中国汉族人风湿性心脏病的遗传易感性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究肿瘤坏死因子α诱导蛋白3(tumor necrosis factor-induced protein 3,TNFAIP3)和肿瘤坏死因子受体相关因子1(TNF receptor associated factor 1,TRAF1)基因单核苷酸多态性(single nucleotide polymorphism,SNP)与中国汉族人风湿性心脏病(rheumatic heart disease,RHD)的关联。
     方法:关联研究采用1:2匹配病例-对照设计(239例RHD患者和478例对照)。遗传易感性位点选择采用tSNP(tagging single nucleotide polymorphisms,tSNP)策略。TNFAIP3基因共选择了3个tSNP, TRAF1基因共选择了2个tSNP。各位点基因分型检测采用SNPstream技术。
     结果:所有SNPs的基因型频率在病例组及对照组均符合Hardy-Weinberg平衡。两个基因所有tSNPs之间的连锁不平衡程度都较弱。位于TNFAIP3基因第5内含子上的SNP rs582757位点基因型和等位基因型频率在病例组和对照组之间都有显著差异,P值分别为0.001249和0.000374。在rs582757位点C等位基因的加性模型时,每增加一个拷贝的C等位基因,RHD风险是增加前的0.574倍(95%CI 0.42-0.78,P=0.00037);在rs582757位点C等位基因的显性模型时,携带CC/TC基因型的个体RHD风险是TT基因型个体的0.535倍(95%CI 0.38-0.75,P=0.000328)。在调整年龄、性别、吸烟史和饮酒史后,显著性仍然存在(加性和显性模型调整后的P值分别为0.007和0.009)。未发现其余各SNPs与RHD显著相关。
     结论:TNFAIP3基因的SNP rs582757的多态性与RHD发病相关,其C等位基因可能是中国汉族人RHD的保护因素。
     目的:研究可结晶片段受体样因子3(Fc receptor-like 3,FcRL3)、蛋白酪氨酸磷酸酶非受体型22(protein tyrosine phosphatase nonreceptortype 22,PTPN22)和C5(complement component 5)基因单核苷酸多态性与中国汉族人风湿性心脏病的关联。
     方法:关联研究采用1:2匹配病例-对照设计(239例RHD患者和478例对照)。遗传易感性位点选择采用tSNP策略,FcRL3基因选择了2个tSNP,PTPN22基因选择了2个tSNP, C5基因共选择了7个tSNP。各位点基因分型检测采用SNPstream技术。
     结果:所有SNPs的基因型频率在病例组及对照组均符合Hardy-Weinberg平衡。两个基因所有tSNPs之间的连锁不平衡程度都较弱。位于FcRL3基因第15外显子上的SNP rs6691569的基因型和等位基因型频率在病例组和对照组之间都有显著差异,P值分别为0.000213和0.0000542。在rs6691569位点C等位基因的加性模型时,每增加一个拷贝的C等位基因,RHD风险是增加前的0.537倍(95%CI 0.34-0.73,P=0.0000625);在rs6691569位点C等位基因的显性模型时,携带CC/TC基因型的个体RHD风险是TT基因型个体的0.496倍(95%CI 0.35-0.70,P=0.000006)。在调整年龄、性别、吸烟史和饮酒史后,显著性仍然存在(加性和显性模型调整后的P值分别为0.017和0.018)。未发现其余各SNPs与RHD显著相关。
     结论:FcRL3基因的SNP rs6691569的多态性与RHD发病相关,其C等位基因可能是中国汉族人RHD的保护因素。
Objectives: To investigate the association between tumor necrosis factor-induced protein 3 (TNFAIP3) gene and tumor necrosis factor receptor associated factors 1 (TRAF1) gene and rheumatic heart disease (RHD) in Chinese Hans.
     Design and methods: In a pair-matched, hospital-based case control study (239 versus 478) conducted in Chinese Hans, we genotyped four tagging single nucleotide polymorphisms (tSNPs) in the TNFAIP3 gene and two polymorphisms in the TRAF1 gene and determined their association with RHD.
     Results: We observed that rs582757 in intron 5 of the TNFAIP3 gene was significantly associated with RHD in Chinese Hans. There was significant difference of the genotype frequency and the allele frequency in RHD patients compared with those of control subjects. (p=0.001249 and 0.000374, respectively) The C allele was associated with a reduced risk of RHD with the per-allele risk of 0.574 (95%CI 0.42-0.78, P=0.00037) under a additive model. The CC/TC genotype was associated with a reuced risk of 0.535 (95%CI 0.38-0.75, P=0.000328), compared with TT genotypes, assuming a dorminant model. The risk of rs582757 remained significant after adjusting for covariates of age,gender, smoking and alchohol drinking. ( p=0.007 and 0.009, respectively)
     Conclusions: This study demonstrates for the first time that polymorphisms rs582757 in TNFAIP3 gene may influence the risk of RHD in Chinese Hans.
     Objectives: To investigate the association between Fc receptor-like 3 (FcRL3) gene,protein tyrosine phosphatase nonreceptortype 22 (PTPN22) gene and complement component 5 (C5) gene and rheumatic heart disease (RHD) in Chinese Hans.
     Design and methods: In a pair-matched, hospital-based case control study (239 versus 478) conducted in Chinese Hans. We genotyped two tagging single nucleotide polymorphisms (tSNPs) in the FcRL3 gene, two in the PTPN22 gene and seven in the C5 gene, and determined their association with RHD.
     Results: We observed that rs6691569 in exon 15 of the FcRL3 gene was significantly associated with RHD in Chinese Hans. There was significant difference of the genotype frequency and the allele frequency in RHD patients compared with those of control subjects. ( p=0.000213 and 0.0000542, respectively) The C allele was associated with a reduced risk of RHD with the per-allele risk of 0.537 (95%CI 0.34-0.73, P=0.0000625) under a additive model. The CC/TC genotype was associated with a reuced risk of 0.496 (95%CI 0.35-0.70, P=0.000006), compared with TT genotypes, assuming a dorminant model. The risk of rs6691569 remained significant after adjusting for covariates of age,gender, smoking and alchohol drinking. ( p=0.017 and 0.018, respectively)
     Conclusions: This study demonstrates for the first time that polymorphisms rs6691569 in FCRL3 gene may influence the risk of RHD in Chinese Hans.
引文
[1]Kaplan EL. Pathogenesis of acute rheumatic fever and rheumaticheart disease:evasive after half a century of clinical,epidemiological,and laboratory investigation. Heart, 2005, 91(1): 3-4.
    [2]Hemandez-Pacheco G, Flores-Dominguez C, Rodriguez-Perez JM, et al. Tumor necrosis factor-alpha promoter polymorphisms in Mexican patients with rheumatic heart disease. J Autoimmun, 2003, 21(1):59-63.
    [3]McDonald M, C urrie BJ, Carapetis JR. A cuter heumaticf ever:a think in the chain that links the heart to the throat. Infect Dis, 2004;4:240-5.
    [4]Carapetis JR, Steer AC, Mulholland EK, Weber M. The global burden of group A streptococcal diseases. Lancet Infect Dis, 2005; 5: 685–94.
    [5]Lennon D. Acute rheumatic fever in children:recognition and treatment. Paediatr Drugs, 2004, 6(6): 363-73.
    [6]Fesslova V , Bardare M. Rheumatic fever in the 21st century. Cardi Young, 2004,14(4): 465-6.
    [7]Baandrup U. Rheumatic fever reappraised. Chin Med J Engl, 2005, 118(5): 360-1.
    [8]Gibofsky A, Kerwar S, Zabriskie JB. Rheumatic fever: The relationships between host, microbe and genetics. Rheum Dis Clin North Am, 1998, 24: 237-59.
    [9]杨锡强.儿童免疫学.北京:人民卫生出版社, 2001, 572-6.
    [10]Martin JM, Green M. Group A streptococcus. Semin Pediatr Infect Dis, 2006, 17(3):140-148.
    [11]Cunningham MW. Pathogenesis of Group A Strep tococcal Infections. Clinical Microbiology Reviews, 2000, 13: 470-511.
    [12]Burova LA, Nagorney VA, Pigarevsky PV, et al. Myocardial tissue damage in rabbits injected with group A streptococci, types M1 and M22.Role of bacterial immunoglobulin G-binding surface proteins. AP2 MIS, 2005, 113(1): 21-30.
    [13]Mcmillan DJ, Davies MR, Good MF, et al. Immune response to superoxide dismutase in group A streptococcal infection. Immunol Med Microbiol, 2004,40(3): 249-6.
    [14]陈剑光,董太明,苏健,等. ELISA检测抗A族链球菌C多糖抗体及意义.中华临床医学实践杂志, 2004, 3(2): 105-7.
    [15]Smoot LM, McCormick JK, Smoot JC, et al. Characterization of two novel pyrogenic toxin superantigensmade by an acute rheumatic fever clone of Strep tococcus pyogenes associated with multip le disease outbreaks. Infect Immun, 2002, 70: 7095-104.
    [16]Machado CS, Ortiz K, Martins Ade L, et al. Antistreptolysin Otiter profile in acute rheumatic fever diagnosis. J Pediatr, 2001, 77(2): 105-11.
    [17]Smoot LM, McCormick JK, Smoot JC, et al. Characterization of two novel pyrogenic toxin superantigensmade by an acute rheumatic fever clone of Strep tococcus pyogenes associated with multiple disease outbreaks. Infect Immun, 2002, 70: 7095-104.
    [18]Roberts S, Kosanke S, TerrenceDunn S, et al. Pathogenicmechanisms in rheumatic carditis: focus on valvular endothelium. J Infect Dis, 2001, 183: 507-11.
    [19]邹峥,张淑华,柯江维,等.小儿常见风湿性疾病细胞因子变化及干预.实用儿科临床杂志, 2005, 20(11): 1073-5.
    [20]Narin F, Narin N, Pasaoglu H, et al. Nitric oxide metabolities in acute rheumatic fever. Tohoku J Exp Med, 2003, 199(3): 135-9.
    [21]Baba MI, Kaul D, Grover A. Pathognomonic genetic expression profile within peripheral blood mononuclear cells of rheumatic heart disease patients. Mol Cell Biochem, 2006, 291(122): 213-7.
    [22]章庆春,尹海辉,尹邦良.风湿性心脏病患者血浆s2ICAM21, s2VCAM21和vWF的含量及意义.中南大学学报(医学版), 2005, 30(4): 407-9.
    [23]Guilherme L , Fae K, Oshiro SE, et al. Molecular pathogenesis of rheumatic fever and rheumatic heart disease. Expert Rev Mol Med , 2005, 7(28): 12-5.
    [24]Fae KC, Oshiro SF, Toubert A , et al. How an autoimmune reaction triggered by molecular mimicry between streptococcal Mprotein and cardiac tissue proteins leads to heart lesions in rheumatic heart disease. J Autoimmun, 2005,24(2): 101-9.
    [25]Fae K, Silva DD, Oshiro SE, et al. Mimicry in recognition of cardiac myosin peptides by heart2intralesional T cell clones from rheumatic heart disease. J Immunol, 2006, 176(9): 5662-70.
    [26]Terao Y, Yamaguchi M, Hamada S, et al. Multifunctional glyceraldehyde phosphate dehydrogenase of Streptococcus pyogenes is essential for evasion from neutrophils. J Biol Chem, 2006, 281(20):14215-23.
    [27]Cheadle W. Harveian lectures on the various manifestations of the rheumatic state as exemplified in childhood and early life. Lancet. 1889; 133: 821-7.
    [28]Davies A, Lazarov E. Heredity, infection and chemoprophylaxis in rheumatic carditis: an epidemiologic study of a communal settlement. J Hygiene.1960; 58: 263-9.
    [29]Spagnuolo M, Taranta A. Rheumatic fever in siblings. Similarity of its clinical manifestations. N Engl J Med . 1968; 278:183-8.
    [30]Bhat MS, Wani BA, Koul PA, Bisati SD, Khan MA, Shah SU. HLA antigen pattern of Kashmiri patients with rheumatic heart disease. Indian J Med Res. 1997; 105:271-274.
    [31]Patarroyo M, Winchester R, Vejerano A, et al. Association of a B-cell alloantigen with susceptibility to rheumatic fever. Nature 1979; 278: 173-4.
    [32]Zabriskie J, Lavenchy D, Williams R, Fu SM, Yeadon CA, Fotino M, Braun DG.Rheumatic fever-associated B cell alloantigens as identified by monoclonal antibodies. Arthritis Rheum. 1985; 28: 1047-51
    [33]Koren W, Koldanov R, Postnov I, Morozova E, Zolkina I, Enina L, Shostak N. Red cell Na_/H_ exchange and B cell alloantigen 883 in patients with acute rheumatic fever and inactive rheumatic heart disease. Scand J Rheumatol. 1996;25:87-91.
    [34]Harel L, Zeharia A, Kodman Y, et al. Presence of the d8/17 B-cell marker in children with rheumatic fever in Israel. Clin Genet. 2002;61: 293-8.
    [35]Harrington Z, Visvanathan K, Skinner NA, Curtis N, Currie BJ, Carapetis JR. B-cell antigen D8/17 is a marker of rheumatic fever susceptibility in Aboriginal Australians and can be tested in remote settings. Med J Aust. 2006;184:507-10.
    [36]Oli K, Porteous J. Prevalence of rheumatic heart disease among school children in Addis Ababa. East Afr Med J. 1999; 76: 601-5.
    [37]Kaur S, Kumar A, Grover K, et al. Ethnic differences in exp ression of suscep tibilitymarker in rheumatic fever/ rheumatic heart disease patients. Cardiol,1998, 64:9-14.
    [38]Ayoub EM, Barrett DJ, Maclaren NK, Krischer JP. Association of class II human histocompatibility leukocyte antigens with rheumatic fever. J Clin Invest 1986; 77:2019-26.
    [39]Rajapakse CN, Halim K, Al-Orainey I, Al-Nozha M, Al-Aska AK. A genetic marker for rheumatic heart disease. Heart J , 1987; 58: 659-62.
    [40]Guilherme L, Weidebach W, Kiss MH, Snitcowsky R, Kalil J.Association of human leukocyte class II antigens with rheumatic fever or rheumatic heart disease in a Brazilian population. Circulation, 1991; 83: 1995-8.
    [41]Weidebach W, Goldberg AC, Chiarella J, et al. HLA class II antigens in Rheumatic Fever: analysis of the DR locus by RFLP and Oligotyping.Hum Immunol 1994; 40: 253-8.
    [42]Ozkan M, Carin M, Sonmez G, Senocak M, Ozdemir M, Yakut C. HLA antigens in Turkish race with rheumatic heart disease. Circulation, 1993; 87: 1974-88.
    [43]Hayda FE, Tutkak H, Kose K, Duzgun N. Genetic susceptibility to rheumatic heart disease and streptococcal pharyngitis: association with HLA-DR alleles.Tissue Antigens, 2006; 68:293-6.
    [44]Guedez Y, Kotby A, El-Demellawy M, et al. HLA class II associations with rheumatic heart disease are more evident and consistent among clinically homogeneous patients. Circulation 1999;99:2784-90.
    [45]Stanevicha V, Eglite J, Sochnevs A, Gardovska D, Zavadska D, Shantere R. HLA class II associations with rheumatic heart disease among clinically homogeneouspatients in children in Latvia. Arthritis Res Ther, 2003; 5: R340-6.
    [46]Gu J, Yu B, Zhou J. HLA-DQA1 genes involved in genetic susceptibility to rheumatic fever and rheumatic heart disease in southern Hans. Zhonghua Nei Ke Za Zhi. 1997; 36:308-11.
    [47]Stanevicha V, Eglite J, Sochnevs A, Gardovska D, Zavadska D, Shantere R. HLA class II associations with rheumatic heart disease among clinically homogeneous patients in children in Latvia. Arthritis Res Ther, 2003; 5: R340-6.
    [48]Olmez U, Turgay M, Ozenirler S, et al. Association of HLA class I and class II antigens with rheumatic fever in a Turkish population. Scand J Rheumatol 1993; 22:49-52.
    [49]Simonini G, Porfirio B, Cimaz R, et al. Lack of association between the HLA-DRB1 locus and post-strep tococcal reactive arthritis and acute rheumatic fever in Italian children. Semin Arthritis Rheum, 2004, 34:553-8.
    [50] Hernandez G, Flores C, Rodriguez M, Perez N, Fragoso M, Saul A, Alvarez J, Reyes A, Vargas G. Tumor necrosis factor-alpha promoter polymorphisms in Mexican patients with rheumatic heart disease. J Autoimmun, 2003;21:59-63
    [51]Sallakci N, Akcurin G, Koksoy S, Kardelen F, Uguz A, Coskun M,Ertug H, Yegin O. TNF-alpha G-308A polymorphism is associated with rheumatic fever and correlates with increased TNF-alpha production. J Autoimmun, 2005 ;25:150-4.
    [52]Ramasawmy R, Fae KC, Spina G, Victora GD, et al. Association of polymorphisms within the promoter region of the tumor necrosis factor-alpha with clinical outcomes of rheumatic fever. Mol Immuno, 2007; 44:1873-1878.
    [53]Ayoub EM, Barrett DJ, Maclaren NK, Krischer JP. Association of class II human histocompatibility leukocyte antigens with rheumatic fever. J Clin Invest, 1986; 77: 2019-26.
    [54]Settin A, Abdel-Hady H, El-Baz R, Saber I. Gene polymorphisms of TNF-alpha(-308), IL-10(-1082), IL-6(-174) and IL-1Ra(VNTR) related to susceptibility and severity of rheumatic heart disease. Pediatr Cardiol. 2007;28:363-71.
    [55]Chou HT, Chen CH, Tsai CH, Tsai FJ. Association between transforming growth factor-beta1 gene C-509T and T869C polymorphisms and rheumatic heart disease. Am Heart J. 2004;148:181-6.
    [56]Cunningham MW. Autoimmunity and molecular mimicry in the pathogenesis of post-streptococcal heart disease. Front Biosci, 2003;8:533-43.
    [57]Berdeli A, Celik HA, Ozyurek R, Aydin HH. Involvement of immunoglobulin FcgammaRIIA and FcgammaRIIIB gene polymorphisms in susceptibility to rheumatic fever. Clin Biochem, 2004;37:925-9.
    [58]Berdeli A, Celik HA, Ozyurek R, Dogrusoz B, Aydin HH. TLR-2 gene Arg753Gln polymorphism is strongly associated with acute rheumatic fever in children. J Mol Med. 2005;83:535-41.
    [59]Jack DL, Klein NJ, Turner MW. Mannose-binding lectin targeting the microbial world for complement attack and opsonophagocytosis. Immunol Rev, 2001;180:86–99.
    [60]Messias J, Schafranski MD, Jensenius JC, Steffensen R. The association between mannose-binding lectin gene polymorphism and rheumatic heart disease. Hum Immunol, 2006; 67:991–8.
    [61]Chou h, Tsai C, Chen W, et al. Lack of Association of Genetic Polymorphisms in the Interleukin-1, Interleukin-1 Receptor Antagonist,Interleukin-4, and Interleukin-10 Genes With Risk of Rheumatic Heart Disease in Taiwan Chinese. Int Heart J, 2005; 46:397-406
    [62]Chou h, Chen W, Tsai C, et al. Association between transforming growth factor-1 gene C-509T and T-869C polymorphisms and rheumatic heart disease. Am Heart J, 2004; 148:181-6.
    [63]Chou HT, Tsai CH, Tsai FJ. Association between angiotensin I-converting enzyme gene insertion/deletion polymorphism and risk of rheumatic heart disease. Jpn Heart J. 2004; 45:949-57.
    [64]Davutoglu V, Nacak M. Influence of angiotensin-converting enzyme gene insertion/ deletion polymorphism on rheumatic valve involvement,valve severity and subsequent valve calcification. J Heart Valve Dis. 2005;14:277-81.
    [65]Atalar E, Tokgozoglu SL, Alikasifoglu M, Ovunc K, Aksoyek S, Kes S, Tuncbilek E. Angiotensin-converting enzyme genotype predicts valve damage in acute rheumatic fever. J Heart Valve Dis. 2003;12:7-10.
    [66]Jacob CO, McDevitt HO. Tumour necrosis factor-alpha in murine autoimmune lupus nephritis. Nature, 1988,331(6154):356-58.
    [67]Komaki S, Kohno M, Matsuura N, et al. The polymorphic 43Thr bcl-2 protein confers relative resistance to autoimmunity:an analytical evaluation.Hum Genet.1998, 103(4):435-40.
    [68]Brookes A J. The essence of SNPs. Gene,1999,234(2):177-86.
    [69]Mullikin J C,S E Hunt,C G Cole,et al.An SNP map of human chromosome22. Nature,2000,407(6803):516-20.
    [70]Li W, HL A, Sadler. Low nucleotide diversity in man. Genetics, 1991,129(2):513-23.
    [71]Nickerson D, TaylorK, Weiss T, et al. DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene.Nat Genet, 1998,19(3):233-40.
    [72]严卫丽,顾俊.复杂疾病关联研究中的若干问题.遗传学报, 2004;31(5): 533-7
    [1]Kaplan EL. Pathogenesis of acute rheumatic fever and rheumaticheart disease:evasive after half a century of clinical, epidemiological,and laboratory investigation. Heart 2005, 91(1): 3-4.
    [2]Hemandez G, Flores C, Rodriguez JM, et al. Tumor necrosis factor-alpha promoter polymorphisms in Mexican patients with rheumatic heart disease. J Autoimmun. 2003, 21(1): 59-63.
    [3]Carapetis JR, Steer AC, Mulholland EK, Weber M. The global burden of group A streptococcal diseases. Lancet Infect Dis, 2005; 5: 685-94.
    [4]RobertsS, K osankeS, T errenceD unnS, et al. Pathogenic mechanisms in rheumatic carditis: focus on valvular endothelium. J Infect Dis, 2001; 18: 507-11.
    [5]Fae K, Kalil J, Toubert A, et al. Heart infiltrating Tcell clones from a rheumatic heart disease patient display a common TCR usage and a degenerateantigen recognition pattenr. MotIm munol, 2004, 40(14-15): 1129-35.
    [6]FaeK C, O shiroS E, T oubertA ,et al. H owa na utoimmuner eactiont riggered by molecul arm imicry betweens treptococcal M protein and cardiac tissue proteins leads to heart lesions in rheumatic heart disease. J Autoimmun, 2005, 24(2): 101-09.
    [7]Bhatnagar A, Grover A , Ganguly NK. Superantigen-induced T cell responses in acute rheumatic fever and chronic rheumatic heart disease patients. Clin Exp Immunol, 1999, 116(1): 100-06.
    [8]Williamson H, Bowness P, Mowat A,et al. Lesson of the week: difficulties in diagnosing acute rheumatic fever-arthritis may be short lived and carditis silent. BMJ, 2000; 320: 362-65.
    [9]Liu H, Pope R. Phagocytes:mechanisms of inflammation and tissued estruction. Rheum Dis Clin North Am, 2004; 30: 19-39.
    [10]Roberts S, Kosanke S, Terrence D, et al. Pathogenic mechanismsin rheumatic carditis: focus on valvular endothelium. J Infect Dis, 2001; 183: 507-11.
    [11]Eric G, David L, Sophia C, et al. Failure to regulate TNF-indnced NF-κB and cell death responses in A20-defieient mice. Seienee, 2000, 289: 2350-4.
    [12]Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, et al. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science, 2000, 289: 2350-4.
    [13]Heynihck K, De Valck, Berghe WV, et al. The zinc finger protein A20 inhibits TNF-induced NF-κB-dependent gene epression by interfering with an RIP- or TRAF2-mediated transactivation signal and directly binds to a novel NF-κB-inhibiting protein ABIN. J Cell Biol, 1999, 145(7): 1471-82.
    [14]Nair RP, Duffin KC, Helms C, Ding J, Stuart PE, et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet. 2009 Feb; 41(2): 199-04.
    [15]Robert M, Chris C, Leela D, et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. NAT GEN, 2007, 39(12): 1477-81.
    [16]Watip B, Delphine E, Simonetta B, et al.Tag polymorphisms at the A20 (TNFAIP3) locus are associated with lower gene expression and increased risk of coronary artery disease in type 2 diabetes. Diabetes, 2007; 56(2): 499-05.
    [17]Takeshita F, Ishii KJ, Kobivama K, el a1. TRAF4 acts as a silencer in TLR-mediated signaling through the association with TRAF6. Eur J Imnmnol, 2005, 35(8): 2477-85.
    [18]Beyaert R, Heyninck K, Van Huffel S. A20 and A20-binding proteins as cellular inhibitors of nuclear factor–kappa B–dependent gene expression and apoptosis. Biochem Pharmacol. 2000; 60: 1143–51.
    [19]Onose A, Hashimoto S, Hayashi S, Maruoka S, Kumasawa F, et al. An inhibitory effect of A20 on NF-kappaB activation in airway epithelium upon influenza virus infection. Eur J Pharmacol, 2006,541: 198-04.
    [20]Bradley JR, Pober JS. Tumor necrosis factor receptor-associated factors (TRAFs).Oncogene, 2001,20: 6482-91.
    [21]Boone D,Turer E,Lee E, et a1. The ubiquitin-modifying enzyme A20 is required for termination of To11-like receptor responses. Nature, 2004: l052-60.
    [22]Hevninck K, Beyaert R. A20 inhibits NF-kappaB activation by dual ubiquitin-editing functions. Trends Biochem Sci, 2005; 30(1): l-4.
    [23]Katsuhiro Z, Aly K, Thomas E, et al. Lipopolysaccharide-Induced NFκB Activation in Human Endothelial Cells Involves Degradation of IκBα.. Experimental Cell Researeh, 1998, 243: 425-33.
    [24]CooPer JT, Stroka DM, Brostjan C, et al. A20 bloeks endothelial cell activation through a NF-κB-dependent meehanism. J Biol Chem.1996, 271: 18068-73.
    [25]Muegge K, Williams TM,Kant J,et al. Interieukin-1 costimulatory activity on the interleukin-2 promter via AP-1 site. Seienee,1989,2 46: 249-56.
    [26]Guiterrez J, Bluethmann H. Molecules and mechanism operating in septic shock:lesions from knoekout mice. Immunology Today, 1997,18: 330-4.
    [27]Song H, Rothe M, Goeddel DV. The tumor necrosis faetor-indueible zinc finger Protein A20 interaets with TRAF1/TRAF2 and inhibits NF-kapper B activation. Proc Natl Aead Sci.1996, 93: 6721-5.
    [28]刘渤,蒋建新,朱佩芳,等.锌指蛋白A20在创伤感染时对小鼠肝组织的影响.中华实验外科杂志, 2003, 20(10): 121-4.
    [29]Brain D, Shames CH, Selzman E, et al. LPS-induced NF-κB activation and TNF-release in human monoeytes are protein tyrosine kinase dependent and protein kinase C independent. J Surg Res, 1999, 83: 69-74.
    [30]Bruce Beutler. Tlr4: central component of the sole mammalian LPS sensor. Current Opinion in Immunology, 2000, 12: 20-26.
    [31]Nancy ST, Danilo DL, Peter MF. Improved DNA:liposome complexes for inereased systemic delivery and gene expression. Nature Biotech, 1997, 15: 647-52.
    [32]Krikos A, Laherty CD, Dixit VM. Transeriptional activation of the tumornecrosis faetor alpha-indueible zinc finger protein,A20, is mediated by kappa B elements. J Biol Chem, 1992, 267: 17971-6.
    [33]卢建,余应年,徐仁宝.受体信号转导系统与疾病,山东科学技术出版社, 1999: 123-37.
    [34]Musone S. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat Genet, 2008, 40:1062-4.
    [35]Graham RR, Cotsapas C, Davies L, Hackett R, et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat Genet, 2008, 40: 1059-61.
    [36]Wellcome Trust Case Control Consortium: Genome-wide association study of 14,000 cases of seven common diseases and 3000 shared controls. Nature 2007, 447:661-678.
    [37]Dieguez-Gonzalez R, Calaza M, Perez-Pampin E, Balsa A, et al. Analysis of TNFAIP3, a feedback inhibitor of nuclear factor-kappaB and the neighbor intergenic 6q23 region in rheumatoid arthritis susceptibility. Arthritis Res Ther. 2009 Mar 17; 11(2): R42. [Epub ahead of print]
    [1]Davis RS, Wang YH, Kubagawa H, Cooper MD. Identification of a family of Fc receptor homologs with preferential B cell expression. Proc Natl Acad Sci USA 2001, 98(17): 9772-7.
    [2]Won WJ, Foote JB, Odom MR, et al. Fc receptor homolog-3 is a novel immunoregulatory marker of marginal zone and B1 B cells. Immunol, 2006, 15; 177(10): 6815-3.
    [3]Kochi Y, Yamada R, Suzuki A, et al. A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities. Nat Genet, 2005, 37(5): 478-5.
    [4]Martínez A, Sánchez E, Valdivia A, et al. Epistatic interaction between FCRL3 and NFB1 genes in Spanish patients with rheumatoid arthritis. Annals of the Rheumatic Diseases, 2006, 65(9):1188--91.
    [5]Simmonds MJ, Heward JM., Carr-Smith J, et al. Contribution of single nucleotide polymorphisms within FCRL3 and MAP3 to the pathogenesis of Graves’disease. Clin Endocrinol Metab. 2006, 91(3): 1056-61.
    [6]Thabet MM, Wesoly J, Slagboom PE, et al. FCRL3 promoter 169 CC homozygosity is associated with susceptibility to rheumatoid arthritis in Dutch Caucasians. Ann Rheum Dis. 2007, 66(6): 803-6.
    [7]Martínez A, Sánchez E, Valdivia A, et al. Epistatic interaction between FCRL3 and NF B1 genes in Spanish patients with rheumatoid arthritis. Annals of the Rheumatic Diseases. 2006, 65(9): 1188-91.
    [8]Ikari K, Momohara S, Nakamura T, et al. Supportive evidence for a genetic association of the FCRL3 promoter polymorphism with rheumatoid arthritis. Ann Rheum Dis, 2006; 65(5): 671-3.
    [9]Kochi Y, Yamada R, Suzuki A, et al. A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities. Nat Genet. 2005, 37(5): 478-485.
    [10]Martínez A, Mas A, Heras V,et al.FcRL3 and multiple sclerosis pathogenesis: roleautoimmunity. Neuroimmunol. 2007, 189(1-2): 132-136
    [11]Matesanz F, Fernández O, Milne RL, The high producer variant of the Fc-receptor like-3(FCRL3)gene is involved in protection against multiple sclerosis. Neuroimmunol. 2009, [Epub ahead of print].
    [12]Martínez A, Nuez C, Martín MC, et al. Epistatic interaction between FCRL3 and MHC in Spanish patients with IBD. Tissue Antigens. 2007, 69(4): 313-7.
    [13]Wu J, Katrekar A, Honigberg LA, et al. Identification of substrates of human protein-tyrosinephosphatase PTPN22. Biol Chem. 2006, 281(16): 11002-10.
    [14]Cohen S, Dadi H, Shaoul E, et al. Cloning and characterization of a lymphoid2 specific, inducible human protein tyrosine phosphatase Lyp. Blood, 1999, 93: 2013-24
    [15]Burova LA, Nagorney VA, Pigarevsky PV, et al. Myocardial tissue damage in rabbits injected with group A streptococci, types M1 and M22.Role of bacterialimmunoglobulin G2 binding surface proteins. AP MIS, 2005, 113(1): 21-30.
    [16]Hill RJ, Zozulya S, Lu YL, et al. The lymphoid protein tyrosine phosphatase Lyp interacts with the adaptor molecule Grb2 and functions as a negative regulator of T-cell activation. Exp Hematol, 2002; 30(3): 237-44.
    [17]Mustelin T, Alonso A, Bottini N, et al. Protein tyrosine phosphatases in T cell physiology . J Mol Immunol. 2004, 41: 687-700.
    [18]Ray D, Tomar N, Gupta N, et al. Protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene R620W variant in Asian Indians. Int J Immunogene, 2006, 33(4): 237-40.
    [19]Begovich AB, Carlton VE, Honigberg LA, et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. J Hum Genet, 2004, 75: 330-7.
    [20]Anne H, Anne B, Sally J, et al. Association between the PTPN22 gene and rheumatoid arthritis and juvenileidio pathic arthritis in a UK population. Arthritis Rheum, 2005, 52(6): 1694-9.
    [21]Kennet MK, Jennifer A, Billy H, et al. Evaluation of the genetic association of the PTPN22 R620W polymorphism in familial and sporadic systemic lupus eryt hematosus. Art hritis Rheum, 2006, 54 (8): 2533-40.
    [22]Bottini N, Musumeci L, Alonso A, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type1 diabetes. Nat Genet , 2004 ,36 (4): 337-8.
    [23]Cohen S, Dadi H, Shaoul E, et al, Cloning and characterization of a lymphoid-specific, inducible human protein tyrosine phosphatase. Blood, 1999 ,93: 2013-24.
    [24]Kirschfink M. Controlling the complement system in inflammation. Immuno pharmacology. 1997,38:51-62.
    [25]Haeger M, Unander M, Andersson B, et al. Increased release of tumor necrosis factor-alpha and interleukin-6 in women with the syndrome of hemolysis, elevated liver enzymes and low platelet count. Obstet Gynecol, 1996, 75: 695-702.
    [26]Hansch G, Seitz M, Betz M. Effect of the late complement components C5b-9 on human monocytes: release of prostanoids,oxygen radicals and of a factor inducing cell proliferation. Int Arch Allergy Appl Immunol, 1987, 82: 317-20.
    [27] Burma S. Role of non-homologous end joining (NHEJ) in maintaining genomic integrity. DNA Repair (Amst), 2006. 5(9-10): 1042-8.
    [28]Dajani AS, Ayoub E, Bierman FZ, et al. Guidelines for the diagnosis of Rheumatic Fever: Jones criteria, 1992 uptade. JAMA 1992; 268:2069–73.
    [29]McDonald M, C urrie BJ, Carapetis JR. A cuter heumaticf ever:a chink in the chain that links the heart to the throat? Lancet Infect Dis, 2004; 4: 240-5.
    [30]Carapetis JR, Steer AC, Mulholland EK, Weber M. The global burden of group A streptococcal diseases. Lancet Infect Dis, 2005; 5: 685–94.
    [31]金惠铭,等.细胞分子病理生理学郑州大学出版社, 2002, 420-2.
    [32]郜艳晖,姜庆五.遗传流行病学研究中的几种设计.中华流行病学杂志, 2004; 25(1): 74-7.
    [33]Cardon LR, Bell JI. Association study designs for complex diseases. Nat Rev Genet 2001; 2(2): 91-9.
    [34]Chistiakov DA, Chistiakov AP. Is FCRL3 a new general autoimmunity gene? Hum I mmunol , 2007; 68(5): 375-83.
    [35]Miller I, Hatzivassiliou G, Cattoretti G, Mendelsohn C. IRTAs: a new family of immunoglobulinlike receptors differentially expressed in B cells. Blood 2002, (99), 2662–9.
    [36]Gray D, Ayoub E, Bierman FZ, et al. Observations on memory B-cell development. Semin. Immunol, 1997, (9), 249–254.
    [37]Xu MJ, Zhao R, Cao H, Zhao ZJ. SPAP2, an Ig family receptor containing both ITIMs and ITAMs. Biochem Biophys Res Commun. 2002, 293: 1037-46.
    [38]Marrack P, Kappler J, Kotzin BL. Autoimmune disease: why and where it occurs. Nat Med. 2001, 7: 899-05.
    [39]Edwards JC, Ayoub E, Bierman FZ, et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med. 2004; 350: 2572-81.
    [40]Simmonds MJ, Heward JM, Carr-Smith J, et al. Contribution of single nucleotide polymorphisms within FCRL3 to the pathogenesis of Graves’disease. Clin Endocrinol Metab. 2006, 91(3): 1056-61.
    [41]郑瑞芝,李蓉,张素华,等. FcRL3基因启动子-169A/G多态性与Graves病的关联研究.免疫学杂志, 2008, 24(3): 353-5.
    [42]郑瑞芝,张素华,李蓉,等.一个多重自身免疫性疾病家系的临床及遗传学分析.中国免疫学杂志, 2008, 24(4): 952-6.
    [43]Eyre S, Bowes J, Potter C, Worthington J, Barton A. Association of the FCRL3 gene with rheumatoid arthritis:a further example of population specificity? Arthritis Res Ther, 2006; 8(4): R117.
    [44]Owen CJ, Kelly H, Eden JA, et al. Analysis of the Fc receptor-like-3 (FCRL3) locus in Caucasians with autoimmune disorders suggests a complex pattern of disease association. Clin Endocrinol Metab. 2007, 92(3): 1106-11.
    [45]Choi CB, Kang CP, Seong SS, Bae SC, Kang C. The-169C/T polymorphism in FCRL3 is not associated with susceptibility to rheumatoid arthritis or systemic lupus erythematosus in a case-control study of Koreans. Arthritis Rheum, 2006; 54(12): 3838-41.
    [46]Umemura T, Ota M, Yoshizawa K, et al. Lack of association between FCRL3 and FcgammaRII polymorphisms in Japanese type 1 autoimmune hepatitis. Clin Immunol 2007;122(3):338-42.
    [47]Yi Y, Zhe W, Guohong D, Fei H. Lack of association between Fc receptor-like 3 gene polymorphisms and systemic lupus erythematosus in Chinese population. J Dermatolog Sci, 2008, 52: 118-22.
    [48]Sestak AL, Nath SK, Sawalha AH, Harley JB. Current status of lupus genetics. Arthritis Res Ther, 2007; 9(3): 210.
    [49]Mori M, Yamada R, Kobayashi K, Kawaida R, Yamamoto K. Ethnic differences in allele frequency of autoimmune-disease-associated SNPs. J Hum Genet, 2005; 50(5):264-6.
    [50]Pearce SH, Merriman TR. Genetic progress towards the molecular basis of autoimmunity. Trends Mol Med, 2006; 12(2): 90-8.
    [51]Gregersen PK, Lee HS, Batliwalla F, Begovich AB. PTPN22: setting thresholds for autoimmunity. Semin Immunol, 2006; 18(4): 214-3.
    [52]Ikari K, Momohara S, Inoue E, et al. Haplotype analysis revealed no associationbetween the PTPN22 gene and RA in a Japanese population. Rheumatology (Oxford), 2006; 45(11): 1345-48.
    [53]Ray D, Tomar N, Gupta N, Goswami R. Protein tyrosine phosphatase non-receptor type 22(PTPN22) gene R620W variant and sporadic idiopathic hypoparathyroidism in Asian Indians. Int J Immunogenet, 2006; 33(4): 237-40.
    [54]胡必成,崔天盆,吴健民. PTPN22基因的变异(R620W)与湖北汉族人群SLE的易感性关系.华中医学杂志, 2008; 32(1): 12-14.
    [1]Hemandez-Pacheco G, Flores-Dominguez C, Rodriguez-Perez JM, et al. Tumor necrosis factor-alpha promoter polymorphisms in Mexican patients with rheumatic heart disease. J Autoimmun, 2003, 21(1): 59-63.
    [2]Fesslova V ,Bardare M. Rheumatic fever in the 21st century. Cardi Young, 2004, 14(4): 465-66.
    [3] Shet A , Kap lan E, et al. The global burden of group A streptococcal diseases. Lancet Infect. Dis. 2005,5: 685–694
    [4] O′Brien KL, Beall B, Barrett NL. Epidemiology of Invasive Group A Strep tococcus Disease in the United States 1995-1999. Clinical Infectious Diseases, 2002, 35(3): 268-76.
    [5]中华医学会风湿病学分会.风湿热诊治指南(草案) .中华风湿病学杂志, 2004, 8(3): 504-06.
    [6]Gibofsky A, Kerwar S, Zabriskie JB. The relationships between host ,microbe ,and genetics. Rheum Dis Clin North Am ,1998 ,24 (2) :237-259.
    [7]Olivier C. Acute articular rheumatism in the child in 1997. Pathol BiolParis, 1998, 46 (10): 8022812.
    [8]Shet A , Kap lan E. Addressing the burden of group A strep tococcal disease in India. Indian J Pediatr, 2004, 71(1): 41-8.
    [9]Robertson KA ,Volmink JA ,Mayosi BM. Antibiotics for the primary preentionofacuter heumatic fever : ameta analysis. BMC Cardiovasc Disrd, 2005 ,5(1): 11-3.
    [10]Lennon D. Acute rheumatic fever in children :recognition and treatment. Paediatr Drugs, 2004, 6(6): 363-73.
    [11]Fesslova V ,Bardare M. Rheumatic fever in the 21st century. Cardi Young, 2004, 14 (4): 465-6.
    [12]Baandrup U. Rheumatic fever reappraised. Chin Med J Engl , 2005 ,118 (5) :360-1.
    [13]杨锡强.儿童免疫学[M].北京:人民卫生出版社,2001. 572-6.
    [14]Martin JM, Green M. Group A streptococcus. Semin Pediatr Infect Dis ,2006 ,17 (3) :140-8.
    [15]Burova LA ,Nagorney VA ,Pigarevsky PV , et al. Myocardial tissue damage in rabbits injected with group A streptococci ,types M1 and M22. Role of bacterial immunoglobulin G2binding surface proteins. AP2MIS ,2005 ,113 (1) :21-30.
    [16]Mcmillan DJ ,Davies MR ,Good MF , et al . Immune response to superoxide dismutase in group A streptococcal infection. FEMS Immunol Med Microbiol, 2004, 40(3): 249-56.
    [17]陈剑光,董太明,苏健,等. ELISA检测抗A族链球菌C多糖抗体及意义.中华临床医学实践杂志, 2004 , 3(2) :105-7.
    [18]黄建林,古洁若,余步云,等. A组乙型链球菌脂磷壁酸的提取及其交叉反应性研究.中华风湿病学杂志, 2003 ,7 (6) :328-31.
    [19]Smoot LM, McCormick JK, Smoot JC, et al. Characterization of two novel pyrogenic toxin superantigensmade by an acute rheumatic fever clone of Strep tococcus pyogenes associated with multiple disease outbreaks. Infect Immun, 2002, 70: 7095-104.
    [20]Machado CS ,Ortiz K,Martins Ade L, et al. Antistreptolysin O titer profile in acute rheumatic fever diagnosis. J Pediatr (Rio J ), 2001 ,77 (2) :105-11.
    [21]邹峥,张淑华,柯江维,等.小儿常见风湿性疾病细胞因子变化及干预.实用儿科临床杂志, 2005, 20(11): 1073-5.
    [22]Narin F, Narin N, Pasaoglu H, et al. Nitric oxide metabolities in acute rheumatic fever. Tohoku J Exp Med, 2003 ,199 (3) :135-9.
    [23]Baba MI, Kaul D, Grover A. Pathognomonic genetic expression profile within peripheral blood mononuclear cells of rheumatic heart disease patients. Mol Cell Biochem, 2006, 291(122): 213-7.
    [24]章庆春,尹海辉,尹邦良.风湿性心脏病患者血浆s-ICAM-1, s-VCAM-1和vWF的含量及意义.中南大学学报(医学版), 2005 , 30 (4) :407-9.
    [25]Guilherme L ,Fae K,Oshiro SE, et al .Molecular pathogenesis of rheumatic fever and rheumatic heart disease. Expert Rev Mol Med, 2005, 7 (28) :1215.
    [26]Fae KC, Oshiro SF, Toubert A, et al. How an autoimmune reaction triggered by molecular mimicry between streptococcal Mprotein and cardiac tissue proteins leads to heart lesions in rheumatic heart disease.J Autoimmun, 2005 ,24 (2) :101-9.
    [27]Fae Kc, Silva DD, Oshiro SE, et al . Mimicry in recognition of cardiac myosin peptides by heart intralesional T cell clones from rheumatic heart disease. J Immunol , 2006 ,176 (9):5662-70.
    [28]Terao Y, Yamaguchi M, Hamada S, et al. Multifunctional glyceraldehyde phosphate dehydrogenase of Streptococcus pyogenes is essential for evasion from neutrophils. J Biol Chem , 2006 ,281 (20) :14215-23.
    [29]Cheadle W. Harveian lectures on the various manifestations of the rheumatic state as exemplified in childhood and early life. Lancet, 1889; 133: 821-7.
    [30]Bhat MS, Wani BA, Koul PA, Bisati SD, Khan MA, Shah SU. HLA antigen pattern of Kashmiri patients with rheumatic heart disease. Indian J Med Res, 1997; 105: 271-4.
    [31]Patarroyo M, Winchester R, Vejerano A, et al. Association of a B-cell alloantigen with susceptibility to rheumatic fever. Nature, 1979; 278:173-4.
    [32]Zabriskie J, Lavenchy D, Williams R, Fu SM, Yeadon CA, Fotino M, Braun DG. Rheumatic fever-associated B cell alloantigens as identified by monoclonal antibodies. Arthritis Rheum. 1985; 28: 1047-51
    [33]Koren W, Koldanov R, Postnov I, Morozova E, Zolkina I, Enina L, Shostak N. Red cell Na_/H_ exchange and B cell alloantigen 883 (D8/17) in patients with acute rheumatic fever and inactive rheumatic heart disease. Scand J Rheumatol. 1996; 25:87-91.
    [34]Harel L, Zeharia A, Kodman Y, Straussberg R, Zabriskie JB, Amir J. Presence of the d8/17 B-cell marker in children with rheumatic fever in Israel. Clin Genet. 2002; 61: 293-8.
    [35]Harrington Z, Visvanathan K, Skinner NA, Curtis N, Currie BJ, Carapetis JR. B-cell antigen D8/17 is a marker of rheumatic fever susceptibility in Aboriginal Australians and can be tested in remote settings. Med J Aust. 2006;184: 507-10.
    [36]Oli K,Porteous J. Prevalence of rheumatic heart disease among school children in Addis Ababa. East Afr Med J. 1999; 76: 601-5.
    [37]Kaur S, Kumar A, Grover K, et al. Ethnic differences in exp ression of suscep tibilitymarker in rheumatic fever/ rheumatic heart disease patients. Cardiol, 1998, 64: 9-14.
    [38]Ayoub EM, Barrett DJ, Maclaren NK, Krischer JP. Association of class II human histocompatibility leukocyte antigens with rheumatic fever. J Clin Invest 1986; 77: 2019-26.
    [39]Rajapakse CN, Halim K, Al-Orainey I, Al-Nozha M, Al-Aska AK. A genetic marker for rheumatic heart disease. Heart J, 1987; 58: 659–2.
    [40]Guilherme L, Weidebach W, Kiss MH, Snitcowsky R, Kalil J. Association of human leukocyte class II antigens with rheumatic fever or rheumatic heart disease in a Brazilian population. Circulation, 1991; 83: 1995-8.
    [41]Weidebach W, Goldberg AC, Chiarella J, et al. HLA class II antigens in Rheumatic Fever: analysis of the DR locus by RFLP and Oligotyping. Hum Immunol, 1994; 40: 253–8.
    [42]Ozkan M, Carin M, Sonmez G, Senocak M, Ozdemir M, Yakut C. HLA antigens in Turkish race with rheumatic heart disease. Circulation, 1993; 87: 1974-88.
    [43]Hayda FE, Tutkak H, Kose K, Duzgun N. Genetic susceptibility to rheumatic heart disease and streptococcal pharyngitis: association with HLA-DR alleles. Tissue Antigens, 2006; 68: 293-6.
    [44]Guedez Y, Kotby A, El-Demellawy M, et al. HLA class II associations with rheumatic heart disease are more evident and consistent among clinically homogeneous patients. Circulation, 1999; 99: 2784-90.
    [45]Stanevicha V, Eglite J, Sochnevs A, Gardovska D, Zavadska D, Shantere R. HLA class II associations with rheumatic heart disease among clinically homogeneous patients in children in Latvia. Arthritis Res Ther, 2003; 5: R340–346.
    [46]Gu J,Yu B,Zhou J. HLA-DQA1 genes involved in genetic susceptibility to rheumatic fever and rheumatic heart disease in southern Hans. Zhonghua Nei Ke Za Zhi, 1997; 36: 308-11.
    [47]Stanevicha V, Eglite J, Sochnevs A, Gardovska D, Zavadska D, Shantere R. HLA class II associations with rheumatic heart disease among clinically homogeneous patients inchildren in Latvia. Arthritis Res Ther, 2003; 5: R340–6.
    [48]Olmez U, Turgay M, Ozenirler S, et al. Association of HLA class I and class II antigens with rheumatic fever in a Turkish population. Scand J Rheumatol 1993; 22: 49-52.
    [49]Simonini G, Porfirio B, Cimaz R, et al. Lack of association between the HLA-DRB1 locus and post-strep tococcal reactive arthritis and acute rheumatic fever in Italian children. Semin Arthritis Rheum. 2004, 34: 553-8.
    [50] Hernandez G, Flores C, Rodriguez M, Perez N, et al. Tumor necrosis factor-alpha promoter polymorphisms in Mexican patients with rheumatic heart disease. J Autoimmun, 2003; 21: 59-63
    [51]Sallakci N, Akcurin G, Koksoy S, Kardelen F, Uguz A, Coskun M, Ertug H,Yegin O. TNF-alpha G-308A polymorphism is associated with rheumatic fever and correlates with increased TNF-alpha production. J Autoimmun. 2005; 25:150-4.
    [52]Ramasawmy R, Fae KC, Spina G, Victora GD, et al. Association of polymorphisms within the promoter region of the tumor necrosis factor-alpha with clinical outcomes of rheumatic fever. Mol Immunol. 2007; 44: 1873-8.
    [53]Ramasawmy R, Fae KC, Spina G, Victora GD, et al. Association of polymorphisms within the promoter region of the tumor necrosis factor-alpha with clinical outcomes of rheumatic fever. Mol Immunol. 2007; 44: 1873-8.
    [54]Settin A,Abdel-Hady H,El-Baz R,Saber I.Gene polymorphisms of TNF-alpha(-308), IL-10(-1082),IL-6(-174),and IL-1Ra(VNTR) related to susceptibility and severity of rheumatic heart disease. Pediatr Cardiol. 2007;28:363-371.
    [55]Chou HT, Chen CH, Tsai CH, Tsai FJ. Association between transforming growth factor-beta1 gene C-509T and T869C polymorphisms and rheumatic heart disease. Am Heart J. 2004; 148: 181-6.
    [56]Cunningham MW. Autoimmunity and molecular mimicry in the pathogenesis of post-streptococcal heart disease. Front Biosci, 2003; 8: 533-43.
    [57]Berdeli A, Celik HA, Ozyurek R, Aydin HH. Involvement of immunoglobulin FcgammaRIIA and FcgammaRIIIB gene polymorphisms in susceptibility to rheumatic fever. Clin Biochem, 2004; 37: 925-9.
    [58]Berdeli A, Celik HA, Ozyurek R, Dogrusoz B, Aydin HH. TLR-2 gene Arg753Gln polymorphism is strongly associated with acute rheumatic fever in children. J Mol Med. 2005; 83: 535-41.
    [59]Spagnuolo M, Taranta A. Rheumatic fever in siblings. Similarity of its clinical manifestations. N Engl J Med, 1968; 278:183-8.
    [60]Jack DL, Klein NJ, Turner MW. Mannose-binding lectin targeting the microbial world for complement attack and opsonophagocytosis. Immunol Rev, 2001; 180: 86–99.
    [61]Greenberg LJ, Gray ED, Yunis EJ. Association of HL-A 5 and immune responsiveness in vitro to streptococcal antigens. J Exp Med, 1975; 141: 935–43.
    [62]Ayoub EM, Barrett DJ, Maclaren NK, Krischer JP. Association of class II human histocompatibility leukocyte antigens with rheumatic fever. J Clin Invest 1986; 77: 2019–26.
    [63]Carlquist JF, Ward RH, Meyer KJ, Husebye D, Feolo M,Anderson JL. Immune response factors in rheumatic heart disease: meta-analysis of HLA-DR associations and evaluation of additional class II alleles. JAmColl Cardiol, 1995: 26: 452–7.
    [64]Rajapakse CN, Halim K, Al-Orainey I, Al-Nozha M, Al-Aska AK. A genetic marker for rheumatic heart disease. Br Heart J 1987; 58:659–62.
    [65]Guilherme L, Weidebach W, Kiss MH, Snitcowsky R, Kalil J. Association of human leukocyte class II antigens with rheumatic fever or rheumatic heart disease in a Brazilian population. Circulation, 1991; 83:1995–8.
    [66]Weidebach W, Goldberg AC, Chiarella J et al. HLA class II antigens in Rheumatic Fever: analysis of the DR locus by RFLP and Oligotyping. Hum Immunol 1994; 40: 253–8.
    [67]Visentainer JE, Pereira FC, DalalioMM, et al. Association of HLA-DR7 with rheumatic fever in the Brazilian population. J Rheumatol. 2000, 27: 1518-20.
    [68]Visentainer JE, Pereira FC, Dalalio MM, Tsuneto LT, Donadio PR, Moliterno RA. Association of HLA-DR7 with rheumatic fever in the Brazilian population. J Rheumatol, 2000; 27(6): 1518–20.
    [69]Ozkan M, Carin M, Sonmez G, Senocak M, Ozdemir M, Yakut C.HL A antigens in Turkish race with rheumatic heart disease. Circulation, 1993; 87: 1974–8.
    [70]Guedez Y, Kotby A, El-Demellawy M, et al. HLA class II associations with rheumatic heart disease are more evident and consistent among clinically homogeneous patients. Circulation, 1999; 99: 2784–90.
    [71]Stanevicha V, Eglite J, Sochnevs A, Gardovska D, Zavadska D, Shantere R. HLA class II associations with rheumatic heart disease among clinically homogeneous patients in children in Latvia. Arthritis Res Ther, 2003; 5: R340–6.
    [72]Guedez Y, Kotby A, El-Demellawy M, et al. HLA class II association with rheumatic heart disease are more evident and consistent among clinically homogeneous patients. Circulation, 1999: 99: 2784–90.
    [73]Stanevicha V, Eglite J, SochnevsA, et al. HLA class II associationswith rheumatic heart disease among clinically homogeneous patients in children in Latvia. Arthritis Res Ther, 2003, 5: R340-6.
    [74]Genetic susceptibility to rheumatic heart disease and streptococcal pharyngitis: association with HLA-DR alleles. Hum Immunol 1994; 40: 253–8.
    [75]Hernandez G, Aguilar J, Flores C, et al. MHC class II alleles in Mexican patientswith rheumatic heart disease. Int J Cardiol, 2003, 92: 49-54.
    [76]Simonini G, Porfirio B, Cimaz R, et al. Lack of association between the HLA-DRB1 locus and post strep tococcal reactive arthritis and acute rheumatic fever in Italian children. Semin Arthritis Rheum. 2004, 34: 553-8.
    [77]Patarroyo ME, Winchester RJ, Vejerano A, Gibofsky A, et al. Association of a B-cell alloantigen with susceptibility to rheumatic fever. Nature. 1979; 278:173-4.
    [78]Khanna AK, Buskirk DR, Williams RC Jr, Gibofsky A, et al. Presence of a non-HLA B cell antigen in rheumatic fever patients and their families as defined by a monoclonal antibody. J Clin Invest. 1989;83: 1710-6.
    [79]Ganguly NK, Anand IS, Koicha M, Jindal S, Wahi PL. Frequency of D8/17 B lymphocyte alloantigen in north Indian patients with rheumatic heart disease. Immunol Cell Biol. 1992; 70: 9–14.
    [80]Kaur S, Kumar D, Grover A, Khanduja KL, Kaplan EL, Gray ED, Ganguly NK. Ethnic differences in expression of susceptibility marker(s) in rheumatic fever/rheumatic heart disease patients. Int J Cardiol. 1998; 64:9–14.
    [81]Rodriguez RS, Ontiveros P, Torres S, Khanna AK, Buskirk DR, Zabriskie JB. Presence of a non-HLA antigen in B-lymphocytes from patients with rheumatic fever and their relatives defined using monoclonal antibodies [in Spanish]. Bol Med Hosp Infant Mex. 1990; 47: 313-7.
    [82]Shostak NA. The diagnostic significance of the surface B-cell marker carrier state in arthritis and other manifestations of rheumatic fever. Ter Arkh. 1991; 63: 49–52.
    [83]Koren W, Koldanov R, Postnov I, Morozova E, Zolkina I, Enina L,Shostak N. Red cell exchange and B cell alloantigen 883 (D8/17) in patients with acute rheumatic fever and inactive rheumatic heart disease. Scand J Rheumatol, 1996; 25: 87-91.
    [84]Harel L, Zeharia A, Kodman Y, Straussberg R, Zabriskie JB, Amir J.Presence of the d8/17 B-cell marker in children with rheumatic fever in Israel. Clin Genet. 2002; 61: 293-8.
    [85]Harrington Z, Visvanathan K, Skinner NA, Curtis N, Currie BJ, Carapetis JR. B-cell antigen D8/17 is a marker of rheumatic fever susceptibility in Aboriginal Australians and can be tested in remote settings. Med J Aust. 2006; 184: 507-10.
    [86]Kaur S D, KumarA, Grover K L, et al. Ethnic differences in exp ression of suscep tibilitymarker in rheumatic fever/ rheumatic heart disease patients. Int. J Cardiol, 1998, 64: 9-14.
    [87]Hernandez G, Flores C, Rodriguez JM, et al. Tumor necrosis factor-alpha promoter polymorphisms in Mexican patients with rheumatic heart disease. J Autoimmun. 2003 21:59-63.
    [88]Sallakci N, Akcurin G, Koksoy S, Kardelen F, Uguz A, Coskun M, Ertug H, Yegin O. TNF-alpha G-308A polymorphism is associated with rheumatic fever and correlates with increased TNF-alpha production. J Autoimmun. 2005; 25: 150-4.
    [89]Ramasawmy R, Fae KC, Spina G, Victora GD, et al. Association of polymorphisms within the promoter region of the tumor necrosis factor-alpha with clinical outcomes of rheumatic fever. Mol Immunol. 2007; 44: 1873-8.
    [90]Settin A, Abdel-Hady H, El-Baz R, Saber I. Gene polymorphisms of TNF-alpha(-308), IL-10(-1082), IL-6(-174), and IL-1Ra(VNTR) related to susceptibility and severity of rheumatic heart disease. Pediatr Cardiol. 2007; 28: 363-71.
    [91]Ramasawmy R, Fae KC, Spina G, Victora GD, et al. Association of polymorphisms within the promoter region of the tumor necrosis factor-alpha with clinical outcomes of rheumatic fever. Mol Immunol. 2007; 44: 1873-8.
    [92]Berdeli A, Tabel Y, Celik HA, Ozyurek R, Dogrusoz B, Aydin HH.Lack of association between TNFalpha gene polymorphism at position-308 and risk of acute rheumatic fever in Turkish patients. Scand J Rheumatol. 2006; 35: 44-7.
    [93]Berdeli A, Celik HA, Ozyurek R, Aydin HH. Involvement of immunoglobulin FcgammaRIIA and FcgammaRIIIB gene polymorphisms in susceptibility to rheumatic fever. Clin Biochem. 2004; 37: 925-9.
    [94]Berdeli A, ?elik HA, ?zyürek R, Do?rusuz B, Aydin HH (2005) HH TLR-2 gene Arg753Gln polymorphism is strongly associated with acute rheumatic fever in children. J Mol Med, 83(7): 535-41.
    [95]Jack DL, Klein NJ, Turner MW. Mannose-binding lectin targeting the microbial world for complement attack and opsonophagocytosis. Immunol Rev, 2001; 180: 86–99.
    [96]Messias Reason IJ, Schafranski MD, Jensenius JC, Steffensen R. The association between mannose-binding lectin gene polymorphism and rheumatic heart disease. Hum Immunol, 2006; 67: 991-8.
    [97]Chou HT, Tsai CH, Chen WC, Tsai FJ. Lack of association of genetic polymorphisms in the interleukin-1beta, interleukin-1 receptor antagonist, interleukin-4, and interleukin-10 genes with risk of rheumatic heart disease in Taiwan Chinese. Int Heart J 2005; 46: 397-406.
    [98]Chou HT, Tsai CH, Chen WC, Tsai FJ. Association between transforming growth factor-1 gene C-509T and T869C polymorphisms and rheumatic heart disease. Am Heart J, 2004; 148: 181-6.
    [99]Haydardedeoglu FE, Tutkak H, Kose K, Duzgun N. Genetic susceptibility to rheumatic heart disease and streptococcal pharyngitis: association with HLA-DR alleles. Tissue Antigens, 2006; 68: 293-6.