions and classification of the cardiomyopathies:all American Heart Association Scientific Statement from the Council on Clinical Cardiology,Heart Failure and Transplantation Committee:Quality of Care and Outcomes Research and Functional Genormics and Translational Biology Interdisciplinery working groups;and council Epidimiolgy and Prevention.Circulation,2006;113(14):1807-1816
    2.Stephan E.Lenhart,ea tal.Inherited Arrhythmias:A National Heart,Lung,and Blood Institute and Office of Rare Diseases Workshop Consensus Report About the Diagnosis,Phenotyping,Molecular Mechanisms,and Therapeutic Approaches for Primary Cardiomyopathies of Gene Mutations Affecting Ion Channel Function.Circulation 2007;116(13):2325-2345
    3.中华医学会心血管病分会、中国心肌病诊断与治疗建议工作组关于心肌病诊断与治疗建议.中华心血管病杂志,2007;35(1):5-1
    4.葛世俊.浦寿月.特发性扩张型心肌病预后因素研究.中华心血管病杂志,1992;20(1)t 55.
    5.傅国胜,A Meissner.R.Simon.充血性心力衰竭患者室性心律失常与心脏性猝死.中华心律失常学杂志,1999;3(1)34-37.
    6.Sun HB,Khoury DS.心房颤动的电生理重构.中华心律失常学杂志,2000,4(4)306-309.
    7.W.P.McNair,L.Ku,M.R.G.Taylor,P.R.Fain,D.Dao,E.Wolfel,L.Mestroni,and the Familial Cardiomyopathy Registry Research GrouSCN5A Mutation Associated With Dilated Cardiomyopathy,Conduction Disorder,and Arrhythmia Circulation,October 12,2004;110(15):2163-2167.
    8.Arbustini E.Pilotto A,Repetto A,et ol.Autosomal dominant dilated cardiomyopathy with atrioventricular block:a lamin A/C defect.Related disease J Am Coil Cardiol 2002;39(6):981-90
    9.Olson TM,Michels VV;Ballew JD.Et al.Sodium channel mutations and susceptibility to heart failure and atrialfibrillation.The Journal of the American Medical Association 2005;293(4)447-454
    10.Greenlee PR,Anderson JL,Lutz JR,et al.Familial automaticity-conduction disorder with associated cardiomyopathy.West J Med.1986;144:33-41
    11.William P.McNair,BA;Lisa Ku,et al.SCN5A Mutation Associated With Dilated Cardiomyopathy,Conduction Disorder,and Arrhythmia.Circulation.2004;110:2163-2167.
    12.Timothy M. Olson; Virginia V. Michels; et al Sodium Channel Mutations and Susceptibility to Heart Failure and Atrial Fibrillation JAMA.2005;293:447-454.
    13.Corrado D, Basso C, Thiene G. Is it time to include ion channel diseases among cardiomyopathies? J Electrocardiol. 2005 Oct;38(4 Suppl):81-7
    1 Bowels NE.Bowels KR.Towbin JA.Final common pathway hypothesis and inherited cardiovascular disease:the role of eytoskeletal proteins in dilated cardiomyopathy.Herz 2000:25(3):168-75
    2 Schonberger J,Seidman C.Many roads lead to a broken heart:the genetics of dilated cardiomyopathy.Am J Hum Genet.2001;69:249-260.
    3 Greenlee PR,Anderson JL,Lutz JR,Lindsay AE,Hagan AD.Familial automaticity-conduction disorder with associated cardiomyopathy.West J Med.1986;144:33-41.
    4 Olson TM,Keating MT.Mapping a cardiomyopathy locus to chromosome 3p22-p25.J Clin Invest.1996;97:528-532.
    5 Olson TM,Michels VV;Ballew JD.Et al.Sodium channel mutations and susceptibility to heart failure and atrialfibrillation.The Journal of the American Medical Association 2005;293(4)447-454
    6 Tan HL,Bezzina CR,Smits JPP,Verkerk AO,Wilde AAM.Genetic control of sodium channel function.Cardiovasc Res.2003;57:961-973.
    7 William P.McNair,BA;Lisa Ku,et al.SCNSA Mutation Associated With Dilated Cardiomyopathy,Conduction Disorder,and Arrhythmia.Circulation.2004;110:2163-2167.
    8 Olson TM,Michels VV,Ballew JD,et al.Sodium channel mutations and susceptibility to heart failure and atrialfibrillation.The Journal of the American Medical Association.2005;293(4):447-454.
    9 Bezzina CR, Rook MB, Groenewegen WA, et al. Compound heterozygosity for mutations (W156X and R225W) in SCN5A associated with severe cardiac conduction disturbances and degenerative changes in the conduction system. Circ Res.2003;92:159-168
    
    10 lO.Bers DM, Barry WH, Despa S. Intracellular Na~+ regulation in cardiac myocytes. Cardiovasc Res. 2003;57:897-912
    
    11 Wang Q, Li ZZ, Shen JX, et al. Genomic organization of the human SCN5A gene encoding the cardiac sodium channel Genomic 1996;34:9-16.
    
    12 Bennett PB, Yazawa K, Naomasa M, et al. Molecular mechanism for an inherited cardiac arrhythmia. Nature 1995:80:805-811.
    
    13 Tang L, Kallen RG, Horn R, et al. Role of an S4-S5 linker in sodium channel inactivation probed by mutagenesis and a peptide blocker. J Gen Physiol 1996;108:89-104.。
    
    14 Yang N, Ji S, Zhou M, et al. Sodium channel mutations in paramyotonia congenital exhibit similar biophysical phenotypes in vitro. Proc Natl Acad Sci USA 1994;91:12785-12789.
    
    15 Wang Q, Shen J, Splawski I, et al. SCN5A mutation associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 1995;80:805-811
    
    16 Wei J, Wang DW, Alings M, et al. Congenital long QT syndrome caused by a novel mutation in a conserved acidic domain of the cardiac Na~+ channel. Circulation 1999; 99:3165-3171.
    
    17 Chen Q, Kirsch GE, Zhang D, et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 1998;392:293-296.
    
    18 Tan HL, Bink-Boelkens MT, Bezzina CR, et al. A sodium channel mutation causes isolated cardiac conduction disease. Nature 2001;409:1043-1047.
    19 Bienengraeber M,Olson TM,Selivanov VA,et al.ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic K_(ATP)channel gating.Nat Genet.2004;36:382-387.
    20 Eric Adler and Valentin Fuster SCN5A A Mechanistic Link Between Inherited Cardiomyopathies and a Predisposition to Arrhythmias ?JAMA.2005;293(4):491-493.
    21 Fatkin et al.Genes and Atrial Fibrillation:A New Look at an Old Problem.Circulation 2007;116:782-792.
    22 Frigo et al.Homozygous SCN5A mutation in Brugada syndrome with monomorphic ventricular tachycardia and structural heart abnormalities.Europace 2007;9:391-397.
    23 Nattel et al.Arrhythmogenic Ion-Channel Remodeling in the Heart:Heart Failure,Myocardial Infarction,and Atrial Fibrillation Physiol.Rev.2007;87:425-456
    24 杨昭庆,洪坤学等.单核苷酸多态性的研究进展.国外遗传学分册,2000,23(1):4-8.
    25 Sesti F,Abbott GW,Wei J,et al.A common polymorphism associated with antibiotic-induced cardiac arrhythmia.Proc Natl Acad Sci U S A 2000;97:10613-10618.
    26 Viswanathan PC,Benson DW,Balser JR,et al.A common SCN5A polymorphism modulates the biophysical effects of an SCN5A mutation.J Clin Invest 2003;11:341-346.
    27 Iwasa H,Itoh T,Nagai R,et al.Twenty single nucleotide polymorphisms(SNPs) and their alleic frequencies in four genes that are responsible for familial long QT syndrome in the Japanese population J Hum Genet 2000;45:182-183.
    28 Yang P,Kanki H,Drolet B,et al.Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes.Circulation 2002;105:1943-1948.
    29 中华医学会心血管病分会、中国心肌病诊断与治疗建议工作组关于心肌病诊断与治疗建议.中华心血管病杂志,2007;35(1):5-15
    30 Chen JZ,Xie XD,Wang XX,et al Single nucleotide polymorphisms of the SCN5A gene in Han Chinese and their relation with Brugada syndrome.Chin Med J(Engl).2004 May;117(5):652-6.
    31 Hwang HW,Chen JJ,Lin YJ,et al.Rl193Q of SCN5A,a Brugada and long QT mutation,is a common polymorphism in Han Chinese.J Med Genet 2005;42:e7
    32 谭琛,浦介麟,曾志宇,等.中国汉族人群SCN5A基因H558R、P1090L、4299+53T~C及D1819D的多态性研究.解放军医学杂志2006;31(8)762-763
    33 Antonarakis SE,Cooper DN.Mutations in Human Genetic Diseases.Nature Encyclopedia of the Human Genome.2003;p.227-253.
    34 Ahsen N,Oellerich M.The intronic prothrombin 19911AG polymorphism influences splicing efficiency and modulates effects of the 20210GA polymorphism on mRNA amount and expression in a stable reporter gene assay.system Blood 2004;103:586-593.
    35 Yu,J,Yang,Z,Kibukawa,M,et al.Minimal introns are not "junk".Genome Res.2002;12:1185-1189.
    36 Duan J,Wainwright MS,Comeron JM,et al.Synonymous mutations in the human dopamine receptor D2(DRD2) affect mRNA stability and synthesis of the receptor.Human Molecular Genetics 2003;12:205-216.
    37 张永红 病例对照研究 梁万年主编《医学科研方法学》98-115北京 人民卫生出版社,2002.
    38 Sesti F,Abbott GW,Wei J,et al.A common polymorphism associated with antibiotic-induced cardiac arrhythmia.Proc Natl Acad Sci U S A 2000;97:10613-10618
    
    39 Stephan E. Lenhart, ea tal.Inherited Arrhythmias: A National Heart,Lung, and Blood Institute and Office of Rare Diseases Workshop Consensus Report About the Diagnosis, Phenotyping, Molecular Mechanisms, and Therapeutic Approaches for Primary Cardiomyopathies of Gene Mutations Affecting Ion Channel Function.Circulation, 2007; 116(13):2325-2345
    1.Stephan E.Lenhart,ea tal.Inherited Arrhythmias:A National Heart,Lung,and Blood Institute and Office of Rare Diseases Workshop Consensus Report About the Diagnosis,Phenotyping,Molecular Mechanisms,and Therapeutic Approaches for Primary Cardiomyopathies of Gene Mutations Affecting Ion Channel Function.Circulation,2007;116(13):2325-2345
    2.中华医学会心血管病分会、中国心肌病诊断与治疗建议工作组关于心肌病诊断与治疗建议.中华心血管病杂志,2007;35(1):5-15
    3.Mairon BJ,Towbin JA,Thiene G,et al.Contemporary definitions and classification of the cardiomyopathies:all American Heart Association Scientitlc Statement from the Council on Clinical Cardiology,Heart Flli l are and Transplantation Committee:Quality of Care and Outcomes Research and Functional Genormics and Translational Biology Interdisciplinery working groups;and council Epidimiolgy and Prevention.Circulation,2006;113(14):1807-1816
    4.王志民,邹玉宝,宋雷,等.超声心动图调查8080例肥厚型心肌病患病率.中华心血管病杂志,2004,32(12),1090-1094.
    5.Bowels NE.Bowels KR.Towbin JA.11Ie final common pathway hypothesis and inherited cardiovascular disease:the role of eytoskeletal proteins in dilated cardiomyopathy.Herz 2000:25(3):168-75
    6.Arbustini E.Pilotto A,Repetto A,et ol.Autosomal dominant dilated cardiomyopathy with atrioventricular block:a lamin A/C defect.Related disease J Am Coll Cardiol 2002;39(6):981-90
    7.Karkkainen S.Hclio T,Miettinen R,et.A novel mutation,Ser143Pro,in the Lamin A/C gene is common in finnish patients with familial dilated cardiomyopathy.Eur Heart J 2004;25(10):885-93
    8.Hershberger RE.Hanson EL Jakobs PM.et ol.Novel lamin A / C mutations in a family with dilated cardiomyopathy,prominent conduction system disease,and need for permanent pacemaker implantation.Am Heart J 2002;144(6):1081-6
    9.Li D.Tapseoft T.Conzalez 0.et al.Desmin Mutation Respo nsible for Idiopathic Dilated Cardiomyopathy.Circulation 1999:100:461-4
    10.Tsubata S,Bowles KR,Vatta M,et al.Mutations in the human delta sarcoglycan gene in familial and sporadic dilated cardiomyopathy.J Clin Invest 2000;106(5):655-62
    11.Sylvius N.Duboscq BL Bouchier C.et Mutational analysis of the beta.And delta-sarcoglycan genes in a large number of patients with familial and sporadic dilated cardiomyopathy.Am J Med Genet 2003:120:8-12
    12.刘剑,田野,盂繁超.X-连锁扩张型心肌病患者杜兴氏肌营养不良基因突变分析及临床评价.中华实用内科杂志2004;24(1):14-6
    13.Todorova A.Constantinova D,Kremensky 1.Dilated cardiomyopathy and new 16 bp deletion in exon 44 of the Dystrophin gene:the possible role of repeated motifs in mutation generation.Am J Med Genet 2003:120:5-7
    14.Olson TM,Illenberger S,Kishimoto NY,et al.Metavinculin mutations alter actin interaction in dilated cardiomyopa thy.Circulation 2002:105(4):431-7
    15.Kamisago M.Sharma SD.DePalma SR.et al.Mutations in sareomeric protein genes as a cause of dilated cardiomyopathy N Engl J Med 2000;343:1688-96
    16.Hanson EL.Jakobs PM.Keegan H.et al.Cardiac troponin T lysine 210 deletion in a family with dilated cardiomyopathy.J Card Fail 2002;8(1):28-32
    17.Stefanelli CB.Rosenthal A.Borisov AB.Novel troponin T mutation in familial dilated cardiomyopathy with gender-dependant severity.Mol Genet Metab 2004;83:188-96
    18.Mogensen J,Murphy RT,Shaw T.et al.Severe disease expression of cardiac troponin C and T mutations in patients with idiopathic dilated cardiomyopathy.J Am Coil Cardiol 2004;44(10)2033-40
    19.Olson TM.Michels VV.Thibodeau SN.Actin mutationin dilated cardiomyopathy,a heritable form of heart failure.Science 1998;280:1750-2
    20.Itoh SM, Hayashi Nishi H. et al. Takahashi M Titin mutations as the molecular basis for dilated cardiomyopathy. Biochem Biophys Res Commun2002;291(2)1385-93
    21.Murphy RT, MogensenJ, Shaw A, et al. Novel mutation in cardiac troponin I in recessive idiopathic dilated cardiomyopathy. Lancet 2004;363,1371-2
    22.Karkkainen S. Hclio T. Jaaskelainen P.et al. Two novel mutations in the beta myosin heavy chain gene associated with dilated cardiomyopathy. Eur J Heart 2004;6(7) 1861-8
    23.Ruppert V. Nolte D, Aschenbrenner T, et al. Novel point mutations in the mitochondrial DNA detected in patients with dilated cardiomyopathy by screening the whole mitochondrial genome.Biochem Biophys Res Comnmn 2004;3 18(2)1535-3
    24.Zhang D, Ezekiel UR. Chang SW, et al. Gene expression profile in dilated cardiomyopatby caused by elevated frequencies of mitochondrial DNA mutations in the mouse heart. Cardiovasc Pathol 2005;14(2):61-9
    25.Olson TM, Michels VV; Ballew JD. Et al. Sodium channel mutations and susceptibility to heart failure and atrialfibrillation. The Journal of the American Medical Association 2005;293(4)447-454
    1.Keating MT,Atkinson D,Dunn C,et al.Linkage of a cardiac arrhythmia,the long QT syndrome,and the Harvey ras-1 gene.Science 1991;252:704-706
    2.Keating MT,Atkinson D,Dunn C,et al.Consistent linkage of the long QT syndrome to the Harvey ras-1 locus on chromosome 11.Am J Hum Genet 1991;49:1335-1339
    3.Wang Q,Curran M,Splawski I,et al.Positional cloning of a novel potassium channel gene:KVLQT1 mutations cause cardiac arrhythmias.Nature Genet 1996;12:17-23
    4.Jiang C,Atkinson D,Towbin JA,et al.Two long QT syndrome loci map to chromosomes 3 and 7 with evidence for further heterogeneity Nat Genet 1994;8:141-147
    5. Thomas D, Karle CA, Kiehn J, et al. The cardiac hERG/IKr potassium channel as pharmacological target: structure, function,regulation, and clinical applications.Curr Pharm Des.2006;12(18):2271-83.
    
    6. Trudeau MC, Warmke J, Ganetzky B, et al. HERG, a human inward rectifier in the voltage-gated potassium channel family.Science. 1995;269:92-95
    
    7. Sanguinetti MN, Jiang C, Curran ME, et al. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the I_(Kr) potassium channel. Cell. 1995;81:299-307
    
    8. Schott J, Charpentier F, Peltier S, et al. Mapping of a gene for long QT syndrome to chromosome 4q25-27. Am J Hum Genet.1995;57:1114-1122
    
    9. Takumi T, Ohkubo H, Nakanishi S, et al. Cloning of a membrane protein that induces a slow voltage-gated potassium current.Science.1988;242: 1042-1045
    
    10.Thomas D, Wimmer AB, Karle CA, et al. Dominant-negative I(Ks) suppression by KCNQ1-deltaF339 potassium channels linked to Romano-Ward syndrome. Cardiovasc Res. 2005;67(3):487-97
    
    11.Seebohm G, Westenskow P, Lang F, Sanguinetti MC. Mutation of colocalized residues of the pore helix and transmembrane segments S5 and S6 disrupt deactivation and modify inactivation of KCNQ1 K+ channels.J Physiol. 2005;563(2):359-68.
    
    12.Zhang M, Jiang M, Tseng GN, et al. MinK-related peptide 1 associates with Kv4.2 and modulates its gating function: potential role as beta subunit of cardiac transient outward channel? Circ Res.2001;88: 1012-1019.
    
    13.Ai T, Fujiwara Y, Tsuji K, et al. Novel KCNJ2 mutation in familial periodic paralysis with ventricular dysrhythmia. Circulation 2002,105:2592-2594.
    14.Bhuiyan ZA, van den Berg MP, van Tintelen JP, et al. Expanding spectrum of human RYR2-related disease: new electrocardiographic, structural, and genetic features.Circulation.2007;116(14):1569-76.
    15.Lahat H, Eldar M, Levy-Nissenbaum E, et al. Autosomal recessive catecholamine- or exercise-induced polymorphic ventricular tachycardia: clinical features and assignment of the disease gene to chromosome 1p13-21. Circulation. 2001; 103:2822-7.
    16.Kuo HC, Cheng CF, Clark RB, et al. A defect in the K_v channel-interacting protein 2 (KChIP2) gene leads to a complete loss of I_(to) and confers susceptibility to ventricular tachycardia. Cell.2001; 107: 801-13.
    17.Hagendorff A, Schumacher B, Kirchhoff S et al. Conduction disturbances and increased atrial vulnerability in Connexin40-deficient mice analyzed by transesophageal stimulation. Circulation. 1999; 99:1508-15.
    18.Sarkozy A, Brugada P. Sudden cardiac death and inherited arrhythmia syndromes. J Cardiovasc Electrophysiol. 2005; 16 Suppl 1:S8-20.
    19.Weiss R, Barmada MM, Nguyen T, et al. Clinical and molecular heterogeneity in the Brugada syndrome: a novel gene locus on chromosome 3. Circulation. 2002; 105:707-13.
    20.Chen Q, Kirsch GE, Zhang D, et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 1998;392:293-296.
    21.Vatta M, Dumaine R, Varghese G, et al. Genetic and biophysical basis of sudden unexplained nocturnal death syndrome(SUNDS),a disease allelic to Brugada syndrome. Hum Mol Genet 2002;11: 337-345.
    22.Keller DI, Huang H, Zhao J, Frank R, et al. A novel SCN5A mutation, F1344S, identified in a patient with Brugada syndrome and fever-induced ventricular fibrillation. Cardiovasc Res.2006;70(3):521-9.
    23.Brink PA, Ferreira A, Moolman JC, et al. Gene for progressive familial heart block type I maps to chromosome 19q13.Circulation. 1995; 91:1633-40.
    24. de Meeus A, Stephan E, Debrus S, et al. An isolated cardiac conduction disease maps to chromosome 19q. Circ Res. 1995;77:735-40.
    25.Wang D.W, Viswanathan P.C, Balser J.R, et al. Clinical, genetic,and biophysical characterization of SCN5A mutation associated with atrioventricular conduction block. Circulation.2003;105:341-346.
    26.Massumi RA. Familial Wolff-Parkinson-White syndrome with cardiomyopathy. Am J Med 1967; 43: 951-955.
    27.Gollob MH, Green MS, Tang AS, et al. Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N Engl J Med 2001; 344:1823-1831.
    28.Schram G, Pourrier M, Melnyk P, et al. Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ Res 2002; 90: 939-950.
    29.Brown HF, DiFrancesco D, Noble SJ, et al. How does adrenaline acceleration the heart? Nature 1979;280:235-236.
    30.DiFrancesco D, Ducouret P, Robinson RB, et al. Muscarinic modulation of cardiac rate at low acetylcholine concentrations.Science 1989; 243:669-671.
    31.Shi W, Wymore R, Yu HG, et al. Distribution and prevalence of hyperpolarization-activated cation channel(HCN) mRNA expression in cardiac tissues.Circ Res 1999;85:e1-e6.
    32.Schulze-Bahr E,Neu A,Friederich P,et al.Pacemaker channel dysfunction in a patient with sinus node disease.J Clin Invest.2003;111:1537-45.
    33.黄耀江,李雪等,人类基因组中单核苷酸多态性的检测技术.生物学通报,2007,42(6):1-3.
    34.Halushka MK,Fan JB,Bentley K,et al.Patterns of single nucleotide polymorphisms in candidate genes for blood-pressure homeostasis.Nat.Genet.1999,22:239-247.
    35.刘万清,贺林,SNP—为人类基因组描绘新的蓝图.遗传,1998,20(6):38-40.
    36.黄淑浈等,以PAH基因第399密码子A-T顺序多态性为遗传标记产前诊断苯丙酮尿症.中华医学杂志,1990,70(3):170-172.
    37.Iwasa H,Itoh T,Nagai R,et al.Twenty single nucleotide polymorphisms(SNPs) and their allelic frequencies in four genes that are responsible for familial long QT syndrome in the Japanese population.J Hum Genet.2000;45:182-3.
    38.滕思勇 马丽娟 董颖雪等,长QT综合征一家系的遗传学定位研究 中华心律失常学杂志 2002;6:346-350.
    39.Barry DM,Xu H,Schuessler RB,et al.Functional knockout of the transient outward current,long-QT syndrome,and cardiac remodeling in mice expressing a dominant-negative Kv4 alpha subunit.Circ Res 1998;83:560-567.
    40.Hiraoka M,Fan Z.Activation of ATP-sensitive outward K+current by nicorandil(2-nicotinamidoethyl nitrate) in isolated ventricular myocytes J Pharmacol Exp Ther 1989;250:278-285.
    41.Itokawa K, Sora I, Schindler CW, et al. Heterozygous VMAT2 knockout mice display prolonged QT intervals: possible contributions to sudden death. Brain Res Mol Brain Res 1999;71:354-357.1
    42.Iwasa H, Kurabayashi M, Nagai R, et al. Multiple single-nucleotide polymorphisms (SNPs) in the Japanese population in six candidate genes for long QT syndrome. J Hum Genet. 2001;46:158-62.
    43.Vaughan CJ, Horn Y, Okin DA, et al. Molecular genetic analysis iof PRKAG2 in sporadic Wolff-Parkinson-White syndrome. J Cardiovasc Electrophysiol 2003; 14: 263-268.
    44.Sesti F, Abbott GW, Wei J, et al. A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proc Natl Acad Sci U S A 2000;97:10613-10618.
    45.Viswanathan PC, Benson DW, Balser JR, et al. A common SCN5A polymorphism modulates the biophysical effects of an SCN5A mutation. J Clin Invest 2003;11: 341-346.
    46.Rampazzo A, Beffagna G, Nava A, et al. Arrhythmogenic right ventricular cardiomyopathy type 1 (ARVD1): confirmation of locus assignment and mutation screening of four candidate genes.Eur J Hum Genet. 2003 Jan;11:69-76.
    47.Tiso N, Stephan DA, Nava A, et al. Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVC2).Hum Mol Genet. 2001;10: 189-94.
    48.Priori SG, Napolitano C, Memmi M, et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2002; 106: 69-74.
    49.Priori SG, Napolitano C, Tiso N, et al. Mutations in the Cardiac Ryanodine Receptor Gene (hRyR2) Underlie Catecholaminergic Polymorphic Ventricular Tachycardia.Circulation. 2001; 103:196-200.
    
    50.Postma AV, Denjoy I, Hoorntje TM, et al. Absence of Calsequestrin 2 Causes Severe Forms of Catecholaminergic Polymorphic Ventricular Tachycardia. Circ Res 2002; 91: e21.
    
    51.Weese-Mayer DE, Zhou L, Berry-Kravis EM et al. Association of the serotonin transporter gene with sudden infant death syndrome:a haplotype analysis. Am J Med Genet. 2003;122A:238-45
    1. Antzelevitch C. Ion channels and ventricular arrhythmias: cellular and ionic mechanisms underlying the Brugada syndrome. Curr Opin Cardiol,1999;14:274-279.
    
    2. Marban E. Cardiac channelopathies. Nature, 2002;415: 213-218.
    
    3. Roberts R, Brugada R. Genetic aspects of arrhythmias. Am J Med Genet, 2000; 97:310-318.
    
    4. Keating M T, Sanguinetti M C. Molecular and cellular mechanisms of cardiac arrhythmias. Cell. 2001; 104:569-580.
    
    5. Grant A; Carboni M P, Neplioueva V, et al. Long QT syndrome,Brugada syndrome and conduction system disease are linked to a single sodium channel muta J Clin Cardiol(China). 2005;21(4). J Clin Invest. 2002, 110:1201-1209.
    
    6. Tan H L. Bezzina C R. Smits J P P. et al. Genetic control of sodium channel function. Cardiovascular Res, 2003;57:961-973.
    
    7. Bezzina C. Veldkamp M W. van Denberg M P. et al. A single Na~+ channel mutation causing both longQT and Brugada syndromes.Circ Res. 1999;85:1206-1213.
    
    8. Baroudi G.Acharfi S. Larouche C, et al.45x pression and intracellular localization of an SCN5A double mutant R1232W /T1620M implicated in Brugada syndrome.Cire Ras.2002;90:E11-16.
    
    9. Ye B, Valdivia C R. Ackerman M J, et al. A common human SCN5A polymorphism modifies expression of an arrhythmia causing mutation. Physiol Genom ics, 2003;12:187-193.
    
    10.Nuyens D, Stengl M. Dugarmaa S. et al. Abrupt rate accelerations or premature beats cause life-threatening arrhythmias in mice with longQT syndrome. Nat Med. 2001;7:1021-1027.
    11.Let M, Hcad C E G, Goddard C, et al. Cellular electrophysiology of SCN5A-DKPQ long QT syndrome mutants.J Physiol,2004;557P. C10 (abstract).
    12.Mangrum J M, Dimarco J P. The Evaluation and Management of Bradycardia. N Engl J Med, 2000;342,703-709.
    13.Schulze-Bahr E. Neu A, Friederich P,et al. Pacemaker channel dysfunction in a patient with sinus node disease. J Clin Invest,2003;111:1537-1545.
    14.Benson D W, W ang D W, Dyment M, et al. Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J Clin Invest.2003;112:1019-1028.
    15.Veldkam p M W, Wilders R, Baartscheer A. et al. Contribution of sodium channel mutations to bradycardia and sinus node dysfunction in LQT3 families. Circ Res,2003;92:976-983.
    16.Let M, Goddard C, Liu J. et al. Sinus node dysfunction following targeted disruption of the cardiac sodium channel gene. SCN5A. J Physiol(in press).
    17.Brugada P. Brugada R. Brugada J. The Brugada syndrome. Curr Cardiol Rep, 2000;2:507-514.
    18.Schwartz P J. Priori S G. Spazzolini C, et al. Geno type-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation, 2001,103:89-95.
    19.Taylor MR, Fain PR, Sinagra G, et al. Natural history of dilated cardiomyopathy due to lamin A/C gene mutations. J Am Coll Cardiol. 2003;41:771-780
    20.Bienengraeber M, Olson TM, Selivanov VA, et al. ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic K_(ATP) channel gating. Nat Genet. 2004;36:382-387.
    21.William P. McNair, BA; Lisa Ku, et al. SCN5A Mutation Associated With Dilated Cardiomyopathy, Conduction Disorder, and Arrhythmia. Circulation. 2004; 110:2163-2167.
    22.Olson TM, Michels VV, Ballew JD,et al. Sodium channel mutations and susceptibility to heart failure and atrialfibrillation.The Journal of the American Medical Association. 2005;293(4):447-454.
    23.Bezzina CR, Rook MB, Groenewegen WA, et al. Compound heterozygosity for mutations (W156X and R225W) in SCN5A associated with severe cardiac conduction disturbances and degenerative changes in the conduction system. Circ Res.2003;92:159-168
    24.Bers DM, Barry WH, Despa S. Intracellular Na+ regulation in cardiac myocytes. Cardiovasc Res. 2003;57:897-912.
    25.Tan HL, Bezzina CR, Smits JPP, Verkerk AO, Wilde AAM.Genetic control of sodium channel function. Cardiovasc Res.2003;57:961-973.
    26.Bienengraeber M, Olson TM, Selivanov VA, et al. ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic K_(ATP) channel gating. Nat Genet. 2004;36:382-387.
    27.Eric Adler and Valentin Fuster SCN5A—A Mechanistic Link Between Inherited Cardiomyopathies and a Predisposition to Arrhythmias? JAMA. 2005;293(4):491-493.
    28.Fatkin et al.Genes and Atrial Fibrillation: A New Look at an Old Problem Circulation 2007;l 16:782-792.
    29.Frigo et al. Homozygous SCN5A mutation in Brugada syndrome with monomorphic ventricular tachycardia and structural heart abnormali -ties Europace 2007;9:391-397.
    
    30.Nattel et al.Arrhythmogenic Ion-Channel Remodeling in the Heart:Heart Failure, Myocardial Infarction, and Atrial Fibrillation Physiol. Rev. 2007;87: 425-456